Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,804 papers

Cohort profile: Greifswald approach to individualized medicine (GANI_MED).

  • Hans J Grabe‎ et al.
  • Journal of translational medicine‎
  • 2014‎

Individualized Medicine aims at providing optimal treatment for an individual patient at a given time based on his specific genetic and molecular characteristics. This requires excellent clinical stratification of patients as well as the availability of genomic data and biomarkers as prerequisites for the development of novel diagnostic tools and therapeutic strategies. The University Medicine Greifswald, Germany, has launched the "Greifswald Approach to Individualized Medicine" (GANI_MED) project to address major challenges of Individualized Medicine. Herein, we describe the implementation of the scientific and clinical infrastructure that allows future translation of findings relevant to Individualized Medicine into clinical practice.


Individualized genomics and the future of translational medicine.

  • Maximilian Muenke‎
  • Molecular genetics & genomic medicine‎
  • 2013‎

No abstract available


Forward Individualized Medicine from Personal Genomes to Interactomes.

  • Xiang Zhang‎ et al.
  • Frontiers in physiology‎
  • 2015‎

When considering the variation in the genome, transcriptome, proteome and metabolome, and their interaction with the environment, every individual can be rightfully considered as a unique biological entity. Individualized medicine promises to take this uniqueness into account to optimize disease treatment and thereby improve health benefits for every patient. The success of individualized medicine relies on a precise understanding of the genotype-phenotype relationship. Although omics technologies advance rapidly, there are several challenges that need to be overcome: Next generation sequencing can efficiently decipher genomic sequences, epigenetic changes, and transcriptomic variation in patients, but it does not automatically indicate how or whether the identified variation will cause pathological changes. This is likely due to the inability to account for (1) the consequences of gene-gene and gene-environment interactions, and (2) (post)transcriptional as well as (post)translational processes that eventually determine the concentration of key metabolites. The technologies to accurately measure changes in these latter layers are still under development, and such measurements in humans are also mainly restricted to blood and circulating cells. Despite these challenges, it is already possible to track dynamic changes in the human interactome in healthy and diseased states by using the integration of multi-omics data. In this review, we evaluate the potential value of current major bioinformatics and systems biology-based approaches, including genome wide association studies, epigenetics, gene regulatory and protein-protein interaction networks, and genome-scale metabolic modeling. Moreover, we address the question whether integrative analysis of personal multi-omics data will help understanding of personal genotype-phenotype relationships.


Biliary tract cancer patient-derived xenografts: Surgeon impact on individualized medicine.

  • Jennifer L Leiting‎ et al.
  • JHEP reports : innovation in hepatology‎
  • 2020‎

Biliary tract tumors are uncommon but highly aggressive malignancies with poor survival outcomes. Due to their low incidence, research into effective therapeutics has been limited. Novel research platforms for pre-clinical studies are desperately needed. We sought to develop a patient-derived biliary tract cancer xenograft catalog.


Individualized medicine using 3D printing technology in gynecology: a scoping review.

  • Carly M Cooke‎ et al.
  • 3D printing in medicine‎
  • 2023‎

Developments in 3-dimensional (3D) printing technology has made it possible to produce high quality, affordable 3D printed models for use in medicine. As a result, there is a growing assessment of this approach being published in the medical literature. The objective of this study was to outline the clinical applications of individualized 3D printing in gynecology through a scoping review.


Patient clusters based on HbA1c trajectories: A step toward individualized medicine in type 2 diabetes.

  • Tomas Karpati‎ et al.
  • PloS one‎
  • 2018‎

To identify clinically meaningful clusters of patients with similar glycated hemoglobin (HbA1c) trajectories among patients with type 2 diabetes.


Increasing access to individualized medicine: a matched-cohort study examining Latino participant experiences of genomic screening.

  • Joel E Pacyna‎ et al.
  • Genetics in medicine : official journal of the American College of Medical Genetics‎
  • 2021‎

Multiple efforts are underway to increase the inclusion of racial minority participants in genomic research and new forms of individualized medicine. These efforts should include studies that characterize how individuals from minority communities experience genomic medicine in diverse health-care settings and how they integrate genetic knowledge into their understandings of health-care needs.


Individualized interactomes for network-based precision medicine in hypertrophic cardiomyopathy with implications for other clinical pathophenotypes.

  • Bradley A Maron‎ et al.
  • Nature communications‎
  • 2021‎

Progress in precision medicine is limited by insufficient knowledge of transcriptomic or proteomic features in involved tissues that define pathobiological differences between patients. Here, myectomy tissue from patients with obstructive hypertrophic cardiomyopathy and heart failure is analyzed using RNA-Seq, and the results are used to develop individualized protein-protein interaction networks. From this approach, hypertrophic cardiomyopathy is distinguished from dilated cardiomyopathy based on the protein-protein interaction network pattern. Within the hypertrophic cardiomyopathy cohort, the patient-specific networks are variable in complexity, and enriched for 30 endophenotypes. The cardiac Janus kinase 2-Signal Transducer and Activator of Transcription 3-collagen 4A2 (JAK2-STAT3-COL4A2) expression profile informed by the networks was able to discriminate two hypertrophic cardiomyopathy patients with extreme fibrosis phenotypes. Patient-specific network features also associate with other important hypertrophic cardiomyopathy clinical phenotypes. These proof-of-concept findings introduce personalized protein-protein interaction networks (reticulotypes) for characterizing patient-specific pathobiology, thereby offering a direct strategy for advancing precision medicine.


Investigation into the Individualized Treatment of Traditional Chinese Medicine through a Series of N-of-1 Trials.

  • Haiyin Huang‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2018‎

To compare the efficacy of individualized herbal decoction with standard decoction for patients with stable bronchiectasis through N-of-1 trials.


Individualized Chinese medicine for the treatment of diabetic patients with dry eye disease: A single-case randomized controlled protocol.

  • Ruibao Liu‎ et al.
  • Medicine‎
  • 2020‎

The high incidence of Diabetes mellitus (DM) has become a serious challenge for the global epidemic. Increased blood glucose leads to abnormal ocular surface structure and metabolic disorder in patients. DM is a high-risk factor for dry eye disease (DED), with high incidence and increased difficulty in treatment. The disease can cause discomfort, visual impairment, tear film instability and ocular surface damage, and even cause corneal erosion in severe cases, which has a serious impact on people's daily life. Traditional Chinese Medicine (TCM) plays an important role in the evaluation and treatment of DM and its complications. However, whether TCM treatment could improve the treatment efficacy of DM suffering from DED remains poorly understood.


Type I Interferons in Systemic Autoimmune Diseases: Distinguishing Between Afferent and Efferent Functions for Precision Medicine and Individualized Treatment.

  • François Chasset‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

A sustained increase in type I interferon (IFN-I) may accompany clinical manifestations and disease activity in systemic autoimmune diseases (SADs). Despite the very frequent presence of IFN-I in SADs, clinical manifestations are extremely varied between and within SADs. The present short review will address the following key questions associated with high IFN-I in SADs in the perspective of precision medicine. 1) What are the mechanisms leading to high IFN-I? 2) What are the predisposing conditions favoring high IFN-I production? 3) What is the role of IFN-I in the development of distinct clinical manifestations within SADs? 4) Would therapeutic strategies targeting IFN-I be helpful in controlling or even preventing SADs? In answering these questions, we will underlie areas of incertitude and the intertwined role of autoantibodies, immune complexes, and neutrophils.


Pathway of PPAR-gamma coactivators in thermogenesis: a pivotal traditional Chinese medicine-associated target for individualized treatment of rheumatoid arthritis.

  • Yanqiong Zhang‎ et al.
  • Oncotarget‎
  • 2016‎

Traditional Chinese medicine (TCM) syndromes have been regarded as the crucial clinical manifestations for individualized diagnosis and treatment of complex diseases, including rheumatoid arthritis (RA) and cancer. Especially, RA patients are classified into cold and hot syndromes with different clinical manifestations, interventions and molecular mechanisms. Better effectiveness of a classic cold syndrome-specific herbal formula Wu-tou decoction (WTD) has been achieved. To explore molecular mechanisms of syndrome-specific formulae is of great clinical significance to improve the effectiveness and pertinence of treatment for the complex diseases with personalized conditions. However, the scientific basis of WTD treatment on RA with the cold syndrome remains unclear. Here, we predicted the putative targets for composite compounds contained in WTD using drugCIPHER-CS and constructed a WTD herbs-putative targets-RA related genes network. Next, a list of major WTD targets was identified based on their topological features, including the degree, node betweenness, closeness and k-coreness in the above pharmacological network. Importantly, pathway enrichment analysis revealed that these major WTD targets were significantly associated with the pathway of peroxisome proliferator-activated receptor (PPAR)-gamma (PPAR-γ) coactivators in thermogenesis. These computational findings were subsequently verified by experiments on a rat model of collagen-induced arthritis (CIA) with cold or hot syndromes, and on human fibroblast-like synoviocytes-rheumatoid arthritis (HFLS-RA) cell line. In conclusion, the pathway of PPAR-γ coactivators in thermogenesis might be one of the potential pharmacological targets of WTD to alleviate RA with the TCM cold syndrome. These findings may open new avenues for designing individualized treatment regimens for RA patients.


Functional characterization of a GFAP variant of uncertain significance in an Alexander disease case within the setting of an individualized medicine clinic.

  • Nicole J Boczek‎ et al.
  • Clinical case reports‎
  • 2016‎

A de novo GFAP variant, p.R376W, was identified in a child presenting with hypotonia, developmental delay, and abnormal brain MRI. Following the 2015 ACMG variant classification guidelines and the functional studies showing protein aggregate formation in vitro, p.R376W should be classified as a pathogenic variant, causative for Alexander disease.


American Joint Committee on Cancer acceptance criteria for inclusion of risk models for individualized prognosis in the practice of precision medicine.

  • Michael W Kattan‎ et al.
  • CA: a cancer journal for clinicians‎
  • 2016‎

The American Joint Committee on Cancer (AJCC) has increasingly recognized the need for more personalized probabilistic predictions than those delivered by ordinal staging systems, particularly through the use of accurate risk models or calculators. However, judging the quality and acceptability of a risk model is complex. The AJCC Precision Medicine Core conducted a 2-day meeting to discuss characteristics necessary for a quality risk model in cancer patients. More specifically, the committee established inclusion and exclusion criteria necessary for a risk model to potentially be endorsed by the AJCC. This committee reviewed and discussed relevant literature before creating a checklist unique to this need of AJCC risk model endorsement. The committee identified 13 inclusion and 3 exclusion criteria for AJCC risk model endorsement in cancer. The emphasis centered on performance metrics, implementation clarity, and clinical relevance. The facilitation of personalized probabilistic predictions for cancer patients holds tremendous promise, and these criteria will hopefully greatly accelerate this process. Moreover, these criteria might be useful for a general audience when trying to judge the potential applicability of a published risk model in any clinical domain. CA Cancer J Clin 2016;66:370-374. © 2016 American Cancer Society.


Gene expression profiling of patient-derived pancreatic cancer xenografts predicts sensitivity to the BET bromodomain inhibitor JQ1: implications for individualized medicine efforts.

  • Benjamin Bian‎ et al.
  • EMBO molecular medicine‎
  • 2017‎

c-MYC controls more than 15% of genes responsible for proliferation, differentiation, and cellular metabolism in pancreatic as well as other cancers making this transcription factor a prime target for treating patients. The transcriptome of 55 patient-derived xenografts show that 30% of them share an exacerbated expression profile of MYC transcriptional targets (MYC-high). This cohort is characterized by a high level of Ki67 staining, a lower differentiation state, and a shorter survival time compared to the MYC-low subgroup. To define classifier expression signature, we selected a group of 10 MYC target transcripts which expression is increased in the MYC-high group and six transcripts increased in the MYC-low group. We validated the ability of these markers panel to identify MYC-high patient-derived xenografts from both: discovery and validation cohorts as well as primary cell cultures from the same patients. We then showed that cells from MYC-high patients are more sensitive to JQ1 treatment compared to MYC-low cells, in monolayer, 3D cultured spheroids and in vivo xenografted tumors, due to cell cycle arrest followed by apoptosis. Therefore, these results provide new markers and potentially novel therapeutic modalities for distinct subgroups of pancreatic tumors and may find application to the future management of these patients within the setting of individualized medicine clinics.


Near-optimal Individualized Treatment Recommendations.

  • Haomiao Meng‎ et al.
  • Journal of machine learning research : JMLR‎
  • 2020‎

The individualized treatment recommendation (ITR) is an important analytic framework for precision medicine. The goal of ITR is to assign the best treatments to patients based on their individual characteristics. From the machine learning perspective, the solution to the ITR problem can be formulated as a weighted classification problem to maximize the mean benefit from the recommended treatments given patients' characteristics. Several ITR methods have been proposed in both the binary setting and the multicategory setting. In practice, one may prefer a more flexible recommendation that includes multiple treatment options. This motivates us to develop methods to obtain a set of near-optimal individualized treatment recommendations alternative to each other, called alternative individualized treatment recommendations (A-ITR). We propose two methods to estimate the optimal A-ITR within the outcome weighted learning (OWL) framework. Simulation studies and a real data analysis for Type 2 diabetic patients with injectable antidiabetic treatments are conducted to show the usefulness of the proposed A-ITR framework. We also show the consistency of these methods and obtain an upper bound for the risk between the theoretically optimal recommendation and the estimated one. An R package aitr has been developed, found at https://github.com/menghaomiao/aitr.


Estimating optimal individualized treatment rules with multistate processes.

  • Giorgos Bakoyannis‎
  • Biometrics‎
  • 2023‎

Multistate process data are common in studies of chronic diseases such as cancer. These data are ideal for precision medicine purposes as they can be leveraged to improve more refined health outcomes, compared to standard survival outcomes, as well as incorporate patient preferences regarding quantity versus quality of life. However, there are currently no methods for the estimation of optimal individualized treatment rules with such data. In this paper, we propose a nonparametric outcome weighted learning approach for this problem in randomized clinical trial settings. The theoretical properties of the proposed methods, including Fisher consistency and asymptotic normality of the estimated expected outcome under the estimated optimal individualized treatment rule, are rigorously established. A consistent closed-form variance estimator is provided and methodology for the calculation of simultaneous confidence intervals is proposed. Simulation studies show that the proposed methodology and inference procedures work well even with small-sample sizes and high rates of right censoring. The methodology is illustrated using data from a randomized clinical trial on the treatment of metastatic squamous-cell carcinoma of the head and neck.


Individualized Prospective Prediction of Opioid Use Disorder.

  • Yang S Liu‎ et al.
  • Canadian journal of psychiatry. Revue canadienne de psychiatrie‎
  • 2023‎

Opioid use disorder (OUD) is a chronic relapsing disorder with a problematic pattern of opioid use, affecting nearly 27 million people worldwide. Machine learning (ML)-based prediction of OUD may lead to early detection and intervention. However, most ML prediction studies were not based on representative data sources and prospective validations, limiting their potential to predict future new cases. In the current study, we aimed to develop and prospectively validate an ML model that could predict individual OUD cases based on representative large-scale health data.


A framework for individualized splice-switching oligonucleotide therapy.

  • Jinkuk Kim‎ et al.
  • Nature‎
  • 2023‎

Splice-switching antisense oligonucleotides (ASOs) could be used to treat a subset of individuals with genetic diseases1, but the systematic identification of such individuals remains a challenge. Here we performed whole-genome sequencing analyses to characterize genetic variation in 235 individuals (from 209 families) with ataxia-telangiectasia, a severely debilitating and life-threatening recessive genetic disorder2,3, yielding a complete molecular diagnosis in almost all individuals. We developed a predictive taxonomy to assess the amenability of each individual to splice-switching ASO intervention; 9% and 6% of the individuals had variants that were 'probably' or 'possibly' amenable to ASO splice modulation, respectively. Most amenable variants were in deep intronic regions that are inaccessible to exon-targeted sequencing. We developed ASOs that successfully rescued mis-splicing and ATM cellular signalling in patient fibroblasts for two recurrent variants. In a pilot clinical study, one of these ASOs was used to treat a child who had been diagnosed with ataxia-telangiectasia soon after birth, and showed good tolerability without serious adverse events for three years. Our study provides a framework for the prospective identification of individuals with genetic diseases who might benefit from a therapeutic approach involving splice-switching ASOs.


An individualized immune prognostic signature in lung adenocarcinoma.

  • Liangdong Sun‎ et al.
  • Cancer cell international‎
  • 2020‎

Tumor immune infiltration is closely associated with clinical outcome in lung cancer. We aimed to develop an immune signature to improve the prognostic predictions of lung adenocarcinoma (LUAD).


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: