Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 944 papers

The inflammasomes and autoinflammatory syndromes.

  • Lori Broderick‎ et al.
  • Annual review of pathology‎
  • 2015‎

Inflammation, a vital response of the immune system to infection and damage to tissues, can be initiated by various germline-encoded innate immune-signaling receptors. Among these, the inflammasomes are critical for activation of the potent proinflammatory interleukin-1 cytokine family. Additionally, inflammasomes can trigger and maintain inflammatory responses aimed toward excess nutrients and the numerous danger signals that appear in a variety of chronic inflammatory diseases. We discuss our understanding of how inflammasomes assemble to trigger caspase-1 activation and subsequent cytokine release, describe how genetic mutations in inflammasome-related genes lead to autoinflammatory syndromes, and review the contribution of inflammasome activation to various pathologies arising from metabolic dysfunction. Insights into the mechanisms that govern inflammasome activation will help in the development of novel therapeutic strategies, not only for managing genetic diseases associated with overactive inflammasomes, but also for treating common metabolic diseases for which effective therapies are currently lacking.


Cytochrome c Negatively Regulates NLRP3 Inflammasomes.

  • Chong-Shan Shi‎ et al.
  • PloS one‎
  • 2016‎

The release of cytochrome c from the inner mitochondrial membrane, where it is anchored by caridolipin, triggers the formation of the Apaf-1 apoptosome. Cardiolipin also interacts with NLRP3 recruiting NLRP3 to mitochondria and facilitating inflammasome assembly. In this study we investigated whether cytosolic cytochrome c impacts NLRP3 inflammasome activation in macrophages. We report that cytochrome c binds to the LRR domain of NLRP3 and that cytochrome c reduces the interactions between NLRP3 and cardiolipin and between NLRP3 and NEK7, a recently recognized component of the NLRP3 inflammasome needed for NLRP3 oligomerization. Protein transduction of cytochrome c impairs NLRP3 inflammasome activation, while partially silencing cytochrome c expression enhances it. The addition of cytochrome c to an in vitro inflammasome assay severely limited caspase-1 activation. We propose that there is a crosstalk between the NLRP3 inflammasome and apoptosome pathways mediated by cytochrome c, whose release during apoptosis acts to limit NLRP3 inflammasome activation.


Inflammasomes in pancreatic physiology and disease.

  • Rafaz Hoque‎ et al.
  • American journal of physiology. Gastrointestinal and liver physiology‎
  • 2015‎

In this review we summarize the role of inflammasomes in pancreatic physiology and disease with a focus on acute pancreatitis where much recent progress has been made. New findings have identified inducers of and cell specificity of inflammasome component expression in the pancreas, the contribution of inflammasome-regulated effectors to pancreatitis, and metabolic regulation of inflammasome activation, which are strong determinants of injury in pancreatitis. New areas of pancreatic biology will be highlighted in the context of our evolving understanding of gut microbiome- and injury-induced inflammasome priming, pyroptosis, and innate immune-mediated regulation of cell metabolism.


Inflammasomes in rheumatoid arthritis: a pilot study.

  • Qi Jiang‎ et al.
  • BMC rheumatology‎
  • 2023‎

The inflammasome plays an important role in rheumatoid arthritis (RA), which has rarely been systematically reported. The aim of this study was to understand whether the levels of inflammasomes were related to the severity of RA disease, which might provide a stronger theoretical basis for RA treatment.


Autophagy links inflammasomes to atherosclerotic progression.

  • Babak Razani‎ et al.
  • Cell metabolism‎
  • 2012‎

We investigated the role of autophagy in atherosclerosis. During plaque formation in mice, autophagic markers colocalized predominantly with macrophages (mφ). Atherosclerotic aortas had elevated levels of p62, suggesting that dysfunctional autophagy is characteristic of plaques. To determine whether autophagy directly influences atherogenesis, we characterized Beclin-1 heterozygous-null and mφ-specific ATG5-null (ATG5-mφKO) mice, commonly used models of autophagy haploinsufficiency and deficiency, respectively. Haploinsufficent Beclin-1 mice had no atherosclerotic phenotype, but ATG5-mφKO mice had increased plaques, suggesting an essential role for basal levels of autophagy in atheroprotection. Defective autophagy is associated with proatherogenic inflammasome activation. Classic inflammasome markers were robustly induced in ATG5-null mφ, especially when coincubated with cholesterol crystals. Moreover, cholesterol crystals appear to be increased in ATG5-mφKO plaques, suggesting a potentially vicious cycle of crystal formation and inflammasome activation in autophagy-deficient plaques. These results show that autophagy becomes dysfunctional in atherosclerosis and its deficiency promotes atherosclerosis in part through inflammasome hyperactivation.


Roles of Inflammasomes in Inflammatory Kidney Diseases.

  • Jinjin Fan‎ et al.
  • Mediators of inflammation‎
  • 2019‎

The immune system has a central role in eliminating detrimental factors, by frequently launching inflammatory responses towards pathogen infection and inner danger signal outbreak. Acute and chronic inflammatory responses are critical determinants for consequences of kidney diseases, in which inflammasomes were inevitably involved. Inflammasomes are closely linked to many kidney diseases such as acute kidney injury and chronic kidney diseases. Inflammasomes are macromolecules consisting of multiple proteins, and their formation initiates the cleavage of procaspase-1, resulting in the activation of gasdermin D as well as the maturation and release of interleukin-1β and IL-18, leading to pyroptosis. Here, we discuss the mechanism in which inflammasomes occur, as well as their roles in inflammatory kidney diseases, in order to shed light for discovering new therapeutical targets for the prevention and treatment of inflammatory kidney diseases and consequent end-stage renal disease.


Inflammation and Inflammasomes: Pros and Cons in Tumorigenesis.

  • Liliana R Balahura‎ et al.
  • Journal of immunology research‎
  • 2020‎

Over the past decade, it has been well established that tumorigenesis is affected by chronic inflammation. During this event, proinflammatory cytokines are produced by numerous types of cells, such as fibroblasts, endothelial cells, macrophages, and tumor cells, and are able to promote the initiation, progression, and metastasis of different types of cancer. When persistent inflammation occurs, activation of inflammasome complexes is initiated, leading to its assembly and further activation of caspase, production of proinflammatory cytokines, and pyroptosis induction. The function of this multiprotein complex is not only to reassure inflammation and to promote cell death, through caspase activity, but also has been identified to have significant contributions during tumorigenesis and cancer development. So far, many efforts have been made in order to extend the knowledge of inflammasome implications and how its components could be targeted as therapeutic agents. Additionally, microRNAs (miRNAs), evolutionary conserved noncoding molecules, have emerged as pivotal players during numerous biological events by regulating gene and protein expression. Therefore, dysregulations of miRNA expressions have been correlated with inflammation during tumor development. In this review, we aim to highlight the dual role of inflammasomes and proinflammatory cytokines during carcinogenesis paired with the distinguished effects of miRNAs upon inflammation cascades during tumor growth and progression.


Correlation between Inflammasomes and Microbiota in Peri-Implantitis.

  • Miguel Padial-Molina‎ et al.
  • International journal of molecular sciences‎
  • 2024‎

The activation of inflammasomes is thought to induce the inflammatory process around dental implants. No information is available on the correlation between microbiota and inflammasomes in clinical samples from patients suffering peri-implantitis. For this cross-sectional study, 30 biofilm samples were obtained from 19 patients undergoing surgical treatment for peri-implantitis because of the presence of bleeding on probing, probing depth higher than 6 mm, and radiographic bone loss higher than 3 mm. Then, soft tissue samples from around the implant were also collected. The relative abundance of bacteria and alpha-diversity indexes were calculated after analyzing the 16S rRNA gene using next-generation sequencing. The soft-tissue samples were processed for evaluation of the inflammasomes NLRP3 and AIM2 as well as caspase-1 and IL-1β. The relative abundance (mean (SD)) of specific species indicated that the most abundant species were Porphyromonas gingivalis (10.95 (14.17)%), Fusobacterium vincentii (10.93 (13.18)%), Porphyromonas endodontalis (5.89 (7.23)%), Prevotella oris (3.88 (4.94)%), Treponema denticola (2.91 (3.19)%), and Tannerella forsythia (2.84 (4.15)%). Several correlations were found between the species and the immunohistochemical detection of the inflammasomes NLRP3 and AIM2 as well as caspase-1 and IL-1β, both in the epithelium and the lamina propria. A network analysis found an important cluster of variables formed by NLRP3 in the lamina propria and AIM2, caspase-1, and IL-1β in the lamina propria and the epithelium with Prevotella dentalis, Prevotella tannerae, Tannerella forsythia, or Selenomonas timonae. Thus, it could be concluded that inflammasomes NLRP3 and AIM2 and their downstream effectors caspase-1 and interleukin-1β can be significantly associated with specific bacteria.


The lncRNA Neat1 promotes activation of inflammasomes in macrophages.

  • Pengfei Zhang‎ et al.
  • Nature communications‎
  • 2019‎

The inflammasome has an essential function in innate immune, responding to a wide variety of stimuli. Here we show that the lncRNA Neat1 promotes the activation of several inflammasomes. Neat1 associates with the NLRP3, NLRC4, and AIM2 inflammasomes in mouse macrophages to enhance their assembly and subsequent pro-caspase-1 processing. Neat1 also stabilizes the mature caspase-1 to promote interleukin-1β production and pyroptosis. Upon stimulation with inflammasome-activating signals, Neat1, which normally resides in the paraspeckles, disassociates from these nuclear bodies and translocates to the cytoplasm to modulate inflammasome activation using above mechanism. Neat1 is also up-regulated under hypoxic conditions in a HIF-2α-dependent manner, mediating the effect of hypoxia on inflammasomes. Moreover, in the mouse models of peritonitis and pneumonia, Neat1 deficiency significantly reduces inflammatory responses. These results reveal a previously unrecognized role of lncRNAs in innate immunity, and suggest that Neat1 is a common mediator for inflammasome stimuli.


Bat ASC2 suppresses inflammasomes and ameliorates inflammatory diseases.

  • Matae Ahn‎ et al.
  • Cell‎
  • 2023‎

Bats are special in their ability to live long and host many emerging viruses. Our previous studies showed that bats have altered inflammasomes, which are central players in aging and infection. However, the role of inflammasome signaling in combating inflammatory diseases remains poorly understood. Here, we report bat ASC2 as a potent negative regulator of inflammasomes. Bat ASC2 is highly expressed at both the mRNA and protein levels and is highly potent in inhibiting human and mouse inflammasomes. Transgenic expression of bat ASC2 in mice reduced the severity of peritonitis induced by gout crystals and ASC particles. Bat ASC2 also dampened inflammation induced by multiple viruses and reduced mortality of influenza A virus infection. Importantly, it also suppressed SARS-CoV-2-immune-complex-induced inflammasome activation. Four key residues were identified for the gain of function of bat ASC2. Our results demonstrate that bat ASC2 is an important negative regulator of inflammasomes with therapeutic potential in inflammatory diseases.


Epithelial Cell Inflammasomes in Intestinal Immunity and Inflammation.

  • Andrea C Lei-Leston‎ et al.
  • Frontiers in immunology‎
  • 2017‎

Pattern recognition receptors (PRR), such as NOD-like receptors (NLRs), sense conserved microbial signatures, and host danger signals leading to the coordination of appropriate immune responses. Upon activation, a subset of NLR initiate the assembly of a multimeric protein complex known as the inflammasome, which processes pro-inflammatory cytokines and mediates a specialized form of cell death known as pyroptosis. The identification of inflammasome-associated genes as inflammatory bowel disease susceptibility genes implicates a role for the inflammasome in intestinal inflammation. Despite the fact that the functional importance of inflammasomes within immune cells has been well established, the contribution of inflammasome expression in non-hematopoietic cells remains comparatively understudied. Given that intestinal epithelial cells (IEC) act as a barrier between the host and the intestinal microbiota, inflammasome expression by these cells is likely important for intestinal immune homeostasis. Accumulating evidence suggests that the inflammasome plays a key role in shaping epithelial responses at the host-lumen interface with many inflammasome components highly expressed by IEC. Recent studies have exposed functional roles of IEC inflammasomes in mucosal immune defense, inflammation, and tumorigenesis. In this review, we present the main features of the predominant inflammasomes and their effector mechanisms contributing to intestinal homeostasis and inflammation. We also discuss existing controversies in the field and open questions related to their implications in disease. A comprehensive understanding of the molecular basis of intestinal inflammasome signaling could hold therapeutic potential for clinical translation.


Netosis and Inflammasomes in Large Vessel Occlusion Thrombi.

  • Stephanie H Chen‎ et al.
  • Frontiers in pharmacology‎
  • 2020‎

The inflammatory response appears to play a critical role in clotting in which neutrophil extracellular traps (NETs) are the major drivers of thrombosis in acute ischemic stroke (AIS). The inflammasome is an innate immune complex involved in the activation of interleukin (IL)-18 and IL-1β through caspase-1, but whether the inflammasome plays a role in NETosis in AIS remains poorly understood. Here we assessed the levels of inflammasome signaling proteins in NETs and their association with clinical and procedural outcomes of mechanical thrombectomy for AIS. Electron microscopy and immunofluorescence indicate the presence of NETs in thrombi of patients with AIS. Moreover, the inflammasome signaling proteins caspase-1 and apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) were also present in clots associated with the marker of NETosis citrullinated histone 3H (CitH3). Analysis of protein levels by a simple plex assay show that caspase-1, ASC and interleukin (IL)-1β were significantly elevated in clots when compared to plasma of AIS patients and healthy controls, while IL-18 levels were lower. Moreover, multivariate analyses show that IL-1β levels in clots contribute to the number of passes to achieve complete recanalization, and that ASC, caspase-1 and IL-18 are significant contributors to time to recanalization. Thus, inflammasome proteins are elevated in NETs present in thrombi of patients with AIS that contribute to poor outcomes following stroke.


The NLRP1 and CARD8 inflammasomes detect reductive stress.

  • Qinghui Wang‎ et al.
  • Cell reports‎
  • 2023‎

The danger signals that activate the related nucleotide-binding domain leucine-rich repeat pyrin domain-containing 1 (NLRP1) and caspase activation and recruitment domain-containing 8 (CARD8) inflammasomes have not been fully established. We recently reported that the oxidized form of TRX1 binds to NLRP1 and represses inflammasome activation. These findings suggested that intracellular reductive stress, which would reduce oxidized TRX1 and thereby abrogate the NLRP1-TRX1 interaction, is an NLRP1 inflammasome-activating danger signal. However, no agents that induce reductive stress were known to test this premise. Here, we identify and characterize several radical-trapping antioxidants, including JSH-23, that induce reductive stress. We show that these compounds accelerate the proteasome-mediated degradation of the repressive N-terminal fragments of both NLRP1 and CARD8, releasing the inflammasome-forming C-terminal fragments from autoinhibition. Overall, this work validates chemical probes that induce reductive stress and establishes reductive stress as a danger signal sensed by both the NLRP1 and CARD8 inflammasomes.


P. aeruginosa biofilm activates the NLRP3 inflammasomes in vitro.

  • Qi Tan‎ et al.
  • Microbial pathogenesis‎
  • 2022‎

The ability of P.aeruginosa to form biofilms renders common treatments inefficient, thereby promoting chronic infection. Inflammasomes activate caspase-1, which is important for the maturation of IL-1β and IL-18 and evoke an inflammatory response. We aimed to investigate the activation of inflammasomes induced by P.aeruginosa biofilm. THP-1 cells were mock-infected or infected with PAO1 biofilms. Protein levels of caspase-1 p20, pro-caspase-1, caspase-4 p20, and pro-caspase-4 in THP-1 macrophages were determined by Western blotting. The expression of NLRC4 and NLRP3 was measured by RT-PCR. The production of IL-1β and IL-18 was monitored using ELISA. P. aeruginosa biofilm significantly elevated caspase-1 levels, and decreased NLRC4 levels. Additionally, caspase-4 and NLRP3 levels were significantly increased. P.aeruginosa biofilm significantly enhanced IL-1β and IL-18 production. We concluded that P. aeruginosa biofilm induced the production of IL-1β and IL-18, possibly via NLRP3 inflammasomes, rather than NLRC4 inflammasomes.


Prion pathogenesis in the absence of NLRP3/ASC inflammasomes.

  • Mario Nuvolone‎ et al.
  • PloS one‎
  • 2015‎

The accumulation of the scrapie prion protein PrPSc, a misfolded conformer of the cellular prion protein PrPC, is a crucial feature of prion diseases. In the central nervous system, this process is accompanied by conspicuous microglia activation. The NLRP3 inflammasome is a multi-molecular complex which can sense heterogeneous pathogen-associated molecular patterns and culminates in the activation of caspase 1 and release of IL 1β. The NLRP3 inflammasome was reported to be essential for IL 1β release after in vitro exposure to the amyloidogenic peptide PrP106-126 and to recombinant PrP fibrils. We therefore studied the role of the NLRP3 inflammasome in a mouse model of prion infection. Upon intracerebral inoculation with scrapie prions (strain RML), mice lacking NLRP3 (Nlrp3-/-) or the inflammasome adaptor protein ASC (Pycard-/-) succumbed to scrapie with attack rates and incubation times similar to wild-type mice, and developed the classic histologic and biochemical features of prion diseases. Genetic ablation of NLRP3 or ASC did not significantly impact on brain levels of IL 1β at the terminal stage of disease. Our results exclude a significant role for NLRP3 and ASC in prion pathogenesis and invalidate their claimed potential as therapeutic target against prion diseases.


Inflammasomes primarily restrict cytosolic Salmonella replication within human macrophages.

  • Marisa S Egan‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Salmonella enterica serovar Typhimurium is a facultative intracellular pathogen that utilizes its type III secretion systems (T3SSs) to inject virulence factors into the host cell and colonize the host. In turn, a subset of cytosolic immune receptors respond to T3SS ligands by forming multimeric signaling complexes called inflammasomes, which activate caspases that induce interleukin-1 (IL-1) family cytokine release and an inflammatory form of cell death called pyroptosis. Human macrophages mount a multifaceted inflammasome response to Salmonella infection that ultimately restricts intracellular bacterial replication. However, how inflammasomes restrict Salmonella replication remains unknown. We find that caspase-1 is essential for mediating inflammasome responses to Salmonella and subsequent restriction of bacterial replication within human macrophages, with caspase-4 contributing as well. We also demonstrate that the downstream pore-forming protein gasdermin D (GSDMD) and ninjurin-1 (NINJ1), a mediator of terminal cell lysis, play a role in controlling Salmonella replication in human macrophages. Notably, in the absence of inflammasome responses, we observed hyperreplication of Salmonella within the cytosol of infected cells, and we also observed increased bacterial replication within vacuoles, suggesting that inflammasomes control Salmonella replication primarily within the cytosol and also within vacuoles. These findings reveal that inflammatory caspases and pyroptotic factors mediate inflammasome responses that restrict the subcellular localization of intracellular Salmonella replication within human macrophages.


ZIKV infection regulates inflammasomes pathway for replication in monocytes.

  • S F Khaiboullina‎ et al.
  • Scientific reports‎
  • 2017‎

ZIKV causes microcephaly by crossing the placental barrier, however, the mechanism of trans-placental dissemination of ZIKV remains unknown. Here, we sought to determine whether monocytes, which can cross tissue barriers, assist ZIKV dissemination to the fetus. We determined this by infecting monocytes with two strains of ZIKV: South American (PRVABC59) and Nigerian (IBH30656) and analyzing viral replication. We found that ZIKV infects and replicates in monocytes and macrophages, which results in the modulation of a large number of cellular genes. Analysis of these genes identified multiple pathways including inflammasome to be targeted by ZIKV, which was confirmed by analyzing the transcript levels of the proteins of inflammasome pathways, NLRP3, ASC, caspase 1, IL-1 and IL-18. Interestingly, IFNα and the IFN inducible gene, MxA were not enhanced, suggesting prevention of innate antiviral defense by ZIKV. Also, inhibition of inflammasome led to an increased transcriptional activity of IFNα, MxA and CXCL10. Based on these results we suggest that ZIKV transcription is regulated by inflammasomes.


Released dsDNA-triggered inflammasomes serve as intestinal radioprotective targets.

  • Long Chen‎ et al.
  • Clinical & translational immunology‎
  • 2023‎

Intestinal mucositis is the major side effect during abdominal or pelvic radiotherapy, but the underlying immunogen remains to be further characterised and few radioprotective agents are available. This study investigated the role of dsDNA-triggered inflammasomes in intestinal mucositis during radiotherapy.


Role of NLRP3 Inflammasomes for Rhabdomyolysis-induced Acute Kidney Injury.

  • Takanori Komada‎ et al.
  • Scientific reports‎
  • 2015‎

Rhabdomyolysis is one of the main causes of community-acquired acute kidney injury (AKI). Although inflammation is involved in the pathogenesis of rhabdomyolysis-induced AKI (RIAKI), little is known about the mechanism that triggers inflammation during RIAKI. Recent evidence has indicated that sterile inflammation triggered by tissue injury can be mediated through multiprotein complexes called the inflammasomes. Therefore, we investigated the role of NLRP3 inflammasomes in the pathogenesis of RIAKI using a glycerol-induced murine rhabdomyolysis model. Inflammasome-related molecules were upregulated in the kidney of RIAKI. Renal tubular injury and dysfunction preceded leukocyte infiltration into the kidney during the early phase of RIAKI, and they were markedly attenuated in mice deficient in NLRP3, ASC, caspase-1, and interleukin (IL)-1β compared with those in wild-type mice. No difference in leukocyte infiltration was observed between wild-type and NLRP3-deficient mice. Furthermore, NLRP3 deficiency strikingly suppressed the expression of renal injury markers and inflammatory cytokines and apoptosis of renal tubular cells. These results demonstrated that NLRP3 inflammasomes contribute to inflammation, apoptosis, and tissue injury during the early phase of RIAKI and provide new insights into the mechanism underlying the pathogenesis of RIAKI.


Nlrp6 promotes recovery after peripheral nerve injury independently of inflammasomes.

  • Elke Ydens‎ et al.
  • Journal of neuroinflammation‎
  • 2015‎

NOD-like receptors (Nlrs) are key regulators of immune responses during infection and autoimmunity. A subset of Nlrs assembles inflammasomes, molecular platforms that are activated in response to endogenous danger and microbial ligands and that control release of interleukin (IL)-1β and IL-18. However, their role in response to injury in the nervous system is less understood.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: