Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 48 papers

[Eye lesions in subjects exposed to microwaves and infrared rays (author's transl)].

  • L Fanucchi‎ et al.
  • La Medicina del lavoro‎
  • 1980‎

No abstract available


Decaffeination and improvement of taste, flavor and health safety of coffee and tea using mid-infrared wavelength rays.

  • Umakanthan‎ et al.
  • Heliyon‎
  • 2022‎

Coffee (Coffea arabica) and tea (Camellia sinensis) are beverages consumed widely across the globe. Flavor enhancement of beverages is the prime interest for consumers and industry, but it is still a major challenge for researchers.


Far-infrared rays enhance mitochondrial biogenesis and GLUT3 expression under low glucose conditions in rat skeletal muscle cells.

  • Yelim Seo‎ et al.
  • The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology‎
  • 2021‎

Far-infrared rays (FIR) are known to have various effects on atoms and molecular structures within cells owing to their radiation and vibration frequencies. The present study examined the effects of FIR on gene expression related to glucose transport through microarray analysis in rat skeletal muscle cells, as well as on mitochondrial biogenesis, at high and low glucose conditions. FIR were emitted from a bio-active material coated fabric (BMCF). L6 cells were treated with 30% BMCF for 24 h in medium containing 25 or 5.5 mM glucose, and changes in the expression of glucose transporter genes were determined. The expression of GLUT3 (Slc2a3) increased 2.0-fold (p < 0.05) under 5.5 mM glucose and 30% BMCF. In addition, mitochondrial oxygen consumption and membrane potential (ΔΨm) increased 1.5- and 3.4-fold (p < 0.05 and p < 0.001), respectively, but no significant change in expression of Pgc-1a, a regulator of mitochondrial biogenesis, was observed in 24 h. To analyze the relationship between GLUT3 expression and mitochondrial biogenesis under FIR, GLUT3 was down-modulated by siRNA for 72 h. As a result, the ΔΨm of the GLUT3 siRNA-treated cells increased 3.0-fold (p < 0.001), whereas that of the control group increased 4.6-fold (p < 0.001). Moreover, Pgc-1a expression increased upon 30% BMCF treatment for 72 h; an effect that was more pronounced in the presence of GLUT3. These results suggest that FIR may hold therapeutic potential for improving glucose metabolism and mitochondrial function in metabolic diseases associated with insufficient glucose supply, such as type 2 diabetes.


Study on the Protective Effect of Special Electromagnetic Field Treated Water and Far Infrared Rays on LPS-Induced ARDS Rats.

  • Ruiyin Huang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2019‎

To explore the protective effect of special electromagnetic field treated water (SEW) and far infrared rays (IFR) on endotoxin (lipopolysaccharide, LPS) induced ARDS rats and the effect on inflammatory factors.


Observation of strong nonlinear interactions in parametric down-conversion of X-rays into ultraviolet radiation.

  • S Sofer‎ et al.
  • Nature communications‎
  • 2019‎

Nonlinear interactions between X-rays and long wavelength radiation can be used as a powerful atomic-scale probe for light-matter interactions and for properties of valence electrons. However, reported X-ray nonlinear effects were small and their observations required tremendous efforts. Here we report the observation of strong nonlinearities in parametric down-conversion (PDC) of X-rays to long wavelength radiation in gallium arsenide and lithium niobate crystals, with efficiencies about 4 orders of magnitude stronger than the efficiencies measured in any material studied before. Furthermore, we show that the efficiency in the ferroelectric phase of strontium barium niobite is two orders of magnitude stronger than in its paraelectric phase. This observation suggests that the lack of inversion symmetry is the origin for the strong observed nonlinearity. Additionally, we demonstrate the ability to use the effect for the investigation of the spectral response of non-centrosymmetric materials at wavelengths ranging from infrared to soft X-rays.


The combination of cigarette smoke and solar rays causes effects similar to skin aging in a bilayer skin model.

  • Alexe Grenier‎ et al.
  • Scientific reports‎
  • 2023‎

Skin aging is a multifactorial process influenced by internal and external factors. The contribution of different environmental factors has been well established individually in the last few years. On the one hand, man is rarely exposed to a single factor, and on the other hand, there is very little knowledge about how these extrinsic factors may interact with each other or even how the skin may react to chronic exposure. This study aimed to evaluate the effect on skin aging of a chronic co-exposure of tissue-engineered skin substitutes to cigarette smoke extract (CSE) and solar simulator light (SSL). Skin substitutes were reconstructed according to the self-assembly method and then exposed to CSE followed by irradiation with SSL simultaneously transmitting UVA1, visible light and infrared. When skin substitutes were chronically exposed to CSE and SSL, a significant decrease in procollagen I synthesis and the inhibition of Smad2 phosphorylation of the TGF-β signaling pathway were observed. A 6.7-fold increase in MMP-1 activity was also observed when CSE was combined with SSL, resulting in a decrease in collagen III and collagen IV protein expression. The secretory profile resulting from the toxic synergy was investigated and several alterations were observed, notably an increase in the quantities of pro-inflammatory cytokines. The results also revealed the activation of the ERK1/2 (3.4-fold) and JNK (3.3-fold) pathways. Taken together, the results showed that a synergy between the two environmental factors could provoke premature skin aging.


Characterization and validation of multimodal annihilation-gamma/near-infrared/visible laparoscopic system.

  • Seong H Song‎ et al.
  • Journal of biomedical optics‎
  • 2019‎

Minimally invasive robotic surgery using fluorescence-guided images with a video laparoscope has been widely used because of its advantages of small incision, fast recovery time, and efficiency. However, the penetration depth limitation of fluorescence is a disadvantage caused by the absorption and scattering in tissues and blood cells. If this limitation can be overcome by additional imaging modalities, the surgical procedure can be quite efficient and precise. High-energy annihilation-gamma photons have a stronger penetration capability than visible and fluorescence photons. To characterize and validate a multimodal annihilation-gamma/near-infrared (NIR)/visible laparoscopic imaging system, an internal detector composed of an annihilation-gamma detector and an optical system was assembled inside a surgical stainless pipe with an outer diameter of 15.8 mm and an external detector with a dimension of 100  ×  100  mm2 placed at the opposite side of the internal detector. Integrated images of 511-keV gamma rays, NIR fluorescence, and visible light were obtained simultaneously. The 511-keV gamma image could be clearly seen with the acquisition of 5 s, while NIR and visible images could be presented in real time. This multimodal system has the potential for improving the surgery time and the quality of patient care.


Near-infrared upconversion multimodal nanoparticles for targeted radionuclide therapy of breast cancer lymphatic metastases.

  • Chuan Zhang‎ et al.
  • Frontiers in immunology‎
  • 2022‎

The theranostics of lymph node metastasis has always been one of the major obstacles to defeating breast cancer and an important decisive factor in the prognosis of patients. Herein, we design NaGdF4:Yb,Tm@NaLuF4 upconversion nanoparticles with PEG and anti-HER2 monoclonal antibody (trastuzumab, Herceptin) (NP-mAb), the delivery of NP-mAb through the lymphatic system allows for effective targeting and accumulation in lymphatic metastasis. Combination of radionuclides 68Ga and 177Lu could be chelated by the bisphosphate groups of NP-mAb. The obtained nanoprobe (NP-mAb) and nanonuclear drug (68Ga-NP-mAb or 177Lu-NP-mAb) exhibited excellent stability and show high accumulation and prolong retention in the lymph node metastasis after intratumoral injection into the foot pad by near-infrared fluorescence (NIRF), single-photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging. Utilizing the β-rays released by 177Lu, 177Lu-NP-mAb could not only decrease the incidence of lymph node metastasis, but also significantly decrease the volumes of lymph node metastasis. Additionally, 177Lu-NP-mAb induce no obvious toxicity to treated mice through blood routine, liver and kidney function assay. Therefore, nanoprobe and nanonuclear drug we designed could be acted as excellent theranostics agents for lymph node metastasis, providing potential alternatives diagnose and treatment option for lymph node metastasis.


Clinical performance of the near-infrared imaging system VistaCam iX Proxi for detection of approximal enamel lesions.

  • Anahita Jablonski-Momeni‎ et al.
  • BDJ open‎
  • 2017‎

Apart from the visual detection of caries, X-rays can be taken for detection of approximal lesions. The Proxi head of VistaCam iX intraoral camera system uses near-infrared light (NIR) to enable caries detection in approximal surfaces. The aim of this study was to evaluate the performance of the NIR for the detection of approximal enamel lesions by comparison with radiographic findings.


Diagnostic Validity of Digital Imaging Fiber-Optic Transillumination (DIFOTI) and Near-Infrared Light Transillumination (NILT) for Caries in Dentine.

  • Ana Marmaneu-Menero‎ et al.
  • Journal of clinical medicine‎
  • 2020‎

The objective of the study is to analyse the available evidence for the validity of the transillumination method in the diagnosis of interproximal caries. Bibliographic searches were carried out in three data bases (PubMed, Embase, Scopus) with the key words "Transillumination AND caries". A total of 11 studies were selected for the qualitative analysis and meta-analysis. In the qualitative analysis, both in vivo and in vitro studies were included. The gold standards were tomography, digital radiography, and clinical visual diagnosis. The meta-analysis determined the sensitivity, specificity, and area below the ROC curve relative to the transillumination method in the diagnosis of caries in dentine. Meta-analysis results obtained for transillumination gave a sensitivity value of 0.69 (confidence interval: 0.54-0.81), a specificity value of 0.89 (confidence interval: 0.61-0.98), while giving an AUC value of 0.79 (confidence interval: 0.67-0.87). Transillumination is a method offering moderate validity in the diagnosis of carious lesions in dentine, there is no strong evidence that may enable us to affirm that transillumination may fully substitute X-rays in the complementary diagnosis of carious lesions.


Non-invasive in vivo imaging of arthritis in a collagen-induced murine model with phosphatidylserine-binding near-infrared (NIR) dye.

  • Marion M Chan‎ et al.
  • Arthritis research & therapy‎
  • 2015‎

Development of non-invasive molecular imaging techniques that are based on cellular changes in inflammation has been of active interest for arthritis diagnosis. This technology will allow real-time detection of tissue damage and facilitate earlier treatment of the disease, thus representing an improvement over X-rays, which detect bone damage at the advanced stage. Tracing apoptosis, an event occurring in inflammation, has been a strategy used. PSVue 794 is a low-molecular-weight, near-infrared (NIR)-emitting complex of bis(zinc2+-dipicolylamine) (Zn-DPA) that binds to phosphatidylserine (PS), a plasma membrane anionic phospholipid that becomes flipped externally upon cell death by apoptosis. In this study, we evaluated the capacity of PSVue 794 to act as an in vivo probe for non-invasive molecular imaging assessment of rheumatoid arthritis (RA) via metabolic function in murine collagen-induced arthritis, a widely adopted animal model for RA.


Modification of surface characteristics of ophthalmic biomaterial-polymethyl methacrylate induced by cobalt 60 gamma irradiation.

  • Dong Qin‎ et al.
  • PloS one‎
  • 2023‎

This study aims to observe the accelerated aging effect of 60Co gamma (γ) irradiation on poly (methyl methacrylate) (PMMA) under extreme conditions and determine the influence of different media states on aging. PMMA samples were prepared at room temperature under varying media conditions, including air and deionized water immersion. Then, the samples were irradiated with different doses (50, 250, 500, and 1000 KGy) of 60Co γ-rays. The compositional changes of the PMMA samples exposed to the rays at different periods were determined via Fourier transform infrared spectroscopy. The light transmission of the samples was characterized through ultraviolet-visible spectrophotometry, and the surface wettability of the samples was assessed via water contact angle measurements. Surface and microscopic changes in material morphology were analyzed using optical microscopy, ImageJ software, and scanning electron microscopy. Relative molecular mass and glass transition temperature were analyzed via gel permeation chromatography and differential scanning calorimetry. Thus, a comprehensive analysis of the effect of 60Co γ irradiation on the aging properties of PMMA was performed.


Optimization of Poly(methyl vinyl ether-co-maleic acid) Electrospun Nanofibers as a Fast-Dissolving Drug Delivery System.

  • Jaleh Varshosaz‎ et al.
  • Advanced biomedical research‎
  • 2018‎

Poly(methyl vinyl ether-maleic acid) (PMVEMA) is a water-soluble, biodegradable polymer used for drug delivery. The aim of the present study was to prepare nanofibers of this polymer as a fast-dissolving carrier for montelukast.


Toxicity of Zn-Fe Layered Double Hydroxide to Different Organisms in the Aquatic Environment.

  • Olga Koba-Ucun‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

The application of layered double hydroxide (LDH) nanomaterials as catalysts has attracted great interest due to their unique structural features. It also triggered the need to study their fate and behavior in the aquatic environment. In the present study, Zn-Fe nanolayered double hydroxides (Zn-Fe LDHs) were synthesized using a co-precipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and nitrogen adsorption-desorption analyses. The toxicity of the home-made Zn-Fe LDHs catalyst was examined by employing a variety of aquatic organisms from different trophic levels, namely the marine photobacterium Vibrio fischeri, the freshwater microalga Pseudokirchneriella subcapitata, the freshwater crustacean Daphnia magna, and the duckweed Spirodela polyrhiza. From the experimental results, it was evident that the acute toxicity of the catalyst depended on the exposure time and type of selected test organism. Zn-Fe LDHs toxicity was also affected by its physical state in suspension, chemical composition, as well as interaction with the bioassay test medium.


Green and efficient three-component synthesis of 4H-pyran catalysed by CuFe2O4@starch as a magnetically recyclable bionanocatalyst.

  • Maryam Kamalzare‎ et al.
  • Royal Society open science‎
  • 2020‎

The development of simple, practical and inexpensive catalysis systems using natural materials is one of the main goals of pharmaceutical chemistry as well as green chemistry. Owing to the ability of easy separation of nanocatalyst, those goals could be approached by applying heterogeneous bionanocatalyst in combination with magnetic nanoparticles. Starch is one of the most abundant natural polymers; therefore, preparing bionanocatalyst from starch is very valuable as starch is largely available and inexpensive. An ecologically benign and efficacious heterogeneous nanocatalyst was prepared based on a biopolymer, and its attributes and morphology were specified by using Fourier transform infrared spectra, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), X-ray diffraction (XRD), thermal analysis and vibrating sample magnetometer measurements; followed by studying catalytic behaviour of bionanocomposite in a multicomponent reaction to synthesize of 4H-pyran derivatives. 4H-pyran is extremely valuable in pharmaceutical chemistry, and the development of methods for synthesis of different derivatives of 4H-pyran is momentous. Revealing environmentally benign nature, mild condition, easy work-up, low cost and non-toxicity are some of the advantages of this protocol. Besides, the bionanocomposite was recovered using an external magnetic bar and could be re-used at least six times with no further decrease in its catalytic activity.


Carbon-Doped TiO2 Activated by X-Ray Irradiation for the Generation of Reactive Oxygen Species to Enhance Photodynamic Therapy in Tumor Treatment.

  • Chun-Chen Yang‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Traditional photodynamic therapy (PDT) is limited by the penetration depth of visible light. Although the light source has been changed to near infrared, infrared light is unable to overcome the penetration barrier and it is only effective at the surface of the tumors. In this study, we used X-ray as a light source for deep-seated tumor treatment. A particle with a narrow band gap when exposed to soft X-rays would produce reactive oxygen species (ROS) to kill tumor cell, with less damage to the normal tissues. Anatase TiO2 has been studied as a photosensitizer in PDT. In the experiment, C was doped into the anatase lattice at an optimum atomic ratio to make the band gap narrower, which would be activated by X-ray to produce more ROS and kill tumor cells under stress. The results showed that the synthesized TiO2:C particles were identified as crystal structures of anatase. The synthesized particles could be activated effectively by soft X-rays to produce ROS, to degrade methylene blue by up to 30.4%. Once TiO2:C was activated by X-ray irradiation, the death rate of A549 cells in in vitro testing was as high as 16.57%, on day 2. In the animal study, the tumor size gradually decreased after treatment with TiO2:C and exposure to X-rays on day 0 and day 8. On day 14, the tumor declined to nearly half of its initial volume, while the tumor in the control group was twice its initial volume. After the animal was sacrificed, blood, and major organs were harvested for further analysis and examination, with data fully supporting the safety of the treatment. Based on the results of the study, we believe that TiO2:C when exposed to X-rays could overcome the limitation of penetration depth and could improve PDT effects by inhibiting tumor growth effectively and safely, in vivo.


Fabrication of doxycycline-loaded electrospun PCL/PEO membranes for a potential drug delivery system.

  • Ş Melda Eskitoros-Togay‎ et al.
  • International journal of pharmaceutics‎
  • 2019‎

Potential usage of biodegradable and biocompatible polymeric nanofibers is the most attention grabbing topic for the drug delivery system. In order to fabricate ultrafine fibers, electrospinning, one of the well-known techniques, has been extensively studied in the literature. In the present study, the objective is to achieve the optimum blend of hydrophobic and hydrophilic polymers to be used as a drug delivery vehicle and also to obtain the optimum amount of doxycycline (DOXH) to reach the optimum release. In this case, the biodegradable and biocompatible synthetic polymers, poly(ε-caprolactone) (PCL) and poly(ethylene oxide) (PEO), were blended with different ratios for the production of DOXH-loaded electrospun PCL/PEO membranes using electrospinning technique, which is a novel attempt. The fabricated membranes were subsequently characterized to optimize the blending ratio of polymers by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction analysis (XRD) and water contact angle analysis. After the characterization studies, different amounts of DOXH were loaded to the optimized blend of PCL and PEO to investigate the release of DOXH from the membrane used as a drug delivery vehicle. In vitro drug release studies were performed, and in vitro drug release kinetics were assessed to confirm the usage of these nanofiber materials as efficient drug delivery vehicles. The results indicated that 3.5% DOXH-loaded (75:25 w/w) PCL/PEO is the most acceptable membrane to provide prolonged release rather than immediate release of DOXH.


Radiation Dose-Enhancement Is a Potent Radiotherapeutic Effect of Rare-Earth Composite Nanoscintillators in Preclinical Models of Glioblastoma.

  • Anne-Laure Bulin‎ et al.
  • Advanced science (Weinheim, Baden-Wurttemberg, Germany)‎
  • 2020‎

To improve the prognosis of glioblastoma, innovative radiotherapy regimens are required to augment the effect of tolerable radiation doses while sparing surrounding tissues. In this context, nanoscintillators are emerging radiotherapeutics that down-convert X-rays into photons with energies ranging from UV to near-infrared. During radiotherapy, these scintillating properties amplify radiation-induced damage by UV-C emission or photodynamic effects. Additionally, nanoscintillators that contain high-Z elements are likely to induce another, currently unexplored effect: radiation dose-enhancement. This phenomenon stems from a higher photoelectric absorption of orthovoltage X-rays by high-Z elements compared to tissues, resulting in increased production of tissue-damaging photo- and Auger electrons. In this study, Geant4 simulations reveal that rare-earth composite LaF3:Ce nanoscintillators effectively generate photo- and Auger-electrons upon orthovoltage X-rays. 3D spatially resolved X-ray fluorescence microtomography shows that LaF3:Ce highly concentrates in microtumors and enhances radiotherapy in an X-ray energy-dependent manner. In an aggressive syngeneic model of orthotopic glioblastoma, intracerebral injection of LaF3:Ce is well tolerated and achieves complete tumor remission in 15% of the subjects receiving monochromatic synchrotron radiotherapy. This study provides unequivocal evidence for radiation dose-enhancement by nanoscintillators, eliciting a prominent radiotherapeutic effect. Altogether, nanoscintillators have invaluable properties for enhancing the focal damage of radiotherapy in glioblastoma and other radioresistant cancers.


Investigation of the Effect of Carbonyl Iron Micro-Particles on the Mechanical and Rheological Properties of Isotropic and Anisotropic MREs: Constitutive Magneto-Mechanical Material Model.

  • Cintya G Soria-Hernández‎ et al.
  • Polymers‎
  • 2019‎

This article focuses on evaluating the influence that the addition of carbonyl iron micro-particles (CIPs) and its alignment have on the mechanical and rheological properties for magnetorheological elastomers (MREs) fabricated using polydimethylsiloxane (PDMS) elastomer, and 24 wt % of silicone oil (SO). A solenoid device was designed and built to fabricate the corresponding composite magnetorheological material and to perform uniaxial cyclic tests under uniform magnetic flux density. Furthermore, a constitutive material model that considers both elastic and magnetic effects was introduced to predict stress-softening and permanent set effects experienced by the MRE samples during cyclic loading tests. Moreover, experimental characterizations via Fourier transform infrared (FTIR), X-ray diffraction (XRD), tensile mechanical testing, and rheological tests were performed on the produced MRE samples in order to assess mechanical and rheological material properties such as mechanical strength, material stiffness, Mullins and permanent set effects, damping ratio, stiffness magnetorheological effect (SMR), and relative magnetorheological storage and loss moduli effects. Experimental results and theoretical predictions confirmed that for a CIPs concentration of 70 wt %, the material samples exhibit the highest shear modulus, stress-softening effects, and engineering stress values when the samples are subject to a maximum stretch value of 1.64 and a uniform magnetic flux density of 52.2 mT.


Treatment of neonatal jaundice with filtered sunlight in Nigerian neonates: study protocol of a non-inferiority, randomized controlled trial.

  • Tina M Slusher‎ et al.
  • Trials‎
  • 2013‎

Severe neonatal jaundice and its progression to kernicterus is a leading cause of death and disability among newborns in poorly-resourced countries, particularly in sub-Saharan Africa. The standard treatment for jaundice using conventional phototherapy (CPT) with electric artificial blue light sources is often hampered by the lack of (functional) CPT devices due either to financial constraints or erratic electrical power. In an attempt to make phototherapy (PT) more readily available for the treatment of pathologic jaundice in underserved tropical regions, we set out to test the hypothesis that filtered sunlight phototherapy (FS-PT), in which potentially harmful ultraviolet and infrared rays are appropriately screened, will be as efficacious as CPT.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: