Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 165 papers

Evidence for class-specific factors in immunoglobulin isotype switching.

  • A Shanmugam‎ et al.
  • The Journal of experimental medicine‎
  • 2000‎

Immunoglobulin class switch recombination (SR) occurs by a B cell-specific, intrachromosomal deletional process between switch regions. We have developed a plasmid-based transient transfection assay for SR to test for the presence of transacting switch activities. The plasmids are novel in that they lack a eukaryotic origin of DNA replication. The recombination activity of these switch substrates is restricted to a subset of B cell lines that support isotype switching on their endogenous loci and to mitogen-activated normal splenic B cells. The factors required for extrachromosomal plasmid recombination are constitutively expressed in proliferating splenic B cells and in B cell lines capable of inducibly undergoing immunoglobulin SR on their chromosomal genes. These studies suggest that mitogens that induce switching on the chromosome induce accessibility rather than switch recombinase activity. Finally, we provide evidence for two distinct switching activities which independently mediate mu-->alpha and mu-->gamma3 SR.


Mechanism of DNA resection during intrachromosomal recombination and immunoglobulin class switching.

  • Anne Bothmer‎ et al.
  • The Journal of experimental medicine‎
  • 2013‎

DNA double-strand breaks (DSBs) are byproducts of normal cellular metabolism and obligate intermediates in antigen receptor diversification reactions. These lesions are potentially dangerous because they can lead to deletion of genetic material or chromosome translocation. The chromatin-binding protein 53BP1 and the histone variant H2AX are required for efficient class switch (CSR) and V(D)J recombination in part because they protect DNA ends from resection and thereby favor nonhomologous end joining (NHEJ). Here, we examine the mechanism of DNA end resection in primary B cells. We find that resection depends on both CtBP-interacting protein (CtIP, Rbbp8) and exonuclease 1 (Exo1). Inhibition of CtIP partially rescues the CSR defect in 53BP1- and H2AX-deficient lymphocytes, as does interference with the RecQ helicases Bloom (Blm) and Werner (Wrn). We conclude that CtIP, Exo1, and RecQ helicases contribute to the metabolism of DNA ends during DSB repair in B lymphocytes and that minimizing resection favors efficient CSR.


DNA-dependent protein kinase activity is not required for immunoglobulin class switching.

  • Gayle C Bosma‎ et al.
  • The Journal of experimental medicine‎
  • 2002‎

Class switch recombination (CSR), similar to V(D)J recombination, is thought to involve DNA double strand breaks and repair by the nonhomologous end-joining pathway. A key component of this pathway is DNA-dependent protein kinase (DNA-PK), consisting of a catalytic subunit (DNA-PKcs) and a DNA-binding heterodimer (Ku70/80). To test whether DNA-PKcs activity is essential for CSR, we examined whether IgM(+) B cells from scid mice with site-directed H and L chain transgenes were able to undergo CSR. Although B cells from these mice were shown to lack DNA-PKcs activity, they were able to switch from IgM to IgG or IgA with close to the same efficiency as B cells from control transgenic and nontransgenic scid/+ mice, heterozygous for the scid mutation. We conclude that CSR, unlike V(D)J recombination, can readily occur in the absence of DNA-PKcs activity. We suggest nonhomologous end joining may not be the (primary or only) mechanism used to repair DNA breaks during CSR.


Global gene regulation during activation of immunoglobulin class switching in human B cells.

  • Youming Zhang‎ et al.
  • Scientific reports‎
  • 2016‎

Immunoglobulin class switch recombination (CSR) to IgE is a tightly regulated process central to atopic disease. To profile the B-cell transcriptional responses underlying the activation of the germinal centre activities leading to the generation of IgE, naïve human B-cells were stimulated with IL-4 and anti-CD40. Gene expression and alternative splicing were profiled over 12 days using the Affymetrix Human Exon 1.0 ST Array. A total of 1,399 genes, forming 13 temporal profiles were differentially expressed. CCL22 and CCL17 were dramatically induced but followed a temporal trajectory distinct from classical mediators of isotype switching. AICDA, NFIL3, IRF4, XBP1 and BATF3 shared a profile with several genes involved in innate immunity, but with no recognised role in CSR. A transcription factor BHLHE40 was identified at the core of this profile. B-cell activation was also accompanied by variation in exon retention affecting >200 genes including CCL17. The data indicate a circadian component and central roles for the Th2 chemokines CCL22 and CCL17 in the activation of CSR.


Ku70 is required for late B cell development and immunoglobulin heavy chain class switching.

  • J P Manis‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

Immunoglobulin (Ig) heavy chain (HC) class switch recombination (CSR) is a late B cell process that involves intrachromosomal DNA rearrangement. Ku70 and Ku80 form a DNA end-binding complex required for DNA double strand break repair and V(D)J recombination. Ku70(-/-) (K70T) mice, like recombination activating gene (RAG)-1- or RAG-2-deficient (R1T or R2T) mice, have impaired B and T cell development at an early progenitor stage, which is thought to result at least in part from defective V(D)J recombination (Gu, Y., K.J. Seidl, G.A. Rathbun, C. Zhu, J.P. Manis, N. van der Stoep, L. Davidson, H.L. Cheng, J.M. Sekiguchi, K. Frank, et al. 1997. Immunity. 7:653-665; Ouyang, H., A. Nussenzweig, A. Kurimasa, V.C. Soares, X. Li, C. Cordon-Cardo, W. Li, N. Cheong, M. Nussenzweig, G. Iliakis, et al. 1997. J. Exp. Med. 186:921-929). Therefore, to examine the potential role of Ku70 in CSR, we generated K70T mice that carry a germline Ig HC locus in which the JH region was replaced with a functionally rearranged VH(D)JH and Ig lambda light chain transgene (referred to as K70T/HL mice). Previously, we have shown that B cells from R1T or R2T mice carrying these rearranged Ig genes (R1T/HL or R2T/HL mice) can undergo CSR to IgG isotypes (Lansford, R., J. Manis, E. Sonoda, K. Rajewsky, and F. Alt. 1998. Int. Immunol. 10:325-332). K70T/HL mice had significant numbers of peripheral surface IgM+ B cells, which generated serum IgM levels similar to those of R2T/HL mice. However, in contrast to R2T/HL mice, K70T/HL mice had no detectable serum IgG isotypes. In vitro culture of K70T/HL B cells with agents that induce CSR in normal or R2T/HL B cells did lead to the induction of germline CH transcripts, indicating that initial signaling pathways for CSR were intact in K70T/HL cells. However, treatment with such agents did not lead to detectable CSR by K70T/HL B cells, and instead, led to cell death within 72 h. We conclude that Ku70 is required for the generation of B cells that have undergone Ig HC class switching. Potential roles for Ku70 in the CSR process are discussed.


Aberrant recombination and repair during immunoglobulin class switching in BRCA1-deficient human B cells.

  • Andrea Björkman‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2015‎

Breast cancer type 1 susceptibility protein (BRCA1) has a multitude of functions that contribute to genome integrity and tumor suppression. Its participation in the repair of DNA double-strand breaks (DSBs) during homologous recombination (HR) is well recognized, whereas its involvement in the second major DSB repair pathway, nonhomologous end-joining (NHEJ), remains controversial. Here we have studied the role of BRCA1 in the repair of DSBs in switch (S) regions during immunoglobulin class switch recombination, a physiological, deletion/recombination process that relies on the classical NHEJ machinery. A shift to the use of microhomology-based, alternative end-joining (A-EJ) and increased frequencies of intra-S region deletions as well as insertions of inverted S sequences were observed at the recombination junctions amplified from BRCA1-deficient human B cells. Furthermore, increased use of long microhomologies was found at recombination junctions derived from E3 ubiquitin-protein ligase RNF168-deficient, Fanconi anemia group J protein (FACJ, BRIP1)-deficient, or DNA endonuclease RBBP8 (CtIP)-compromised cells, whereas an increased frequency of S-region inversions was observed in breast cancer type 2 susceptibility protein (BRCA2)-deficient cells. Thus, BRCA1, together with its interaction partners, seems to play an important role in repairing DSBs generated during class switch recombination by promoting the classical NHEJ pathway. This may not only provide a general mechanism underlying BRCA1's function in maintaining genome stability and tumor suppression but may also point to a previously unrecognized role of BRCA1 in B-cell lymphomagenesis.


The transmembrane activator TACI triggers immunoglobulin class switching by activating B cells through the adaptor MyD88.

  • Bing He‎ et al.
  • Nature immunology‎
  • 2010‎

BAFF and APRIL are innate immune mediators that trigger immunoglobulin G (IgG) and IgA class-switch recombination (CSR) in B cells by engaging the receptor TACI. The mechanism that underlies CSR signaling by TACI remains unknown. Here we found that the cytoplasmic domain of TACI encompasses a conserved motif that bound MyD88, an adaptor that activates transcription factor NF-kappaB signaling pathways via a Toll-interleukin 1 (IL-1) receptor (TIR) domain. TACI lacks a TIR domain, yet triggered CSR via the DNA-editing enzyme AID by activating NF-kappaB through a Toll-like receptor (TLR)-like MyD88-IRAK1-IRAK4-TRAF6-TAK1 pathway. TACI-induced CSR was impaired in mice and humans lacking MyD88 or the kinase IRAK4, which indicates that MyD88 controls a B cell-intrinsic, TIR-independent, TACI-dependent pathway for immunoglobulin diversification.


Analysis of DNA polymerase ν function in meiotic recombination, immunoglobulin class-switching, and DNA damage tolerance.

  • Kei-Ichi Takata‎ et al.
  • PLoS genetics‎
  • 2017‎

DNA polymerase ν (pol ν), encoded by the POLN gene, is an A-family DNA polymerase in vertebrates and some other animal lineages. Here we report an in-depth analysis of pol ν-defective mice and human cells. POLN is very weakly expressed in most tissues, with the highest relative expression in testis. We constructed multiple mouse models for Poln disruption and detected no anatomic abnormalities, alterations in lifespan, or changed causes of mortality. Mice with inactive Poln are fertile and have normal testis morphology. However, pol ν-disrupted mice have a modestly reduced crossover frequency at a meiotic recombination hot spot harboring insertion/deletion polymorphisms. These polymorphisms are suggested to generate a looped-out primer and a hairpin structure during recombination, substrates on which pol ν can operate. Pol ν-defective mice had no alteration in DNA end-joining during immunoglobulin class-switching, in contrast to animals defective in the related DNA polymerase θ (pol θ). We examined the response to DNA crosslinking agents, as purified pol ν has some ability to bypass major groove peptide adducts and residues of DNA crosslink repair. Inactivation of Poln in mouse embryonic fibroblasts did not alter cellular sensitivity to mitomycin C, cisplatin, or aldehydes. Depletion of POLN from human cells with shRNA or siRNA did not change cellular sensitivity to mitomycin C or alter the frequency of mitomycin C-induced radial chromosomes. Our results suggest a function of pol ν in meiotic homologous recombination in processing specific substrates. The restricted and more recent evolutionary appearance of pol ν (in comparison to pol θ) supports such a specialized role.


A combined nuclear and nucleolar localization motif in activation-induced cytidine deaminase (AID) controls immunoglobulin class switching.

  • Yi Hu‎ et al.
  • Journal of molecular biology‎
  • 2013‎

Activation-induced cytidine deaminase (AID) is a DNA mutator enzyme essential for adaptive immunity. AID initiates somatic hypermutation and class switch recombination (CSR) by deaminating cytosine to uracil in specific immunoglobulin (Ig) gene regions. However, other loci, including cancer-related genes, are also targeted. Thus, tight regulation of AID is crucial to balance immunity versus disease such as cancer. AID is regulated by several mechanisms including nucleocytoplasmic shuttling. Here we have studied nuclear import kinetics and subnuclear trafficking of AID in live cells and characterized in detail its nuclear localization signal. Importantly, we find that the nuclear localization signal motif also directs AID to nucleoli where it colocalizes with its interaction partner, catenin-β-like 1 (CTNNBL1), and physically associates with nucleolin and nucleophosmin. Moreover, we demonstrate that release of AID from nucleoli is dependent on its C-terminal motif. Finally, we find that CSR efficiency correlates strongly with the arithmetic product of AID nuclear import rate and DNA deamination activity. Our findings suggest that directional nucleolar transit is important for the physiological function of AID and demonstrate that nuclear/nucleolar import and DNA cytosine deamination together define the biological activity of AID. This is the first study on subnuclear trafficking of AID and demonstrates a new level in its complex regulation. In addition, our results resolve the problem related to dissociation of deamination activity and CSR activity of AID mutants.


The binding site for TRAF2 and TRAF3 but not for TRAF6 is essential for CD40-mediated immunoglobulin class switching.

  • Haifa Jabara‎ et al.
  • Immunity‎
  • 2002‎

To define the role of TRAF proteins in CD40-dependent isotype switching in B cells, we introduced wild-type (WT) and mutant CD40 transgenes that lacked the binding motifs for TRAF6 (CD40deltaTRAF6), TRAF2 and TRAF3 (CD40deltaTRAF2/3), or both (CD40deltaTRAFs) into B cells of CD40(-/-) mice. The in vivo isotype switch defect in CD40(-/-) mice was fully corrected by WT and CD40deltaTRAF6, partially by CD40deltaTRAF2/3, and not at all by CD40deltaTRAFs transgenes. CD40-mediated isotype switching, proliferation, and activation of p38, JNK, and NFkappaB in B cells were normal in WT and CD40deltaTRAF6 mice, severely impaired in CD40deltaTRAF2/3, and absent in CD40deltaTRAFs mice. These results suggest that binding to TRAF2 and/or TRAF3 but not TRAF6 is essential for CD40 isotype switching and activation in B cells.


Intestinal bacteria trigger T cell-independent immunoglobulin A(2) class switching by inducing epithelial-cell secretion of the cytokine APRIL.

  • Bing He‎ et al.
  • Immunity‎
  • 2007‎

Bacteria colonize the intestine shortly after birth and thereafter exert several beneficial functions, including induction of protective immunoglobulin A (IgA) antibodies. The distal intestine contains IgA(2), which is more resistant to bacterial proteases than is IgA(1). The mechanism by which B cells switch from IgM to IgA(2) remains unknown. We found that human intestinal epithelial cells (IECs) triggered IgA(2) class switching in B cells, including IgA(1)-expressing B cells arriving from mucosal follicles, through a CD4(+) T cell-independent pathway involving a proliferation-inducing ligand (APRIL). IECs released APRIL after sensing bacteria through Toll-like receptors (TLRs) and further increased APRIL production by activating dendritic cells via thymic stromal lymphopoietin. Our data indicate that bacteria elicit IgA(2) class switching by linking lamina propria B cells with IECs through a TLR-inducible signaling program requiring APRIL. Thus, mucosal vaccines should activate IECs to induce more effective IgA(2) responses.


Role for mismatch repair proteins Msh2, Mlh1, and Pms2 in immunoglobulin class switching shown by sequence analysis of recombination junctions.

  • Carol E Schrader‎ et al.
  • The Journal of experimental medicine‎
  • 2002‎

B cells from mice deficient in mismatch repair (MMR) proteins show decreased ability to undergo class switch recombination in vitro and in vivo. The deficit is not accompanied by any reduction in cell viability or alterations in the cell cycle in B cells cultured in vitro. To assess the role of MMR in switching we examined the nucleotide sequences of Smicro-Sgamma3 recombination junctions in splenic B cells induced in culture to switch to IgG3. The data demonstrate clear differences in the sequences of switch junctions in wild-type B cells in comparison with Msh2-, Mlh1-, and Pms2-deficient B cells. Sequences of switch junctions from Msh2-deficient cells showed decreased lengths of microhomology between Smicro and Sgamma3 relative to junctions from wild-type cells and an increase in insertions, i.e., nucleotides which do not appear to be derived from either the Smicro or Sgamma3 parental sequence. By contrast, 23% of junctions from Mlh1- and Pms2-deficient cells occurred at unusually long stretches of microhomology. The data indicate that MMR proteins are directly involved in class switching and that the role of Msh2 differs from that of Mlh1 and Pms2.


BCR-signalling synergizes with TLR-signalling for induction of AID and immunoglobulin class-switching through the non-canonical NF-κB pathway.

  • Egest J Pone‎ et al.
  • Nature communications‎
  • 2012‎

By diversifying antibody biological effector functions, class switch DNA recombination has a central role in the maturation of the antibody response. Here we show that BCR-signalling synergizes with Toll-like receptor (TLR) signalling to induce class switch DNA recombination. BCR-signalling activates the non-canonical NF-κB pathway and enhances the TLR-dependent canonical NF-κB pathway, thereby inducing activation-induced cytidine deaminase (AID), which is critical for class switch DNA recombination. Escherichia coli lipopolysaccharide (LPS) triggers dual TLR4/BCR-signalling and induces hallmarks of BCR-signalling, including CD79a phosphorylation and Ca(2+) mobilization, and activates both the NF-κB pathways to induce AID and class switch DNA recombination in a PI(3)K p85α-dependent fashion. CD40-signalling activates the two NF-κB pathways to induce AID and class switch DNA recombination independent of BCR-signalling. Finally, dual BCR/TLR-engaging NP-lipopolysaccharide effectively elicits class-switched NP-specific IgG3 and IgG2b in mice. Thus, by integrating signals of the non-canonical and canonical NF-κB pathways, BCR and TLRs synergize to induce AID and T-cell-independent class switch DNA recombination.


CD30 is a CD40-inducible molecule that negatively regulates CD40-mediated immunoglobulin class switching in non-antigen-selected human B cells.

  • A Cerutti‎ et al.
  • Immunity‎
  • 1998‎

We used our monoclonal model of germinal center maturation, CL-01 B cells, to investigate the role of CD30 in human B cell differentiation. CL-01 cells are IgM+ IgD+ CD30+ and switch to IgG, IgA, and IgE when exposed to CD40L and IL-4. Switching is hampered by CD30 coengagement, possibly through interference with the CD40-mediated NF-kappaB-dependent transcriptional activation of downstream C(H) genes. The physiological relevance of this phenomenon is emphasized by similar CD30-mediated effects in naive B cells. Expression of CD30 by these cells is induced by CD40L but is inhibited by B cell receptor coengagement and/or exposure to IL-6 and IL-12. Our data suggest that CD30 critically regulates the CD40-mediated differentiation of non-antigen-selected human B cells.


Stage-specific binding profiles of cohesin in resting and activated B lymphocytes suggest a role for cohesin in immunoglobulin class switching and maturation.

  • Gamze Günal-Sadık‎ et al.
  • PloS one‎
  • 2014‎

The immunoglobulin heavy chain locus (Igh) features higher-order chromosomal interactions to facilitate stage-specific assembly of the Ig molecule. Cohesin, a ring-like protein complex required for sister chromatid cohesion, shapes chromosome architecture and chromatin interactions important for transcriptional regulation and often acts together with CTCF. Cohesin is likely involved in B cell activation and Ig class switch recombination. Hence, binding profiles of cohesin in resting mature murine splenic B lymphocytes and at two stages after cell activation were elucidated by chromatin immunoprecipitation and deep sequencing. Comparative genomic analysis revealed cohesin extensively changes its binding to transcriptional control elements after 48 h of stimulation with LPS/IL-4. Cohesin was clearly underrepresented at switch regions regardless of their activation status, suggesting that switch regions need to be cohesin-poor. Specific binding changes of cohesin at B-cell specific gene loci Pax5 and Blimp-1 indicate new cohesin-dependent regulatory pathways. Together with conserved cohesin/CTCF sites at the Igh 3'RR, a prominent cohesin/CTCF binding site was revealed near the 3' end of Cα where PolII localizes to 3' enhancers. Our study shows that cohesin likely regulates B cell activation and maturation, including Ig class switching.


CD11b regulates antibody class switching via induction of AID.

  • Seohyun Park‎ et al.
  • Molecular immunology‎
  • 2017‎

The integrin CD11b, which is encoded by the integrin subunit alpha M (ITGAM), is primarily expressed on the surface of innate immune cells. Genetic variations in ITGAM are among the strongest risk factors for systemic lupus erythematosus, an autoimmune disease characterized by the presence of autoantibodies. However, the regulatory function of CD11b in the antibody responses remains unclear. Here, we report the induction of CD11b in activated B2 B cells and define its unexpected role in immunoglobulin heavy chain class switch recombination (CSR). LPS-activated B cells lacking CD11b yielded fewer IgG subtypes such as IgG1 and IgG2a in vitro, and immunization-dependent CSR and affinity maturation of antibodies were severely impaired in CD11b-deficient mice. Notably, we observed the reduced expression of activation-induced cytidine deaminase (AID), an enzyme that initiates CSR and somatic hypermutation, and ectopic expression of AID was sufficient to rescue the defective CSR of CD11b-deficient B cells. LPS-induced phosphorylation of NF-κB p65 and IκBα was attenuated in CD11b-deficient B cells, and hyperactivation of IκB kinase 2 restored the defective AID expression and CSR, which implied that CD11b regulates the NF-κB-dependent induction of AID. Overall, our experimental evidence emphasized the function of CD11b in antibody responses and the role of CD11b as a vital regulator of CSR.


Ikaros controls isotype selection during immunoglobulin class switch recombination.

  • MacLean Sellars‎ et al.
  • The Journal of experimental medicine‎
  • 2009‎

Class switch recombination (CSR) allows the humoral immune response to exploit different effector pathways through specific secondary antibody isotypes. However, the molecular mechanisms and factors that control immunoglobulin (Ig) isotype choice for CSR are unclear. We report that deficiency for the Ikaros transcription factor results in increased and ectopic CSR to IgG(2b) and IgG(2a), and reduced CSR to all other isotypes, regardless of stimulation. Ikaros suppresses active chromatin marks, transcription, and activation-induced cytidine deaminase (AID) accessibility at the gamma2b and gamma2a genes to inhibit class switching to these isotypes. Further, Ikaros directly regulates isotype gene transcription as it directly binds the Igh 3' enhancer and interacts with isotype gene promoters. Finally, Ikaros-mediated repression of gamma2b and gamma2a transcription promotes switching to other isotype genes by allowing them to compete for AID-mediated recombination at the single-cell level. Thus, our results reveal transcriptional competition between constant region genes in individual cells to be a critical and general mechanism for isotype specification during CSR. We show that Ikaros is a master regulator of this competition.


T helper 1 (Th1) and Th2 characteristics start to develop during T cell priming and are associated with an immediate ability to induce immunoglobulin class switching.

  • K M Toellner‎ et al.
  • The Journal of experimental medicine‎
  • 1998‎

The respective production of specific immunoglobulin (Ig)G2a or IgG1 within 5 d of primary immunization with Swiss type mouse mammary tumor virus [MMTV(SW)] or haptenated protein provides a model for the development of T helper 1 (Th1) and Th2 responses. The antibody-producing cells arise from cognate T cell B cell interaction, revealed by the respective induction of Cgamma2a and Cgamma1 switch transcript production, on the third day after immunization. T cell proliferation and upregulation of mRNA for interferon gamma in response to MMTV(SW) and interleukin 4 in response to haptenated protein also starts during this day. It follows that there is minimal delay in these responses between T cell priming and the onset of cognate interaction between T and B cells leading to class switching and exponential growth. The Th1 or Th2 profile is at least partially established at the time of the first cognate T cell interaction with B cells in the T zone. The addition of killed Bordetella pertussis to the hapten-protein induces nonhapten-specific IgG2a and IgG1 plasma cells, whereas the anti-hapten response continues to be IgG1 dominated. This indicates that a Th2 response to hapten-protein can proceed in a node where there is substantial Th1 activity.


Fundamental roles of chromatin loop extrusion in antibody class switching.

  • Xuefei Zhang‎ et al.
  • Nature‎
  • 2019‎

Antibody class switch recombination (CSR) in B lymphocytes replaces immunoglobulin heavy chain locus (Igh) Cμ constant region exons (CHs) with one of six CHs lying 100-200 kb downstream1. Each CH is flanked upstream by an I promoter and long repetitive switch (S) region1. Cytokines and activators induce activation-induced cytidine deaminase (AID)2 and I-promoter transcription, with 3' IgH regulatory region (3' IgHRR) enhancers controlling the latter via I-promoter competition for long-range 3' IgHRR interactions3-8. Transcription through donor Sμ and an activated downstream acceptor S-region targets AID-generated deamination lesions at, potentially, any of hundreds of individual S-region deamination motifs9-11. General DNA repair pathways convert these lesions to double-stranded breaks (DSBs) and join an Sμ-upstream DSB-end to an acceptor S-region-downstream DSB-end for deletional CSR12. AID-initiated DSBs at targets spread across activated S regions routinely participate in such deletional CSR joining11. Here we report that chromatin loop extrusion underlies the mechanism11 by which IgH organization in cis promotes deletional CSR. In naive B cells, loop extrusion dynamically juxtaposes 3' IgHRR enhancers with the 200-kb upstream Sμ to generate a CSR centre (CSRC). In CSR-activated primary B cells, I-promoter transcription activates cohesin loading, leading to generation of dynamic subdomains that directionally align a downstream S region with Sμ for deletional CSR. During constitutive Sα CSR in CH12F3 B lymphoma cells, inversional CSR can be activated by insertion of a CTCF-binding element (CBE)-based impediment in the extrusion path. CBE insertion also inactivates upstream S-region CSR and converts adjacent downstream sequences into an ectopic S region by inhibiting and promoting their dynamic alignment with Sμ in the CSRC, respectively. Our findings suggest that, in a CSRC, dynamically impeded cohesin-mediated loop extrusion juxtaposes proper ends of AID-initiated donor and acceptor S-region DSBs for deletional CSR. Such a mechanism might also contribute to pathogenic DSB joining genome-wide.


Immunoglobulin class switch recombination is impaired in Atm-deficient mice.

  • Joanne M Lumsden‎ et al.
  • The Journal of experimental medicine‎
  • 2004‎

Immunoglobulin class switch recombination (Ig CSR) involves DNA double strand breaks (DSBs) at recombining switch regions and repair of these breaks by nonhomologous end-joining. Because the protein kinase ataxia telengiectasia (AT) mutated (ATM) plays a critical role in DSB repair and AT patients show abnormalities of Ig isotype expression, we assessed the role of ATM in CSR by examining ATM-deficient mice. In response to T cell-dependent antigen (Ag), Atm-/- mice secreted substantially less Ag-specific IgA, IgG1, IgG2b, and IgG3, and less total IgE than Atm+/+ controls. To determine whether Atm-/- B cells have an intrinsic defect in their ability to undergo CSR, we analyzed in vitro responses of purified B cells. Atm-/- cells secreted substantially less IgA, IgG1, IgG2a, IgG3, and IgE than wild-type (WT) controls in response to stimulation with lipopolysaccharide, CD40 ligand, or anti-IgD plus appropriate cytokines. Molecular analysis of in vitro responses indicated that WT and Atm-/- B cells produced equivalent amounts of germline IgG1 and IgE transcripts, whereas Atm-/- B cells produced markedly reduced productive IgG1 and IgE transcripts. The reduction in isotype switching by Atm-/- B cells occurs at the level of genomic DNA recombination as measured by digestion-circularization PCR. Analysis of sequences at CSR sites indicated that there is greater microhomology at the mu-gamma1 switch junctions in ATM B cells than in wild-type B cells, suggesting that ATM function affects the need or preference for sequence homology in the CSR process. These findings suggest a role of ATM in DNA DSB recognition and/or repair during CSR.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: