Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 45 papers

Fos-immunoreactive responses in inferior colliculi of rats with experimental audiogenic seizure susceptibility.

  • J Kwon‎ et al.
  • Epilepsy research‎
  • 1997‎

Audiogenic seizure (AGS) susceptibility is a reflex epilepsy of rodents in which acoustic stimulation evokes wild running attacks and subsequent convulsions. Susceptibility can be induced in non-susceptible strains by treatments causing transient or permanent hearing losses as long as these occur during the neonatal period. The defect which is the basis of susceptibility has been proposed to be a failure of developmental organization of inferior colliculus (IC) into frequency selective zones. That is, high frequency stimuli evoke responses in broader arrays of neurons in ICs of susceptible rats than in those of neonatally untreated (non-susceptible) controls. Nonetheless, this observation has been made only in rats in which susceptibility was induced by exposure to intense noise on postnatal day (PND) 14. By contrast, the present study examines whether unusually broad topographic responses are also characteristic in ICs of rats made susceptible by the neonatal administration of low doses of the ototoxic antibiotic, kanamycin (KM). Patterns of Fos-like immunoreactivity (Foslir) induced by seizures or pure tone stimuli were compared in ICs of adult Wistar rats which neonatally had been (a) sham-treated; (b) noise-exposed on PND 14; or (c) injected on PNDs 9-12 with 100 mg/kg KM. It was found that sound-triggered seizures in the two experimental groups resulted in induction of Foslir primarily within cortical areas of IC. By contrast, pure tones evoked unusually broad responses in the central nucleus of ICs of both susceptible groups but not in those of controls. Additionally, in the KM-treated rats, the range of frequencies evoking abnormal responses extended one octave lower than was characteristic of noise-exposed rats. The earlier schedule of treatments in the KM model may account for this inasmuch as low frequency response domains undergo development at younger ages. The similarity of results in the two models suggests failure of development of frequency selective fields in IC is indeed the common basis of experimentally induced susceptibility to sound-triggered seizures.


Dissociated neurons and glial cells derived from rat inferior colliculi after digestion with papain.

  • Odett Kaiser‎ et al.
  • PloS one‎
  • 2013‎

The formation of gliosis around implant electrodes for deep brain stimulation impairs electrode-tissue interaction. Unspecific growth of glial tissue around the electrodes can be hindered by altering physicochemical material properties. However, in vitro screening of neural tissue-material interaction requires an adequate cell culture system. No adequate model for cells dissociated from the inferior colliculus (IC) has been described and was thus the aim of this study. Therefore, IC were isolated from neonatal rats (P3_5) and a dissociated cell culture was established. In screening experiments using four dissociation methods (Neural Tissue Dissociation Kit [NTDK] T, NTDK P; NTDK PN, and a validated protocol for the dissociation of spiral ganglion neurons [SGN]), the optimal media, and seeding densities were identified. Thereafter, a dissociation protocol containing only the proteolytic enzymes of interest (trypsin or papain) was tested. For analysis, cells were fixed and immunolabeled using glial- and neuron-specific antibodies. Adhesion and survival of dissociated neurons and glial cells isolated from the IC were demonstrated in all experimental settings. Hence, preservation of type-specific cytoarchitecture with sufficient neuronal networks only occurred in cultures dissociated with NTDK P, NTDK PN, and fresh prepared papain solution. However, cultures obtained after dissociation with papain, seeded at a density of 2×10(4) cells/well and cultivated with Neuro Medium for 6 days reliably revealed the highest neuronal yield with excellent cytoarchitecture of neurons and glial cells. The herein described dissociated culture can be utilized as in vitro model to screen interactions between cells of the IC and surface modifications of the electrode.


The expression of mitogen-activated protein kinases and brain-derived neurotrophic factor in inferior colliculi after acoustic trauma.

  • Inna Meltser‎ et al.
  • Neurobiology of disease‎
  • 2010‎

Acoustic trauma is well known to cause peripheral damage with subsequent effects in the central auditory system. The inferior colliculus (IC) is a major auditory center for the integration of ascending and descending information and is involved in noise-induced tinnitus and central hyperactivity. Here we show that the early effects of acoustic trauma, that eventually result in permanent damage to auditory system, lead to a transient activation of BDNF and mitogen-activated protein kinases (MAPK) including extracellular signal-regulated kinase (ERK), c-jun N-terminal kinase (JNK), and p38 in the IC. In contrast, the early effects of acoustic trauma that result in a temporary damage produced a reversible activation only of p38. The transient activation of MAPK and BDNF in the IC after permanent acoustic trauma is attributed to the plastic changes triggered by a decreased signal input from the damaged periphery. The pattern of MAPK and BDNF activation in the IC is different from that previously described for the cochlea from this laboratory. The differences in the pattern of MAPK and BDNF expression in the IC highlight unique molecular mechanisms underlying temporary and permanent acoustic damage to the central auditory system.


The distribution pattern of M2 and Adrenergicα2 receptors on inferior colliculi in male newborns of diabetic rats.

  • Maryam Ghenaatgar-Kasbi‎ et al.
  • Neuroscience letters‎
  • 2022‎

Despite the high prevalence of diabetes in the world, its possible effects throughut pregnancy on neonatal auditory nervous system development are still unknown. In the present research, maternal diabetes' impact on the M2 and Adrenergicα2 receptors expression in the inferior colliculus (IC) of male newborn rats was investigated.


A periodic network of neurochemical modules in the inferior colliculus.

  • Michelle L Chernock‎ et al.
  • Hearing research‎
  • 2004‎

A new organization has been found in shell nuclei of rat inferior colliculus. Chemically specific modules with a periodic distribution fill about half of layer 2 of external cortex and dorsal cortex. Modules contain clusters of small glutamic acid decarboxylase-positive neurons and large boutons at higher density than in other inferior colliculus subdivisions. The modules are also present in tissue stained for parvalbumin, cytochrome oxidase, nicotinamide adenine dinucleotide phosphate-diaphorase, and acetylcholinesterase. Six to seven bilaterally symmetrical modules extend from the caudal extremity of the external cortex of the inferior colliculus to its rostral pole. Modules are from approximately 800 to 2200 microm long and have areas between 5000 and 40,000 microm2. Modules alternate with immunonegative regions. Similar modules are found in inbred and outbred strains of rat, and in both males and females. They are absent in mouse, squirrel, cat, bat, macaque monkey, and barn owl. Modules are immunonegative for glycine, calbindin, serotonin, and choline acetyltransferase. The auditory cortex and ipsi- and contralateral inferior colliculi project to the external cortex. Somatic sensory influences from the dorsal column nuclei and spinal trigeminal nucleus are the primary ascending sensory input to the external cortex; ascending auditory input to layer 2 is sparse. If the immunopositive modular neurons receive this input, the external cortex could participate in spatial orientation and somatic motor control through its intrinsic and extrinsic projections.


Auditory cortical axons contact commissural cells throughout the guinea pig inferior colliculus.

  • Kyle T Nakamoto‎ et al.
  • Hearing research‎
  • 2013‎

Projections from auditory cortex (AC) affect how cells in both inferior colliculi (IC) respond to acoustic stimuli. The large projection from the AC to the ipsilateral IC is usually credited with the effects in the ipsilateral IC. The circuitry underlying effects in the contralateral IC is less clear. The direct projection from the AC to the contralateral IC is relatively small. An unexplored possibility is that the large ipsilateral cortical projection contacts the substantial number of cells in the ipsilateral IC that project through the commissure to the contralateral IC. Apparent contacts between cortical boutons and commissural cells were identified in the left IC after injection of different fluorescent tracers into the left AC and the right IC. Commissural cells were labeled throughout the left IC, and many (23-34%) appeared to be contacted by cortical axons. In the central nucleus, both disc-shaped and stellate cells were contacted. Antibodies to glutamic acid decarboxylase (GAD) were used to identify GABAergic commissural cells. The majority (>86%) of labeled commissural cells were GAD-immunonegative. Despite low numbers of GAD-immunopositive commissural cells, some of these cells were contacted by cortical boutons. Nonetheless, most cortically contacted commissural cells were GAD-immunonegative (i.e., presumably glutamatergic). We conclude that auditory cortical axons contact primarily excitatory commissural cells in the ipsilateral IC that project to the contralateral IC. These corticocollicular contacts occur in each subdivision of the ipsilateral IC, suggesting involvement of commissural cells throughout the IC. This pathway - from AC to commissural cells in the ipsilateral IC - is a prime candidate for the excitatory effects of activation of the auditory cortex on responses in the contralateral IC. Overall this suggests that the auditory corticofugal pathway is integrated with midbrain commissural connections.


Spatial organization of frequency preference and selectivity in the human inferior colliculus.

  • Federico De Martino‎ et al.
  • Nature communications‎
  • 2013‎

To date, the functional organization of human auditory subcortical structures can only be inferred from animal models. Here we use high-resolution functional magnetic resonance imaging at ultra-high magnetic fields (7T) to map the organization of spectral responses in the human inferior colliculus, a subcortical structure fundamental for sound processing. We reveal a tonotopic map with a spatial gradient of preferred frequencies approximately oriented from dorsolateral (low frequencies) to ventromedial (high frequencies) locations. Furthermore, we observe a spatial organization of spectral selectivity (tuning) of functional magnetic resonance imaging responses in the human inferior colliculus. Along isofrequency contours, functional magnetic resonance imaging tuning is narrowest in central locations and broadest in the surrounding regions. Finally, by comparing subcortical and cortical auditory areas we show that functional magnetic resonance imaging tuning is narrower in human inferior colliculus than on the cortical surface. Our findings pave the way to noninvasive investigations of sound processing in human subcortical nuclei and for studying the interplay between subcortical and cortical neuronal populations.


Morphological and neurochemical changes in GABAergic neurons of the aging human inferior colliculus.

  • Indra Pal‎ et al.
  • Hearing research‎
  • 2019‎

It is well known that quality of hearing decreases with increasing age due to changes in the peripheral or central auditory pathway. Along with the decrease in the number of neurons the neurotransmitter profile is also affected in the various parts of the auditory system. Particularly, changes in the inhibitory neurons in the inferior colliculus (IC) are known to affect quality of hearing with aging. To date, there is no information about the status of the inhibitory neurotransmitter GABA in the human IC during aging. We have collected and processed inferior colliculi of persons aged 11-97 years at the time of death for morphometry and immunohistochemical expression of glutamic acid decarboxylase (GAD67) and parvalbumin. We used unbiased stereology to estimate the number of cresyl-violet and immunostained neurons. Quantitative real-time PCR was used to measure the relative expression of the GAD67 mRNA. We found that the number of total, GABAergic and PV-positive neurons significantly decreased with increasing age (p < 0.05). The proportion of GAD67-ir neurons to total number of neurons was also negatively associated with increasing age (p = 0.004), but there was no change observed in the proportion of PV-ir neurons relative to GABAergic neurons (p = 0.25). Further, the fold change in the levels of GAD67 mRNA was negatively correlated to age (p = 0.024). We conclude that the poorer quality of hearing with increasing age may be due to decreased expression of inhibitory neurotransmitters and the decline in the number of inhibitory neurons in the IC.


Microglial peri-somatic abutments classify two novel types of GABAergic neuron in the inferior colliculus.

  • Samuel David Webb‎ et al.
  • The European journal of neuroscience‎
  • 2021‎

Emerging evidence suggests functional roles for microglia in the healthy, mature nervous system. However, we know little of the cellular density and ramified morphology of microglia in sensory systems, and even less of their inter-relationship with inhibitory neurons. We therefore conducted fluorescent multi-channel immunohistochemistry and confocal microscopy in guinea pigs of both sexes for Iba1, GAD67, GFAP, calbindin, and calretinin. We explored these markers in the inferior colliculi (IC), which contain sub-regions specialized for different aspects of auditory processing. First, we found that while the density of Iba1+ somata is similar throughout the IC parenchyma, Iba1+ microglia in dorsal cortex are significantly more ramified than those in the central nucleus or lateral cortex. Conversely, Iba1+ ramifications in ventral central nucleus, a region with the highest density of GAD67+ (putative GABAergic) neurons in IC, are longer with fewer ramifications. Second, we observed extensive abutments of ramified Iba1+ processes onto GAD67+ somata throughout the whole IC and developed novel measures to quantify these. Cluster analyses revealed two novel sub-types of GAD67+ neuron that differ in the quantity of Iba1+ somatic abutments they receive. Unlike previous classification schemes for GAD67+ neurons in IC, these clusters are not related to GAD67+ soma size. Taken together, these data demonstrate that microglial ramifications vary between IC sub-regions in the healthy, adult IC, possibly related to the ongoing demands of their niche. Furthermore, Iba1+ abutments onto neuronal somata are a novel means by which GAD67+ neurons can be classified.


Exposure of Wistar rats to 24-h psycho-social stress alters gene expression in the inferior colliculus.

  • Birgit Mazurek‎ et al.
  • Neuroscience letters‎
  • 2012‎

Recently, we have demonstrated that the exposure of Wistar rats to psycho-social stress results in a transient auditory hypersensitivity. Here, to learn more about modifications occurring in auditory brainstem, we have analyzed gene expression pattern in inferior colliculus using quantitative RT-PCR. As targets, we have chosen genes associated with: neural activity (FBJ osteosarcoma viral oncogene, cFos), hypoxia (nitric oxide synthase inducible, iNos; superoxide dismutase 2, Sod2), neuroprotection (nerve growth factor beta, Ngfb; heat shock factor 1, Hsf1; heat shock protein 70, Hsp70) and inflammation (tumor necrosis factor alpha, Tnfa; tumor necrosis factor alpha receptor, Tnfar; substance P, Sp; cyclooxygenase 2, Cox2). We found that the expression of all genes was modified following stress, as compared to the controls. Immediately after stress, the number of transcripts encoding iNos, Sod2, Hsf1, Ngfb, Tnfa, Tnfar and Sp was significantly increased, suggesting possible modulation during exposure to stressor. Interestingly, we found that expression of Hsf1 and Ngfb at this particular time was left-right asymmetrical: there were more transcripts of both genes found in the left colliculi, as compared to the right colliculi. Three hours post-stress, iNos, Hsf1, Tnfa and Tnfar were still upregulated, Sod2, Ngfb and Sp went back to baseline and Cox2 was upregulated. Six hours post-stress, cFos mRNA became downregulated. The number of Hsp70 mRNA increased 24h post-stress. Except for the reduced number of cFos transcripts, expression of all other genes tested reached the baseline seven days post-stress. Presented results corroborate the concept of auditory system responding to the psycho-social stress. Post-stress changes in the IC gene expression could likely indicate shift from allostasis to homeostasis in the auditory brainstem.


Patterns of Unilateral and Bilateral Projections From Layers 5 and 6 of the Auditory Cortex to the Inferior Colliculus in Mouse.

  • Nathiya Vaithiyalingam Chandra Sekaran‎ et al.
  • Frontiers in systems neuroscience‎
  • 2021‎

The auditory cortex sends massive projections to the inferior colliculus, but the organization of this pathway is not yet well understood. Previous work has shown that the corticocollicular projection emanates from both layers 5 and 6 of the auditory cortex and that neurons in these layers have different morphological and physiological properties. It is not yet known in the mouse if both layer 5 and layer 6 project bilaterally, nor is it known if the projection patterns differ based on projection location. Using targeted injections of Fluorogold into either the lateral cortex or dorsal cortex of the inferior colliculus, we quantified retrogradely labeled neurons in both the left and right lemniscal regions of the auditory cortex, as delineated using parvalbumin immunostaining. After dorsal cortex injections, we observed that approximately 18-20% of labeled cells were in layer 6 and that this proportion was similar bilaterally. After lateral cortex injections, only ipsilateral cells were observed in the auditory cortex, and they were found in both layer 5 and layer 6. The ratio of layer 5:layer 6 cells after lateral cortex injection was similar to that seen after dorsal cortex injection. Finally, injections of different tracers were made into the two inferior colliculi, and an average of 15-17% of cells in the auditory cortex were double-labeled, and these proportions were similar in layers 5 and 6. These data suggest that (1) only the dorsal cortex of the inferior colliculus receives bilateral projections from the auditory cortex, (2) both the dorsal and lateral cortex of the inferior colliculus receive similar layer 5 and layer 6 auditory cortical input, and (3) a subpopulation of individual neurons in both layers 5 and 6 branch to innervate both dorsal cortices of the inferior colliculus.


Hyperexcitable superior colliculus and fatal brainstem spreading depolarization in a model of Sudden Unexpected Death in Epilepsy.

  • Stuart M Cain‎ et al.
  • Brain communications‎
  • 2022‎

Cardiorespiratory arrest and death in mouse models of sudden unexpected death in epilepsy occur when spreading depolarization is triggered by cortical seizures and then propagates to the brainstem. However, the critical brain regions and the specific changes required to allow spreading depolarization to propagate to the brainstem under the relatively rare circumstances leading to a fatal seizure are unknown. We previously found that following cortical seizure-inducing electrical stimulation, spreading depolarization could occur in both the superior and inferior colliculi in Cacna1aS218L mice, but was never observed in wild-type animals or following non-seizure-inducing stimuli in Cacna1aS218L mice. Here, we show that optogenetic stimulation of the superior/inferior colliculi in Cacna1aS218L mice induces severe seizures, and resulting spreading depolarization in the superior/inferior colliculi that propagates to the brainstem and correlates with the respiratory arrest followed by cardiac arrest. Further, we show that neurons of the superior colliculus in Cacna1aS218L mice exhibit hyperexcitable properties that we propose underlie a distinct susceptibility to spreading depolarization. Our data suggest that the susceptibility of the superior colliculus to elicit fatal spreading depolarization is a result of either genetic or seizure-related alterations within the superior colliculus that may involve changes to structure, connectivity and/or excitability.


Depth relationships and measures of tissue thickness in dorsal midbrain.

  • Paulina Truong‎ et al.
  • Human brain mapping‎
  • 2020‎

Dorsal human midbrain contains two nuclei with clear laminar organization, the superior and inferior colliculi. These nuclei extend in depth between the superficial dorsal surface of midbrain and a deep midbrain nucleus, the periaqueductal gray matter (PAG). The PAG, in turn, surrounds the cerebral aqueduct (CA). This study examined the use of two depth metrics to characterize depth and thickness relationships within dorsal midbrain using the superficial surface of midbrain and CA as references. The first utilized nearest-neighbor Euclidean distance from one reference surface, while the second used a level-set approach that combines signed distances from both reference surfaces. Both depth methods provided similar functional depth profiles generated by saccadic eye movements in a functional MRI task, confirming their efficacy for delineating depth for superficial functional activity. Next, the boundaries of the PAG were estimated using Euclidean distance together with elliptical fitting, indicating that the PAG can be readily characterized by a smooth surface surrounding PAG. Finally, we used the level-set approach to measure tissue depth between the superficial surface and the PAG, thus characterizing the variable thickness of the colliculi. Overall, this study demonstrates depth-mapping schemes for human midbrain that enables accurate segmentation of the PAG and consistent depth and thickness estimates of the superior and inferior colliculi.


Metabolic imaging of rat brain during pharmacologically-induced tinnitus.

  • A K Paul‎ et al.
  • NeuroImage‎
  • 2009‎

Although much is known about the perceptual characteristics of tinnitus, its neural origins remain poorly understood. We investigated the pattern of neural activation in central auditory structures using positron emission tomography (PET) imaging in a rat model of salicylate-induced tinnitus. Awake rats were injected with the metabolic tracer, fluorine-18 fluorodeoxyglucose (FDG), once in a quiet state (baseline) and once during salicylate-induced tinnitus. Tinnitus was verified using a behavioral technique. Brain imaging was performed using a high-resolution microPET scanner. Rats underwent magnetic resonance imaging (MRI) and reconstructed MRI and microPET images were fused to identify brain structures. FDG activity in brain regions of interest were quantified and compared. MicroPET imaging showed that FDG activity in the frontal pole was stable between baseline and tinnitus conditions, suggesting it was metabolically inert during tinnitus. Inferior colliculi (p=0.03) and temporal cortices (p=0.003) showed significantly increased FDG activity during tinnitus relative to baseline; activity in the colliculi and temporal cortices increased by 17%+/-21% and 29%+/-20%, respectively. FDG activity in the thalami also increased during tinnitus, but the increase did not reach statistical significance (p=0.07). Our results show increased metabolic activity consistent with neuronal activation in inferior colliculi and auditory cortices of rats during salicylate-induced tinnitus. These results are the first to show that microPET imaging can be used to identify central auditory structures involved in tinnitus and suggest that microPET imaging might be used to evaluate the therapeutic potential of drugs to treat tinnitus.


A transgenic mouse line for molecular genetic analysis of excitatory glutamatergic neurons.

  • Lotta Borgius‎ et al.
  • Molecular and cellular neurosciences‎
  • 2010‎

Excitatory glutamatergic neurons are part of most of the neuronal circuits in the mammalian nervous system. We have used BAC-technology to generate a BAC-Vglut2::Cre mouse line where Cre expression is driven by the vesicular glutamate transporter 2 (Vglut2) promotor. This BAC-Vglut2::Cre mouse line showed specific expression of Cre in Vglut2 positive cells in the spinal cord with no ectopic expression in GABAergic or glycinergic neurons. This mouse line also showed specific Cre expression in Vglut2 positive structures in the brain such as thalamus, hypothalamus, superior colliculi, inferior colliculi and deep cerebellar nuclei together with nuclei in the midbrain and hindbrain. Cre-mediated recombination was restricted to Cre expressing cells in the spinal cord and brain and occurred as early as E 12.5. Known Vglut2 positive neurons showed normal electrophysiological properties in the BAC-Vglut2::Cre transgenic mice. Altogether, this BAC-Vglut2::Cre mouse line provides a valuable tool for molecular genetic analysis of excitatory neuronal populations throughout the mouse nervous system.


Tinnitus-related dissociation between cortical and subcortical neural activity in humans with mild to moderate sensorineural hearing loss.

  • Kris Boyen‎ et al.
  • Hearing research‎
  • 2014‎

Tinnitus is a phantom sound percept that is strongly associated with peripheral hearing loss. However, only a fraction of hearing-impaired subjects develops tinnitus. This may be based on differences in the function of the brain between those subjects that develop tinnitus and those that do not. In this study, cortical and sub-cortical sound-evoked brain responses in 34 hearing-impaired chronic tinnitus patients and 19 hearing level-matched controls were studied using 3-T functional magnetic resonance imaging (fMRI). Auditory stimuli were presented to either the left or the right ear at levels of 30-90 dB SPL. We extracted neural activation as a function of sound intensity in eight auditory regions (left and right auditory cortices, medial geniculate bodies, inferior colliculi and cochlear nuclei), the cerebellum and a cinguloparietal task-positive region. The activation correlated positively with the stimulus intensity, and negatively with the hearing threshold. We found no differences between both groups in terms of the magnitude and lateralization of the sound-evoked responses, except for the left medial geniculate body and right cochlear nucleus where activation levels were elevated in the tinnitus subjects. We observed significantly reduced functional connectivity between the inferior colliculi and the auditory cortices in tinnitus patients compared to controls. Our results indicate a failure of thalamic gating in the development of tinnitus.


A basic MRI anatomy of the rat brain in coronal sections for practical guidance to neuroscientists.

  • Ivan Marinković‎ et al.
  • Brain research‎
  • 2020‎

Identification of the brain structures in the magnetic resonance imaging (MRI) of the rat is very important for the experimental work of many neuroscientists. Our intention was to recognize most of the structures without overlapping the MRI sections with the histological templates. Three live rats were used for this study who were examined in a micro-MRI apparatus by performing T2-weighted sequences in serial brain sections. Most of the white matter structures were easily identified, e.g. the anterior commissure, corpus callosum with forceps minor and major, cingulum, external and internal capsules, fornix, stria medullaris and terminalis, cranial nerves, mammillothalamic tract, fasciculus retroflexus, medial and lateral lemniscus, posterior commissure, commissures of the superior and inferior colliculi, medial longitudinal fasciculus, and the cerebral peduncle. Large and small gray matter structures were recognized as well, for example, the anterior olfactory structures, nucleus accumbens, caudate putamen, claustrum, bed nucleus of the stria terminalis, pituitary gland, globus pallidus, amygdala, some midline and intralaminar thalamic nuclei, certain hypothalamic nuclei, hippocampal formation, pineal body, periaqueductal gray matter, lateral and medial geniculate bodies, superior and inferior colliculi, and cranial nerves nuclei. All in all, of the total 160 recognized brain structures, 77 were identified without using the corresponding histological atlases. We believe that our labeled MRI pictures could be an important way for quick orientation for evaluating the effects of the experimental work regarding the rat brain.


A Systematic Review of Brainstem Contributions to Autism Spectrum Disorder.

  • Ala Seif‎ et al.
  • Frontiers in integrative neuroscience‎
  • 2021‎

Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects one in 66 children in Canada. The contributions of changes in the cortex and cerebellum to autism have been studied for decades. However, our understanding of brainstem contributions has only started to emerge more recently. Disruptions of sensory processing, startle response, sensory filtering, sensorimotor gating, multisensory integration and sleep are all features of ASD and are processes in which the brainstem is involved. In addition, preliminary research into brainstem contribution emphasizes the importance of the developmental timeline rather than just the mature brainstem. Therefore, the purpose of this systematic review is to compile histological, behavioral, neuroimaging, and electrophysiological evidence from human and animal studies about brainstem contributions and their functional implications in autism. Moreover, due to the developmental nature of autism, the review pays attention to the atypical brainstem development and compares findings based on age. Overall, there is evidence of an important role of brainstem disruptions in ASD, but there is still the need to examine the brainstem across the life span, from infancy to adulthood which could lead the way for early diagnosis and possibly treatment of ASD.


Anticonvulsant effects of carbenoxolone in genetically epilepsy prone rats (GEPRs).

  • Pietro Gareri‎ et al.
  • Neuropharmacology‎
  • 2004‎

Carbenoxolone (CBX), the succinyl ester of glycyrrhetinic acid, is an inhibitor of gap junctional intercellular communication. Systemic administration of CBX was able to decrease the seizure severity score and to increase the latency time of seizure onset in genetically epilepsy prone rats (GEPRs). In particular, intravenous or intraperitoneal administration of carbenoxolone (5-30 mg/kg) produced a dose-dependent and significant reduction in the clonic and tonic phases of the audiogenic seizures in GEPRs. The anticonvulsant doses were not associated with an impairment of motor coordination. The bilateral microinjection of CBX (0.001-0.50 microg/0.5 microl) into the inferior colliculi, the substantia nigra (pars reticulata or compacta) and the inferior olivary complex was able to reduce the seizure severity score in a dose-dependent manner. The anticonvulsant effects were longer lasting after focal microinjection than after systemic administration. No anticonvulsant effects were observed following focal bilateral microinjections of glycyrrhizin into the same brain areas where CBX was shown to be effective.


Perineuronal nets and subtypes of GABAergic cells differentiate auditory and multisensory nuclei in the intercollicular area of the midbrain.

  • Nichole L Beebe‎ et al.
  • The Journal of comparative neurology‎
  • 2020‎

The intercollicular region, which lies between the inferior and superior colliculi in the midbrain, contains neurons that respond to auditory, visual, and somatosensory stimuli. Golgi studies have been used to parse this region into three distinct nuclei: the intercollicular tegmentum (ICt), the rostral pole of the inferior colliculus (ICrp), and the nucleus of the brachium of the IC (NBIC). Few reports have focused on these nuclei, especially the ICt and the ICrp, possibly due to lack of a marker that distinguishes these areas and is compatible with modern methods. Here, we found that staining for GABAergic cells and perineuronal nets differentiates these intercollicular nuclei in guinea pigs. Further, we found that the proportions of four subtypes of GABAergic cells differentiate intercollicular nuclei from each other and from adjacent inferior collicular subdivisions. Our results support earlier studies that suggest distinct morphology and functions for intercollicular nuclei, and provide staining methods that differentiate intercollicular nuclei and are compatible with most modern techniques. We hope that this will help future studies to further characterize the intercollicular region.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: