Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 7 papers out of 7 papers

Expansion and Functional Divergence of Inositol Polyphosphate 5-Phosphatases in Angiosperms.

  • Zaibao Zhang‎ et al.
  • Genes‎
  • 2019‎

Inositol polyphosphate 5-phosphatase (5PTase), a key enzyme that hydrolyzes the 5` position of the inositol ring, has essential functions in growth, development, and stress responses in plants, yeasts, and animals. However, the evolutionary history and patterns of 5PTases have not been examined systematically. Here, we report a comprehensive molecular evolutionary analysis of the 5PTase gene family and define four groups. These four groups are different from former classifications, which were based on in vitro substrate specificity. Most orthologous groups appear to be conserved as single or low-copy genes in all lineages in Groups II-IV, whereas 5PTase genes in Group I underwent several duplication events in angiosperm, resulting in multiple gene copies. Whole-genome duplication (WGD) was the main mechanism for 5PTase duplications in angiosperm. Plant 5PTases have more members than that of animals, and most plant 5PTase genes appear to have evolved under strong purifying selection. The paralogs have diverged in substrate specificity and expression pattern, showing evidence of selection pressure. Meanwhile, the increase in 5PTases and divergences in sequence, expression, and substrate might have contributed to the divergent functions of 5PTase genes, allowing the angiosperms to successfully adapt to a great number of ecological niches.


Inositol polyphosphate phosphatidylinositol 5-phosphatase9 (At5ptase9) controls plant salt tolerance by regulating endocytosis.

  • Yael Golani‎ et al.
  • Molecular plant‎
  • 2013‎

Phosphatidylinositol 5-phosphatases (5PTases) that hydrolyze the 5' position of the inositol ring are key components of membrane trafficking system. Recently, we reported that mutation in At5PTase7 gene reduced production of reactive oxygen species (ROS) and decreased expression of stress-responsive genes, resulting in increased salt sensitivity. Here, we describe an even more salt-sensitive 5ptase mutant, At5ptase9, which also hydrolyzes the 5' phosphate groups specifically from membrane-bound phosphatidylinositides. Interestingly, the mutants were more tolerant to osmotic stress. We analyzed the main cellular processes that may be affected by the mutation, such as production of ROS, influx of calcium, and induction of salt-response genes. The At5ptase9 mutants showed reduced ROS production and Ca(2+) influx, as well as decreased fluid-phase endocytosis. Inhibition of endocytosis by phenylarsine oxide or Tyrphostin A23 in wild-type plants blocked these responses. Induction of salt-responsive genes in wild-type plants was also suppressed by the endocytosis inhibitors. Thus, inhibition of endocytosis in wild-type plants mimicked the salt stress responses, observed in the At5ptase9 mutants. In summary, our results show a key non-redundant role of At5PTase7 and 9 isozymes, and underscore the localization of membrane-bound PtdIns in regulating plant salt tolerance by coordinating the endocytosis, ROS production, Ca(2+) influx, and induction of stress-responsive genes.


Ectopic Expression of Gs5PTase8, a Soybean Inositol Polyphosphate 5-Phosphatase, Enhances Salt Tolerance in Plants.

  • Qi Jia‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Inositol polyphosphate 5-phosphatases (5PTases) function in inositol signaling by regulating the catabolism of phosphoinositol derivatives. Previous reports showed that 5PTases play a critical role in plant development and stress responses. In this study, we identified a novel 5PTase gene, Gs5PTase8, from the salt-tolerance locus of chromosome 3 in wild soybean (Glycine soja). Gs5PTase8 is highly up-regulated under salt treatment. It is localized in the nucleus and plasma membrane with a strong signal in the apoplast. Ectopic expression of Gs5PTase8 significantly increased salt tolerance in transgenic BY-2 cells, soybean hairy roots and Arabidopsis, suggesting Gs5PTase8 could increase salt tolerance in plants. The overexpression of Gs5PTase8 significantly enhanced the activities of catalase and ascorbate peroxidase under salt stress. The seeds of Gs5PTase8-transgenic Arabidopsis germinated earlier than the wild type under abscisic acid treatment, indicating Gs5PTase8 would alter ABA sensitivity. Besides, transcriptional analyses showed that the stress-responsive genes, AtRD22, AtRD29A and AtRD29B, were induced with a higher level in the Gs5PTase8-transgenic Arabidopsis plants than in the wild type under salt stress. These results reveal that Gs5PTase8 play a positive role in salt tolerance and might be a candidate gene for improving soybean adaptation to salt stress.


PI(4,5)P2 5-phosphatase A regulates PI3K/Akt signalling and has a tumour suppressive role in human melanoma.

  • Yan Ye‎ et al.
  • Nature communications‎
  • 2013‎

Inositol polyphosphate 5-phosphatases can terminate downstream signalling of phosphatidylinositol-3 kinase; however, their biological role in the pathogenesis of cancer is controversial. Here we report that the inositol polyphosphate 5-phosphatase, phosphatidylinositol 4,5-bisphosphate 5-phosphatase, has a tumour suppressive role in melanoma. Although it is commonly downregulated in melanoma, overexpression of phosphatidylinositol 4,5-bisphosphate 5-phosphatase blocks Akt activation, inhibits proliferation and undermines survival of melanoma cells in vitro, and retards melanoma growth in a xenograft model. In contrast, knockdown of phosphatidylinositol 4,5-bisphosphate 5-phosphatase results in increased proliferation and anchorage-independent growth of melanocytes. Although DNA copy number loss is responsible for downregulation of phosphatidylinositol 4,5-bisphosphate 5-phosphatase in a proportion of melanomas, histone hypoacetylation mediated by histone deacetylases HDAC2 and HDAC3 through binding to the transcription factor Sp1 at the PIB5PA gene promoter appears to be another commonly involved mechanism. Collectively, these results establish the tumour suppressive role of phosphatidylinositol 4,5-bisphosphate 5-phosphatase and reveal mechanisms involved in its downregulation in melanoma.


The Prediction and Prognostic Significance of INPP5K Expression in Patients with Liver Cancer.

  • Ruobing Wang‎ et al.
  • BioMed research international‎
  • 2020‎

Liver cancer is a devastating disease for humans with poor prognosis. Although the survival rate of patients with liver cancer has improved in the past decades, the recurrence and metastasis of liver cancer are still obstacles for us. Inositol polyphosphate-5-phosphatase K (INPP5K) belongs to the family of phosphoinositide 5-phosphatases (PI 5-phosphatases), which have been reported to be associated with cell migration, polarity, adhesion, and cell invasion, especially in cancers. However, there have been few studies on the correlation of INPP5K and liver cancer. In this study, we explored the prognostic significance of INPP5K in liver cancer through bioinformatics analysis of data collected from The Cancer Genome Atlas (TCGA) database. Chi-square and Fisher exact tests were used to evaluate the relationship between INPP5K expression and clinical characteristics. Our results showed that low INPP5K expression was correlated with poor outcomes in liver cancer patients. Univariate and multivariate Cox analyses demonstrated that low INPP5K mRNA expression played a significant role in shortening overall survival (OS) and relapse-free survival (RFS), which might serve as the useful biomarker and prognostic factor for liver cancer. In conclusion, low INPP5K mRNA expression is an independent risk factor for poor prognosis in liver cancer.


Diversity of anti-haemostatic proteins in the salivary glands of Rhodnius species transmitters of Chagas disease in the greater Amazon.

  • Ana C M Bussacos‎ et al.
  • Journal of proteomics‎
  • 2011‎

The triatomines in the tribe Rhodniini are the main vectors of the Trypanosoma cruzi to humans in recent outbreaks of acute Chagas disease in the Amazon. These insects dwelling in palm trees do not colonize the human domicile. Their success to transmit the infection relies partially on the efficacy of their salivary gland apparatuses. Here we show the transcriptome of the Rhodnius brethesi and Rhodnius robustus salivary glands, comprising 56 and 122 clusters, respectively. Approximately one third of these clusters are described for the first time. The LC-MS/MS analysis identified 123 and 111 proteins in R. brethesi and R. robustus sialome, respectively. Noteworthy, lipocalin platelet aggregation inhibitors, inositol polyphosphate 5-phosphatases, and Kazal domain proteins, which are essential for the insect's successful acquisition of blood meals, were found in our analysis. Moreover, glutathione S transferase and antigen-5, which play roles in the insect's defense and resistance against insecticide, were also observed.


Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase.

  • Ruzica Bago‎ et al.
  • The Biochemical journal‎
  • 2014‎

The Vps34 (vacuolar protein sorting 34) class III PI3K (phosphoinositide 3-kinase) phosphorylates PtdIns (phosphatidylinositol) at endosomal membranes to generate PtdIns(3)P that regulates membrane trafficking processes via its ability to recruit a subset of proteins possessing PtdIns(3)P-binding PX (phox homology) and FYVE domains. In the present study, we describe a highly selective and potent inhibitor of Vps34, termed VPS34-IN1, that inhibits Vps34 with 25 nM IC50 in vitro, but does not significantly inhibit the activity of 340 protein kinases or 25 lipid kinases tested that include all isoforms of class I as well as class II PI3Ks. Administration of VPS34-IN1 to cells induces a rapid dose-dependent dispersal of a specific PtdIns(3)P-binding probe from endosome membranes, within 1 min, without affecting the ability of class I PI3K to regulate Akt. Moreover, we explored whether SGK3 (serum- and glucocorticoid-regulated kinase-3), the only protein kinase known to interact specifically with PtdIns(3)P via its N-terminal PX domain, might be controlled by Vps34. Mutations disrupting PtdIns(3)P binding ablated SGK3 kinase activity by suppressing phosphorylation of the T-loop [PDK1 (phosphoinositide-dependent kinase 1) site] and hydrophobic motif (mammalian target of rapamycin site) residues. VPS34-IN1 induced a rapid ~50-60% loss of SGK3 phosphorylation within 1 min. VPS34-IN1 did not inhibit activity of the SGK2 isoform that does not possess a PtdIns(3)P-binding PX domain. Furthermore, class I PI3K inhibitors (GDC-0941 and BKM120) that do not inhibit Vps34 suppressed SGK3 activity by ~40%. Combining VPS34-IN1 and GDC-0941 reduced SGK3 activity ~80-90%. These data suggest SGK3 phosphorylation and hence activity is controlled by two pools of PtdIns(3)P. The first is produced through phosphorylation of PtdIns by Vps34 at the endosome. The second is due to the conversion of class I PI3K product, PtdIns(3,4,5)P3 into PtdIns(3)P, via the sequential actions of the PtdIns 5-phosphatases [SHIP1/2 (Src homology 2-domain-containing inositol phosphatase 1/2)] and PtdIns 4-phosphatase [INPP4B (inositol polyphosphate 4-phosphatase type II)]. VPS34-IN1 will be a useful probe to delineate physiological roles of the Vps34. Monitoring SGK3 phosphorylation and activity could be employed as a biomarker of Vps34 activity, in an analogous manner by which Akt is used to probe cellular class I PI3K activity. Combining class I (GDC-0941) and class III (VPS34-IN1) PI3K inhibitors could be used as a strategy to better analyse the roles and regulation of the elusive class II PI3K.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: