Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 92 papers

Benzofuranyl-2-imidazoles as imidazoline I2 receptor ligands for Alzheimer's disease.

  • Sergio Rodriguez-Arévalo‎ et al.
  • European journal of medicinal chemistry‎
  • 2021‎

Recent findings unveil the pharmacological modulation of imidazoline I2 receptors (I2-IR) as a novel strategy to face unmet medical neurodegenerative diseases. In this work, we report the chemical characterization, three-dimensional quantitative structure-activity relationship (3D-QSAR) and ADMET in silico of a family of benzofuranyl-2-imidazoles that exhibit affinity against human brain I2-IR and most of them have been predicted to be brain permeable. Acute treatment in mice with 2-(2-benzofuranyl)-2-imidazole, known as LSL60101 (garsevil), showed non-warning properties in the ADMET studies and an optimal pharmacokinetic profile. Moreover, LSL60101 induced hypothermia in mice while decreased pro-apoptotic FADD protein in the hippocampus. In vivo studies in the familial Alzheimer's disease 5xFAD murine model with the representative compound, revealed significant decreases in the protein expression levels of antioxidant enzymes superoxide dismutase and glutathione peroxidase in hippocampus. Overall, LSL60101 plays a neuroprotective role by reducing apoptosis and modulating oxidative stress.


Synthesis and Antiproliferative Evaluation of 2-Deoxy-N-glycosylbenzotriazoles/imidazoles.

  • Caleigh S Garton‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

A series of 2-deoxy-2-iodo-α-d-mannopyranosylbenzotriazoles was synthesized using the benzyl, 4,6-benzylidene and acetyl protected D-glucal in the presence of N-iodosuccinimide (NIS). Subsequent removal of the iodine at the C-2 position using tributyltin hydride under free radical conditions afforded the 2-deoxy-α-d-glucopyranosylbenzotriazoles in moderate to high yields. This method was extended to the preparation of substituted 2-deoxy-β-d-glucopyranosylimidazoles as well. The stereoselectivity of the addition reaction and the effect of the protecting group and temperature on anomer distribution of the benzotriazole series were also investigated. The anticancer properties of the newly synthesized compounds were evaluated in a series of viability studies using HeLa (human cervical adenocarcinoma), human breast and lung cancer cell lines. The N-[3,4,6-tri-O-benzyl-2-deoxy-α-d-glucopyranosyl]-1H-benzotriazole and the N-[3,4,6-tri-O-acetyl-2-deoxy-α-d-glucopyranosyl]-2H-benzotriazole were found to be the most potent cancer cell inhibitors at 20 µM concentrations across all four cell lines.


Chemoinformatics Studies on a Series of Imidazoles as Cruzain Inhibitors.

  • Alex R Medeiros‎ et al.
  • Biomolecules‎
  • 2021‎

Natural products based on imidazole scaffolds have inspired the discovery of a wide variety of bioactive compounds. Herein, a series of imidazoles that act as competitive and potent cruzain inhibitors was investigated using a combination of ligand- and structure-based drug design strategies. Quantitative structure-activity relationships (QSARs) were generated along with the investigation of enzyme-inhibitor molecular interactions. Predictive hologram QSAR (HQSAR, r2pred = 0.80) and AutoQSAR (q2 = 0.90) models were built, and key structural properties that underpin cruzain inhibition were identified. Moreover, comparative molecular field analysis (CoMFA, r2pred = 0.81) and comparative molecular similarity indices analysis (CoMSIA, r2pred = 0.73) revealed 3D molecular features that strongly affect the activity of the inhibitors. These findings were examined along with molecular docking studies and were highly compatible with the intermolecular contacts that take place between cruzain and the inhibitors. The results gathered herein revealed the main factors that determine the activity of the imidazoles studied and provide novel knowledge for the design of improved cruzain inhibitors.


Tetrasubstituted imidazoles as incognito Toll-like receptor 8 a(nta)gonists.

  • Yi Yang‎ et al.
  • Nature communications‎
  • 2021‎

Small-molecule modulators of TLR8 have drawn much interests as it plays pivotal roles in the innate immune response to single-stranded RNAs (ssRNAs) derived from viruses. However, their clinical uses are limited because they can invoke an uncontrolled, global inflammatory response. The efforts described herein culminate in the fortuitous discovery of a tetrasubstituted imidazole CU-CPD107 which inhibits R848-induced TLR8 signaling. In stark contrast, CU-CPD107 shows unexpected synergistic agonist activities in the presence of ssRNA, while CU-CPD107 alone is unable to influence TLR8 signaling. CU-CPD107's unique, dichotomous behavior sheds light on a way to approach TLR agonists. CU-CPD107 offers the opportunity to avoid the undesired, global inflammation side effects that have rendered imidazoquinolines clinically irrelevant, providing an insight for the development of antiviral drugs.


Multitargeted Imidazoles: Potential Therapeutic Leads for Alzheimer's and Other Neurodegenerative Diseases.

  • Anne-Sophie Cornec‎ et al.
  • Journal of medicinal chemistry‎
  • 2017‎

Alzheimer's disease (AD) is a complex, multifactorial disease in which different neuropathological mechanisms are likely involved, including those associated with pathological tau and Aβ species as well as neuroinflammation. In this context, the development of single multitargeted therapeutics directed against two or more disease mechanisms could be advantageous. Starting from a series of 1,5-diarylimidazoles with microtubule (MT)-stabilizing activity and structural similarities with known NSAIDs, we conducted structure-activity relationship studies that led to the identification of multitargeted prototypes with activities as MT-stabilizing agents and/or inhibitors of the cyclooxygenase (COX) and 5-lipoxygenase (5-LOX) pathways. Several examples are brain-penetrant and exhibit balanced multitargeted in vitro activity in the low μM range. As brain-penetrant MT-stabilizing agents have proven effective against tau-mediated neurodegeneration in animal models, and because COX- and 5-LOX-derived eicosanoids are thought to contribute to Aβ plaque deposition, these 1,5-diarylimidazoles provide tools to explore novel multitargeted strategies for AD and other neurodegenerative diseases.


Functionalized 2,3'-Bipyrroles and Pyrrolo[1,2-c]imidazoles from Acylethynylpyrroles and Tosylmethylisocyanide.

  • Maxim D Gotsko‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2024‎

An efficient method for the synthesis of pharmaceutically prospective but still rare functionalized 2,3'-bipyrroles (in up to 80% yield) by the cycloaddition of easily available acylethynylpyrroles with tosylmethylisocyanide (TosMIC) has been developed. The reaction proceeds under reflux (1 h) in the KOH/THF system. In the t-BuONa/THF system, TosMIC acts in two directions: along with 2,3'-bipyrroles, the unexpected formation of pyrrolo[1,2-c]imidazoles is also observed (products ratio~1:1).


Synthesis and Spectroscopic Analysis of Novel 1H-Benzo[d]imidazoles Phenyl Sulfonylpiperazines.

  • Amjad M Qandil‎
  • Pharmaceuticals (Basel, Switzerland)‎
  • 2012‎

A group of benzimidazole analogs of sildenafil, 3-benzimidazolyl-4-methoxy-phenylsulfonylpiperazines 2-4 and 3-benzimidazolyl-4-methoxy-N,N-dimethyl- benzenesulfonamide (5), were efficiently synthesized. Compounds 2-5 were characterized by NMR and MS and contrary to the reported mass spectra of sildenafil, the spectra of the piperazine-containing compounds 2-4 showed a novel fragmentation pattern leading to an m/z = 316. A mechanism for the formation of this fragment was proposed.


New Series of Imidazoles Showed Promising Growth Inhibitory and Curative Potential Against Trypanosoma Infection.

  • Oluyomi Stephen Adeyemi‎ et al.
  • The Yale journal of biology and medicine‎
  • 2021‎

The Trypanosoma spp. cause animal and human trypanosomiasis characterized with appreciable health and economic burden mostly in developing nations. There is currently no effective therapy for this parasitic disease, due to poor drug efficacy, drug resistance, and unwanted toxicity, etc. Therefore, new anti-Trypanosoma agents are urgently needed. This study explored new series of imidazoles for anti-Trypanosoma properties in vitro and in vivo. The imidazoles showed moderate to strong and specific action against growth of T. congolense. For example, the efficacy of the imidazole compounds to restrict Trypanosoma growth in vitro was ≥ 12-fold specific towards T. congolense relative to the mammalian cells. Additionally, the in vivo study revealed that the imidazoles exhibited promising anti-Trypanosoma efficacy corroborating the in vitro anti-parasite capacity. In particular, three imidazole compounds (C1, C6, and C8) not only cleared the systemic parasite burden but cured infected rats after no death was recorded. On the other hand, the remaining five imidazole compounds (C2, C3, C4, C5, and C7) drastically reduced the systemic parasite load while extending survival time of the infected rats by 14 days as compared with control. Untreated control died 3 days post-infection, while the rats treated with diminazene aceturate were cured comparable to the results obtained for C1, C6, and C8. In conclusion, this is the first study demonstrating the potential of these new series of imidazoles to clear the systemic parasite burden in infected rats. Furthermore, a high selectivity index of imidazoles towards T. congolensein vitro and the oral LD50 in rats support anti-parasite specific action. Together, findings support the anti-parasitic prospects of the new series of imidazole derivatives.


Sonochemical synthesis of 1,2,4,5-tetrasubstituted imidazoles using nanocrystalline MgAl2O4 as an effective catalyst.

  • Javad Safari‎ et al.
  • Journal of advanced research‎
  • 2013‎

An efficient four-component synthesis of 1,2,4,5-tetrasubstituted imidazoles is described by one-step condensation of an aldehyde, benzil, ammonium acetate and primary aromatic amine with nanocrystalline magnesium aluminate in ethanol under ultrasonic irradiation. High yields, short reaction times, mild conditions, simplicity of operation and easy work-up are some advantages of this protocol.


Screening of a PDE-focused library identifies imidazoles with in vitro and in vivo antischistosomal activity.

  • Sanaa S Botros‎ et al.
  • International journal for parasitology. Drugs and drug resistance‎
  • 2019‎

We report the evaluation of 265 compounds from a PDE-focused library for their antischistosomal activity, assessed in vitro using Schistosoma mansoni. Of the tested compounds, 171 (64%) displayed selective in vitro activity, with 16 causing worm hypermotility/spastic contractions and 41 inducing various degrees of worm killing at 100 μM, with the surviving worms displaying sluggish movement, worm unpairing and complete absence of eggs. The compounds that did not affect worm viability (n = 72) induced a complete cessation of ovipositing. 82% of the compounds had an impact on male worms whereas female worms were barely affected. In vivo evaluation in S. mansoni-infected mice with the in vitro 'hit' NPD-0274 at 20 mg/kg/day orally for 5 days resulted in worm burden reductions of 29% and intestinal tissue egg load reduction of 35% at 10 days post-treatment. Combination of praziquantel (PZQ) at 10 mg/kg/day for 5 days with NPD-0274 or NPD-0298 resulted in significantly higher worm killing than PZQ alone, as well as a reduction in intestinal tissue egg load, disappearance of immature eggs and an increase in the number of dead eggs.


Regiodivergent synthesis of functionalized pyrimidines and imidazoles through phenacyl azides in deep eutectic solvents.

  • Paola Vitale‎ et al.
  • Beilstein journal of organic chemistry‎
  • 2020‎

We report that phenacyl azides are key compounds for a regiodivergent synthesis of valuable, functionalized imidazole (32-98% yield) and pyrimidine derivatives (45-88% yield), with a broad substrate scope, when using deep eutectic solvents [choline chloride (ChCl)/glycerol (1:2 mol/mol) and ChCl/urea (1:2 mol/mol)] as environmentally benign and non-innocent reaction media, by modulating the temperature (25 or 80 °C) in the presence or absence of bases (Et3N).


Polysubstituted Imidazoles as LysoTracker Molecules: Their Synthesis via Iodine/H2O and Cell-Imaging Studies.

  • Saswati Adhikary‎ et al.
  • ACS omega‎
  • 2020‎

An iodine-catalyzed, environmentally benign one-pot methodology has been developed for the synthesis of diverse substituted imidazoles. This transition-metal-free, aerobic, water-mediated cyclization reaction is operationally simple and works well with different amines or aldehydes by multiple C-N bond formations with satisfactory yield. The methodology is regioselective as well as scalable. These imidazole derivatives show excellent fluorescence properties both in the solid and solution phase, which is further extended to live-cell imaging. Due to the suitable fluorescence properties of these scaffolds, lysosome-directing groups are incorporated in two of these derivatized imidazoles to track intracellular lysosomes. Successfully, those molecules show bright blue fluorescence while detecting lysosomes in human or murine cells and can be considered to be rapid lysosome-staining probes.


Synthesis and biological evaluation of di- and tri-substituted imidazoles as safer anti-inflammatory-antifungal agents.

  • Asif Husain‎ et al.
  • Journal of pharmacy & bioallied sciences‎
  • 2013‎

In view of the potential pharmacophoric nature of imidazole nucleus, two series of imidazole derivatives, 2,4-disubstituted-1 H-imidazoles (2a-m) and 1,2,4-trisubstituted-1 H-imidazoles (3a-m), were synthesized with an aim of obtaining dual acting compounds i.e., anti-inflammatory and antifungal agents.


Lead optimization of 2-hydroxymethyl imidazoles as non-hydroxamate LpxC inhibitors: Discovery of TP0586532.

  • Fumihito Ushiyama‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2021‎

Infectious diseases caused by resistant Gram-negative bacteria have become a serious problem, and the development of therapeutic drugs with a novel mechanism of action and that do not exhibit cross-resistance with existing drugs has been earnestly desired. UDP-3-O-acyl-N-acetylglucosamine deacetylase (LpxC) is a drug target that has been studied for a long time. However, no LpxC inhibitors are available on the market at present. In this study, we sought to create a new antibacterial agent without a hydroxamate moiety, which is a common component of the major LpxC inhibitors that have been reported to date and that may cause toxicity. As a result, a development candidate, TP0586532, was created that is effective against carbapenem-resistant Klebsiella pneumoniae and does not pose a cardiovascular risk.


Structural insight into activity enhancement and inhibition of H64A carbonic anhydrase II by imidazoles.

  • Mayank Aggarwal‎ et al.
  • IUCrJ‎
  • 2014‎

Human carbonic anhydrases (CAs) are zinc metalloenzymes that catalyze the hydration and dehydration of CO2 and HCO3 (-), respectively. The reaction follows a ping-pong mechanism, in which the rate-limiting step is the transfer of a proton from the zinc-bound solvent (OH(-)/H2O) in/out of the active site via His64, which is widely believed to be the proton-shuttling residue. The decreased catalytic activity (∼20-fold lower with respect to the wild type) of a variant of CA II in which His64 is replaced with Ala (H64A CA II) can be enhanced by exogenous proton donors/acceptors, usually derivatives of imidazoles and pyridines, to almost the wild-type level. X-ray crystal structures of H64A CA II in complex with four imidazole derivatives (imidazole, 1--methylimidazole, 2--methylimidazole and 4-methylimidazole) have been determined and reveal multiple binding sites. Two of these imidazole binding sites have been identified that mimic the positions of the 'in' and 'out' rotamers of His64 in wild-type CA II, while another directly inhibits catalysis by displacing the zinc-bound solvent. The data presented here not only corroborate the importance of the imidazole side chain of His64 in proton transfer during CA catalysis, but also provide a complete structural understanding of the mechanism by which imidazoles enhance (and inhibit when used at higher concentrations) the activity of H64A CA II.


Trisubstituted-Imidazoles Induce Apoptosis in Human Breast Cancer Cells by Targeting the Oncogenic PI3K/Akt/mTOR Signaling Pathway.

  • Chakrabhavi Dhananjaya Mohan‎ et al.
  • PloS one‎
  • 2016‎

Overactivation of PI3K/Akt/mTOR is linked with carcinogenesis and serves a potential molecular therapeutic target in treatment of various cancers. Herein, we report the synthesis of trisubstituted-imidazoles and identified 2-chloro-3-(4, 5-diphenyl-1H-imidazol-2-yl) pyridine (CIP) as lead cytotoxic agent. Naïve Base classifier model of in silico target prediction revealed that CIP targets RAC-beta serine/threonine-protein kinase which comprises the Akt. Furthermore, CIP downregulated the phosphorylation of Akt, PDK and mTOR proteins and decreased expression of cyclin D1, Bcl-2, survivin, VEGF, procaspase-3 and increased cleavage of PARP. In addition, CIP significantly downregulated the CXCL12 induced motility of breast cancer cells and molecular docking calculations revealed that all compounds bind to Akt2 kinase with high docking scores compared to the library of previously reported Akt2 inhibitors. In summary, we report the synthesis and biological evaluation of imidazoles that induce apoptosis in breast cancer cells by negatively regulating PI3K/Akt/mTOR signaling pathway.


Imidazoles Induce Reactive Oxygen Species in Mycobacterium tuberculosis Which Is Not Associated with Cell Death.

  • Heather A Howell Wescott‎ et al.
  • ACS omega‎
  • 2017‎

Azoles are a class of antimicrobial drugs used clinically to treat yeast and fungal infections. Against pathogenic yeast and fungi, azoles act by inhibiting the activity of the cytochrome P450 Cyp51, which is involved in the synthesis of a critical component of the yeast and fungal cell membrane. Azoles have antibacterial activity, including against mycobacteria, but the basis for this activity is not well-understood. We demonstrated that imidazoles are bactericidal to Mycobacterium tuberculosis. A marked increase in reactive oxygen species (ROS) was observed within imidazole-treated M. tuberculosis. The generation of ROS did not appear to be related to the mechanism of killing of imidazoles, as the addition of antioxidants or altered expression of detoxifying enzymes had no effect on growth. We examined the metabolic changes induced by econazole treatment in both wild-type and econazole-resistant mutant strains of M. tuberculosis. Econazole treatment induced changes in carbohydrates, amino acids, and energy metabolism in both strains. Notably, the untreated mutant strain had a metabolic profile similar to the wild-type drug-treated cells, suggesting that adaptation to similar stresses may play a role in econazole resistance.


Naphth[1,2-d]imidazoles Bioactive from β-Lapachone: Fluorescent Probes and Cytotoxic Agents to Cancer Cells.

  • Victória Laysna Dos Anjos Santos‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Theranostics combines therapeutic and imaging diagnostic techniques that are extremely dependent on the action of imaging agent, transporter of therapeutic molecules, and specific target ligand, in which fluorescent probes can act as diagnostic agents. In particular, naphthoimidazoles are potential bioactive heterocycle compounds to be used in several biomedical applications. With this aim, a group of seven naphth[1,2-d]imidazole compounds were synthesized from β-lapachone. Their optical properties and their cytotoxic activity against cancer cells and their compounds were evaluated and confirmed promising values for molar absorptivity coefficients (on the order of 103 to 104), intense fluorescence emissions in the blue region, and large Stokes shifts (20-103 nm). Furthermore, the probes were also selective for analyzed cancer cells (leukemic cells (HL-60). The naphth[1,2-d]imidazoles showed IC50 between 8.71 and 29.92 μM against HL-60 cells. For HCT-116 cells, values for IC50 between 21.12 and 62.11 μM were observed. The selective cytotoxicity towards cancer cells and the fluorescence of the synthesized naphth[1,2-d]imidazoles are promising responses that make possible the application of these components in antitumor theranostic systems.


Genotoxic effects of some l-[(benzofuran-2-yl)-phenylmethyl]-imidazoles on MCF-7 cell line.

  • M Etebari‎ et al.
  • Research in pharmaceutical sciences‎
  • 2012‎

Increased exposure to estrogen has been associated with the risk of breast cancer. Substituted benzofuran derivatives with inhibitory effects on estrogen synthesis could be considered as a potential approach to reduce the risk of breast cancer. The study of cytotoxic effects of these compounds has suggested involvement of other mechanisms such as DNA damage. In the current study we have investigated genotoxic effects of some benzofuran derivatives on MCF-7 cell line. The MCF-7 cell line was exposed both to benzofuran phenylmethyl imidazole and its 4- fluoro, 4-chloro, 2-methoxy and 2-methyl derivatives for 2 h. The Comet assay was used to examine DNA damage due to this exposure. We also studied the DNA repair capacity after 2 h exposure to genotoxic concentrations of these compounds and their recovery were evaluated after 17 and 24 h, using the comet assay. The results indicated that genotoxic effects of these compounds appeared in concentrations of 10(-8) to 10(-6) M. The 4- fluoro and 4-chloro derivatives exhibited the highest genotoxicity and the unsubstituted benzofuran phenylmethyl imidazole had the lowest effect. The 4- fluoro, 4-chloro and 2-methyl derivatives were recovered after 24 h while 2-methoxy and the unsubstituted derivatives were recovered after 17 h. The results showed that these compounds are genotoxic and the concentration of tested benzofuran derivatives with genotoxic effects are not close to their enzyme inhibitory concentration. Moreover, our study shows that the DNA damages are repairable. Therefore, it seems that the investigated compounds have the potentials as therapeutic agents.


Systematic study of imidazoles inhibiting IDO1 via the integration of molecular mechanics and quantum mechanics calculations.

  • Yi Zou‎ et al.
  • European journal of medicinal chemistry‎
  • 2017‎

Indoleamine 2,3-dioxygenase 1 (IDO1) is regarded as an attractive target for cancer immunotherapy. To rationalize the detailed interactions between IDO1 and its inhibitors at the atomic level, an integrated computational approach by combining molecular mechanics and quantum mechanics methods was employed in this report. Specifically, the binding modes of 20 inhibitors was initially investigated using the induced fit docking (IFD) protocol, which outperformed other two docking protocols in terms of correctly predicting ligand conformations. Secondly, molecular dynamics (MD) simulations and MM/PBSA free energy calculations were employed to determine the dynamic binding process and crucial residues were confirmed through close contact analysis, hydrogen-bond analysis and binding free energy decomposition calculations. Subsequent quantum mechanics and nonbonding interaction analysis were carried out to provide in-depth explanations on the critical role of those key residues, and Arg231 and 7-propionate of the heme group were major contributors to ligand binding, which lowed a great amount of interaction energy. We anticipate that these findings will be valuable for enzymatic studies and rational drug design.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: