Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 105 papers

alpha-L-Iduronidase transport in neurites.

  • Fengtian Chen‎ et al.
  • Molecular genetics and metabolism‎
  • 2006‎

Effective therapeutic strategies for mucopolysaccharidosis type I (MPSI) rely on mannose-6-phosphate receptor-mediated uptake of extracellular alpha-l-iduronidase (IDUA), the missing lysosomal enzyme in this disease, by deficient cells. Intravenously infused recombinant human IDUA does not reach the central nervous system, whereas neuropathology and neurological manifestations are prominent in Hurler syndrome, the most severe and most frequent form of MPSI. The creation of a single intracerebral source of IDUA by gene therapy was proved efficient to deliver enzyme throughout the brain of MPSI mice. IDUA spreading far beyond areas where the enzyme was synthesized suggested transport along neuronal processes. To examine the mechanisms of IDUA spreading in the brain, we constructed a chimeric protein in which GFP is fused at the C-terminus of IDUA. The fusion protein was expressed in rat primary neurons using lentivirus vectors. Fluorescent IDUA retained full catalytic activity including on natural substrates, interacted with mannose-6-phosphate receptors and was appropriately addressed to lysosomes. Fluorescent vesicles were broadly distributed over neuronal soma and processes. Time-lapse fluorescent video-microscopy showed that 54% of fluorescent vesicles exhibited either retrograde or anterograde displacements along neurites. Most moving organelles showed complex movements with frequent direction changes and arrests. Motility depended on microtubule integrity. Efficient axono-dendritic transport of IDUA provides a rationale for gene therapy based on the release of therapeutic enzyme at discrete locations within the central nervous system of patients with severe form of MPSI.


Characterization of α-l-Iduronidase (Aldurazyme®) and its complexes.

  • Gangsoo Jung‎ et al.
  • Journal of proteomics‎
  • 2013‎

Alpha-l-Iduronidase(IDUA) was the first enzyme replacement therapy approved for mucopolysaccharidosis type I and the corresponding recombinant protein drug, Aldurazyme®, is commercially available. In the frame of gel-based mass spectrometrical characterization of protein drugs, we intended to identify protein sequence and possible protein modifications. Moreover, we were interested in which aggregation/complex form Aldurazyme® would exist, which complexes were enzymatically active and in which form the naturally occurring enzyme would be present in the brain. Aldurazyme® was run on 2DE gel electrophoresis, spots were excised, in-gel digested with several proteases and identified by nano-LC-ESI-MS/MS on an ion trap. IDUA-activity was determined by a fluorometric principle. Blue-native gel electrophoresis with subsequent immunoblotting was carried out to show the presence of protein complexes. The protein was unambiguously identified by 100% sequence coverage; several amino acid substitutions were detected and protein modifications were novel phosphorylations on S59 and S482, histidine methylation at H572 and provide evidence for already known N-glycosylations. Four Aldurazyme® complexes that all were enzymatically active, were observed while a single complex was observed for the physiologically occurring IDUA in the brain. The findings are relevant for understanding chemistry, physiology, pharmacology and medicine of IDUA, design of further and interpretation of previous work.


Identification of a novel fusion Iduronidase with improved activity in the cardiovascular system.

  • Sarah Kim‎ et al.
  • Molecular genetics and metabolism reports‎
  • 2022‎

Lysosomal diseases are a group of over 70 rare genetic conditions in which a protein deficiency (most often an enzyme deficiency) leads to multi-system disease. Current therapies for lysosomal diseases are limited in their ability to treat certain tissues that are major contributors to morbidity and mortality, such as the central nervous system (CNS) and cardiac valves. For this study, the lysosomal disease mucopolysaccharidosis type I (MPS I) was selected as the disease model. In MPS I, mutations in the IDUA gene cause a deficiency of the α-L-iduronidase (IDUA) enzyme activity, leading to disease pathology in tissues throughout the body, including the CNS and cardiac valves. Current therapies have been unable to prevent neurodevelopmental deficits and cardiac valvular disease in patients with MPS I. This study aimed to evaluate the delivery of IDUA enzyme, via a novel gene therapy construct, to target tissues.


A novel p.E276K IDUA mutation decreasing α-L-iduronidase activity causes mucopolysaccharidosis type I.

  • Korrakot Prommajan‎ et al.
  • Molecular vision‎
  • 2011‎

To characterize the pathogenic mutations causing mucopolysaccharidosis type I (MPS I) in two Thai patients: one with Hurler syndrome (MPS IH), the most severe form, and the other with Scheie syndrome (MPS IS), the mildest. Both presented with distinctive phenotype including corneal clouding.


Mucopolysaccharidosis type I: molecular characteristics of two novel alpha-L-iduronidase mutations in Tunisian patients.

  • Latifa Chkioua‎ et al.
  • Diagnostic pathology‎
  • 2011‎

Mucopolysaccharidosis type I (MPS I) is an autosomal storage disease resulting from defective activity of the enzyme α-L-iduronidase (IDUA). This glycosidase is involved in the degradation of heparan sulfate and dermatan sulfate. MPS I has severe and milder phenotypic subtypes.


Three novel α-L-iduronidase mutations in 10 unrelated Chinese mucopolysaccharidosis type I families.

  • Luning Sun‎ et al.
  • Genetics and molecular biology‎
  • 2011‎

Mucopolysaccharidosis type I (MPS I) arises from a deficiency in the α-L-iduronidase (IDUA) enzyme. Although the clinical spectrum in MPS I patients is continuous, it was possible to recognize 3 phenotypes reflecting the severity of symptoms, viz., the Hurler, Scheie and Hurler/Scheie syndromes. In this study, 10 unrelated Chinese MPS I families (nine Hurler and one Hurler/Scheie) were investigated, and 16 mutant alleles were identified. Three novel mutations in IDUA genes, one missense p.R363H (c.1088G > A) and two splice-site mutations (c.1190-1G > A and c.792+1G > T), were found. Notably, 45% (nine out of 20) and 30% (six out of 20) of the mutant alleles in the 10 families studied were c.1190-1G > A and c.792+1G > T, respectively. The novel missense mutation p.R363H was transiently expressed in CHO cells, and showed retention of 2.3% IDUA activity. Neither p.W402X nor p.Q70X associated with the Hurler phenotype, or even p.R89Q associated with the Scheie phenotype, was found in this group. Finally, it was noted that the Chinese MPS I patients proved to be characterized with a unique set of IDUA gene mutations, not only entirely different from those encountered among Europeans and Americans, but also apparently not even the same as those found in other Asian countries.


Toxicology Study of Intra-Cisterna Magna Adeno-Associated Virus 9 Expressing Human Alpha-L-Iduronidase in Rhesus Macaques.

  • Juliette Hordeaux‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2018‎

Mucopolysaccharidosis type I is a recessive genetic disease caused by deficiency of the lysosomal enzyme α-L-iduronidase, which leads to a neurodegenerative and systemic disease called Hurler syndrome in its most severe form. Several clinical trials are evaluating adeno-associated virus serotype 9 (AAV9) for the treatment of neurodegenerative diseases. Although these trials focus on systemic or lumbar administration, intrathecal administration via suboccipital puncture into the cisterna magna has demonstrated remarkable efficacy in large animals. We, therefore, conducted a good laboratory practice-compliant non-clinical study to investigate the safety of suboccipital AAV9 gene transfer of human α-L-iduronidase into nonhuman primates. We dosed 22 rhesus macaques, including three immunosuppressed animals, with vehicle or one of two doses of vector. We assessed in-life safety and immune responses. Animals were euthanized 14, 90, or 180 days post-vector administration and evaluated for histopathology and biodistribution. No procedure-related lesions or adverse events occurred. All vector-treated animals showed a dose-dependent mononuclear pleocytosis in the cerebrospinal fluid and minimal to moderate asymptomatic degeneration of dorsal root ganglia neurons and associated axons. These studies support the clinical development of suboccipital AAV delivery for Hurler syndrome and highlight a potential sensory neuron toxicity that warrants careful monitoring in first-in-human studies.


Residual α-L-iduronidase activity in fibroblasts of mild to severe Mucopolysaccharidosis type I patients.

  • Esmee Oussoren‎ et al.
  • Molecular genetics and metabolism‎
  • 2013‎

Three major clinical subgroups are usually distinguished in Mucopolysaccharidosis type I: Hurler (MPS IH, severe presentation), Hurler-Scheie (MPS IH/S, intermediate) and Scheie (MPS IS, mild). To facilitate treatment with hematopoietic stem-cell transplantation, early diagnosis is important for MPS IH patients. Although screening for MPS I in newborns would allow detection at an early age, it may be difficult to predict the phenotype on the basis of the genotype in these infants. Extra diagnostic tools are thus required. Based on the hypothesis that distinct MPS I phenotypes may result from differences in residual α-l-iduronidase (IDUA) activity, we modified the common IDUA assay using the substrate 4-methylumbelliferyl-α-l-iduronide to allow quantification of low IDUA activity in MPS I fibroblasts. Enzyme incubation was performed with high protein concentrations at different time points up to 8h. Mean residual IDUA activity was 0.18% (range 0-0.6) of the control value in MPS IH fibroblasts (n=5); against 0.27% (range 0.2-0.3) in MPS IH/S cells (n=3); and 0.79% (range 0.3-1.8) in MPS IS fibroblasts (n=5). These results suggest that residual IDUA activity and severity of the MPS I phenotype are correlated. Two MPS IS patients with rare (E276K/E276K) or indefinite (A327P/unknown) IDUA genotypes had residual IDUA activity in the MPS IS range, illustrating the usefulness of our approach. IDUA(E276K) was very unstable at 37°C, but more stable at 23°C, suggesting thermal instability. We conclude that this procedure for determining residual IDUA activity in fibroblasts of MPS I patients may be helpful to predict MPS I phenotype.


The alpha-L-iduronidase mutations R89Q and R89W result in an attenuated mucopolysaccharidosis type I clinical presentation.

  • Leanne K Hein‎ et al.
  • Biochimica et biophysica acta‎
  • 2003‎

Mucopolysaccharidosis type I (MPS I; McKusick 25280; Hurler syndrome, Hurler-Scheie syndrome and Scheie syndrome) is caused by a deficiency in the lysosomal hydrolase, alpha-L-iduronidase (EC 3.2.1.76). MPS I patients present within a clinical spectrum bounded by the extremes of Hurler and Scheie syndromes. The alpha-L-iduronidase missense mutations R89Q and R89W were investigated and altered an important arginine residue proposed to be a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase. The R89Q alpha-L-iduronidase mutation was shown to result in a reduced level of alpha-L-iduronidase protein (< or =10% of normal control) compared to a normal control level of alpha-L-iduronidase protein that was detected for the R89W alpha-L-iduronidase mutation. When taking into account alpha-L-iduronidase specific activity, the R89W mutation had a greater effect on alpha-L-iduronidase activity than the R89Q mutation. However, overall the R89W mutation produced more residual alpha-L-iduronidase activity than the R89Q mutation. This was consistent with MPS I patients, with an R89W allele, having a less severe clinical presentation compared to MPS I patients with either a double or single allelic R89Q mutation. The effects of the R89Q and R89W mutations on enzyme activity supported the proposed role of R89 as a nucleophile activator in the catalytic mechanism of alpha-L-iduronidase.


Enzyme replacement with transferrin receptor-targeted α-L-iduronidase rescues brain pathology in mucopolysaccharidosis I mice.

  • Sachiho Kida‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2023‎

Mucopolysaccharidosis I (MPS I), a lysosomal storage disease caused by dysfunction of α-L-iduronidase (IDUA), is characterized by the deposition of dermatan sulfate (DS) and heparan sulfate (HS) throughout the body, which causes several somatic and central nervous symptoms. Although enzyme-replacement therapy (ERT) is currently available to treat MPS I, it does not alleviate central nervous disorders, as it cannot penetrate the blood-brain barrier. Here we evaluate the brain delivery, efficacy, and safety of JR-171, a fusion protein comprising humanized anti-human transferrin receptor antibody Fab and IDUA, using monkeys and MPS I mice. Intravenously administered JR-171 was distributed in major organs, including the brain, and reduced DS and HS concentrations in the central nervous system and peripheral tissues. JR-171 exerted similar effects on peripheral disorders similar to conventional ERT and further reversed brain pathology in MPS I mice. We found that JR-171 improved spatial learning ability, which was seen to deteriorate in the vehicle-treated mice. Further, no safety concerns were noted in repeat-dose toxicity studies in monkeys. This study provides nonclinical evidence that JR-171 might potentially prevent and even improve disease conditions in patients with neuronopathic MPS I without serious safety concerns.


Quantitative analysis of α-L-iduronidase expression in immunocompetent mice treated with the Sleeping Beauty transposon system.

  • Elena L Aronovich‎ et al.
  • PloS one‎
  • 2013‎

The Sleeping Beauty transposon system, a non-viral, integrating vector that can deliver the alpha-L-iduronidase-encoding gene, is efficient in correcting mucopolysaccharidosis type I in NOD/SCID mice. However, in previous studies we failed to attain reliable long-term alpha-L-iduronidase expression in immunocompetent mice. Here, we focused on achieving sustained high-level expression in immunocompetent C57BL/6 mice. In our standard liver-directed treatment we hydrodynamically infuse mice with plasmids containing a SB transposon-encoding human alpha-L-iduronidase, along with a source of SB transposase. We sought to 1) minimize expression of the therapeutic enzyme in antigen-presenting cells, while avoiding promoter shutdown and gender bias, 2) increase transposition efficiency and 3) improve immunosuppression. By using a liver-specific promoter to drive IDUA expression, the SB100X hyperactive transposase and transient cyclophosphamide immunosuppression we achieved therapeutic-level (>100 wild-type) stabilized expression for 1 year in 50% of C57BL/6 mice. To gain insights into the causes of variability in transgene expression, we quantified the rates of alpha-L-iduronidase activity decay vis-a-vis transposition and transgene maintenance using the data obtained in this and previous studies. Our analyses showed that immune responses are the most important variable to control in order to prevent loss of transgene expression. Cumulatively, our results allow transition to pre-clinical studies of SB-mediated alpha-L-iduronidase expression and correction of mucopolysaccharidosis type I in animal models.


Penetration, diffusion, and uptake of recombinant human alpha-L-iduronidase after intraventricular injection into the rat brain.

  • P V Belichenko‎ et al.
  • Molecular genetics and metabolism‎
  • 2005‎

Central nervous system disease can have devastating consequences in the severe or Hurler form of mucopolysaccharisosis I (MPS I). Intravenously administered recombinant human alpha-L-iduronidase (rhIDU) is not expected to reach and treat the brain disease due to the blood-brain barrier. To determine whether administration of rhIDU into the cerebrospinal fluid could successfully treat the brain, we studied intraventricular administration of rhIDU in rats. RhIDU was stereotactically administered directly to the lateral ventricle of the intact rat brain and the brain tissues assessed by enzyme assays, immunofluorescence and confocal microscopy 30 min, 24 h, or 7 days later. Quantitation of activity revealed that rhIDU was widely distributed throughout the brain following injection into the lateral ventricle, with activities increased by a factor of 3.3 higher than control in most samples 30 min-24 h after injection and highest levels on the side of injection. The enzyme crossed the ependymal lining of the ventricle and entered neurons into lysosomal-like vesicles. The enzyme was able to diffuse through brain tissue as demonstrated by a decreasing signal gradient from 0.2 to 4.8 mm from the ventricle surface. The largest amount of rhIDU, as detected by immunostaining, was observed 24 h after injection and decreased approximately 50% during the first 7 days. Although the immunostaining decreased with time, specific vesicular staining was still detectable 28 days after injection. The data suggest that rhIDU given into the ventricle can diffuse, penetrate at least several millimeters of brain tissue and be taken up into neurons and glial cells.


Normalization and improvement of CNS deficits in mice with Hurler syndrome after long-term peripheral delivery of BBB-targeted iduronidase.

  • Salim S El-Amouri‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2014‎

Mucopolysaccharidosis type I (MPS I) is a progressive lysosomal storage disorder with systemic and central nervous system (CNS) involvement due to deficiency of α-L-iduronidase (IDUA). We previously identified a receptor-binding peptide from apolipoprotein E (e) that facilitated a widespread delivery of IDUAe fusion protein into CNS. In this study, we evaluated the long-term CNS biodistribution, dose-correlation, and therapeutic benefits of IDUAe after systemic, sustained delivery via hematopoietic stem cell (HSC)-mediated gene therapy with expression restricted to erythroid/megakaryocyte lineages. Compared to the highest dosage group treated by nontargeted control IDUAc (165 U/ml), physiological levels of IDUAe in the circulation (12 U/ml) led to better CNS benefits in MPS I mice as demonstrated in glycosaminoglycan accumulation, histopathology analysis, and neurological behavior. Long-term brain metabolic correction and normalization of exploratory behavior deficits in MPS I mice were observed by peripheral enzyme therapy with physiological levels of IDUAe derived from clinically attainable levels of HSC transduction efficiency (0.1). Importantly, these levels of IDUAe proved to be more beneficial on correction of cerebrum pathology and behavioral deficits in MPS I mice than wild-type HSCs fully engrafted in MPS I chimeras. These results provide compelling evidence for CNS efficacy of IDUAe and its prospective translation to clinical application.


Mesenchymal stem cells do not prevent antibody responses against human α-L-iduronidase when used to treat mucopolysaccharidosis type I.

  • Priscila Keiko Matsumoto Martin‎ et al.
  • PloS one‎
  • 2014‎

Mucopolysaccharidosis type I (MPSI) is an autosomal recessive disease that leads to systemic lysosomal storage, which is caused by the absence of α-L-iduronidase (IDUA). Enzyme replacement therapy is recognized as the best therapeutic option for MPSI; however, high titers of anti-IDUA antibody have frequently been observed. Due to the immunosuppressant properties of MSC, we hypothesized that MSC modified with the IDUA gene would be able to produce IDUA for a long period of time. Sleeping Beauty transposon vectors were used to modify MSC because these are basically less-immunogenic plasmids. For cell transplantation, 4×10(6) MSC-KO-IDUA cells (MSC from KO mice modified with IDUA) were injected into the peritoneum of KO-mice three times over intervals of more than one month. The total IDUA activities from MSC-KO-IDUA before cell transplantation were 9.6, 120 and 179 U for the first, second and third injections, respectively. Only after the second cell transplantation, more than one unit of IDUA activity was detected in the blood of 3 mice for 2 days. After the third cell transplantation, a high titer of anti-IDUA antibody was detected in all of the treated mice. Anti-IDUA antibody response was also detected in C57Bl/6 mice treated with MSC-WT-IDUA. The antibody titers were high and comparable to mice that were immunized by electroporation. MSC-transplanted mice had high levels of TNF-alpha and infiltrates in the renal glomeruli. The spreading of the transplanted MSC into the peritoneum of other organs was confirmed after injection of 111In-labeled MSC. In conclusion, the antibody response against IDUA could not be avoided by MSC. On the contrary, these cells worked as an adjuvant that favored IDUA immunization. Therefore, the humoral immunosuppressant property of MSC is questionable and indicates the danger of using MSC as a source for the production of exogenous proteins to treat monogenic diseases.


Characterization and downstream mannose phosphorylation of human recombinant α-L-iduronidase produced in Arabidopsis complex glycan-deficient (cgl) seeds.

  • Xu He‎ et al.
  • Plant biotechnology journal‎
  • 2013‎

Mucopolysaccharidosis (MPS) I is a lysosomal storage disease caused by a deficiency of α-L-iduronidase (IDUA) (EC 3.2.1.76); enzyme replacement therapy is the conventional treatment for this genetic disease. Arabidopsis cgl mutants are characterized by a deficiency of the activity of N-acetylglucosaminyl transferase I (EC 2.4.1.101), the first enzyme in the pathway of hybrid and complex N-glycan biosynthesis. To develop a seed-based platform for the production of recombinant IDUA for potential treatment of MPS I, cgl mutant seeds were generated to express human IDUA at high yields and to avoid maturation of the N-linked glycans on the recombinant human enzyme. Enzyme kinetic data showed that cgl-IDUA has similar enzymatic properties to the commercial recombinant IDUA derived from cultured Chinese hamster ovary (CHO) cells (Aldurazyme™). The N-glycan profile showed that cgl-derived IDUA contained predominantly high-mannose-type N-glycans (94.5%), and the residual complex/hybrid N-glycan-containing enzyme was efficiently removed by an additional affinity chromatography step. Furthermore, purified cgl-IDUA was amenable to sequential in vitro processing by soluble recombinant forms of the two enzymes that mediate the addition of the mannose-6-phosphate (M6P) tag in mammalian cells-UDP-GlcNAc:lysosomal enzyme N-acetylglucosamine (GlcNAc)-1-phosphotransferase-and GlcNAc-1-phosphodiester α-N-acetylglucosaminidase (the 'uncovering enzyme'). Arabidopsis seeds provide an alternative system for producing recombinant lysosomal enzymes for enzyme replacement therapy; the purified enzymes can be subjected to downstream processing to create the M6P, a recognition marker essential for efficient receptor-mediated uptake into lysosomes of human cells.


Brassica rapa hairy root based expression system leads to the production of highly homogenous and reproducible profiles of recombinant human alpha-L-iduronidase.

  • Florian Cardon‎ et al.
  • Plant biotechnology journal‎
  • 2019‎

The Brassica rapa hairy root based expression platform, a turnip hairy root based expression system, is able to produce human complex glycoproteins such as the alpha-L-iduronidase (IDUA) with an activity similar to the one produced by Chinese Hamster Ovary (CHO) cells. In this article, a particular attention has been paid to the N- and O-glycosylation that characterize the alpha-L-iduronidase produced using this hairy root based system. This analysis showed that the recombinant protein is characterized by highly homogeneous post translational profiles enabling a strong batch to batch reproducibility. Indeed, on each of the 6 N-glycosylation sites of the IDUA, a single N-glycan composed of a core Man3 GlcNAc2 carrying one beta(1,2)-xylose and one alpha(1,3)-fucose epitope (M3XFGN2) was identified, highlighting the high homogeneity of the production system. Hydroxylation of proline residues and arabinosylation were identified during O-glycosylation analysis, still with a remarkable reproducibility. This platform is thus positioned as an effective and consistent expression system for the production of human complex therapeutic proteins.


Genotypic and bioinformatic evaluation of the alpha-l-iduronidase gene and protein in patients with mucopolysaccharidosis type I from Colombia, Ecuador and Peru.

  • Tatiana Pineda‎ et al.
  • Molecular genetics and metabolism reports‎
  • 2014‎

Mucopolysaccharidosis type I (MPSI) is a rare autosomal recessive disorder caused by mutations in the gene encoding the lysosomal enzyme α-l-iduronidase (IDUA), which is instrumental in the hydrolysis of the glycosaminoglycans, dermatan and heparan sulfate. The accumulation of unhydrolyzed glycosaminoglycans leads to pathogenesis in multiple tissue types, especially those of skeletal, nervous, respiratory, cardiovascular, and gastrointestinal origin. Although molecular diagnostic tools for MPSI have been available since the identification and characterization of the IDUA gene in 1992, Colombia, Ecuador, and Peru have lacked such methodologies. Therefore, the mutational profile of the IDUA gene in these countries has largely been unknown. The goal of this study was to characterize genotypes in 14 patients with MPSI from Colombia, Ecuador, and Peru. The most common mutation found at a frequency of 42.8% was W402X. Six patients presented with seven novel mutations, a high novel mutational rate in this population (32%). These novel mutations were validated using bioinformatic techniques. A model of the IDUA protein resulting from three of the novel missense mutations (Y625C, P385L, R621L) revealed that these mutations alter accessible surface area values, thereby reducing the accessibility of the enzyme to its substrates. This is the first characterization of the mutational profile of the IDUA gene in patients with MPSI in Colombia, Ecuador, and Peru. The findings contribute to our understanding of IDUA gene expression and IDUA enzyme function, and may help facilitate early and improved diagnosis and management for patients with MPSI.


Correction of metabolic, craniofacial, and neurologic abnormalities in MPS I mice treated at birth with adeno-associated virus vector transducing the human alpha-L-iduronidase gene.

  • Seth D Hartung‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2004‎

Murine models of lysosomal storage diseases provide an opportunity to evaluate the potential for gene therapy to prevent systemic manifestations of the disease. To determine the potential for treatment of mucopolysaccharidosis type I using a gene delivery approach, a recombinant adeno-associated virus (AAV) vector, vTRCA1, transducing the human iduronidase (IDUA) gene was constructed and 1 x 10(10) particles were injected intravenously into 1-day-old Idua(-/-) mice. High levels of IDUA activity were present in the plasma of vTRCA1-treated animals that persisted for the 5-month duration of the study, with heart and lung of this group demonstrating the highest tissue levels of gene transfer and enzyme activity overall. vTRCA1-treated Idua(-/-) animals with measurable plasma IDUA activity exhibited histopathological evidence of reduced lysosomal storage in a number of tissues and were normalized with respect to urinary GAG excretion, craniofacial bony parameters, and body weight. In an open field test, vTRCA1-treated Idua(-/-) animals exhibited a significant reduction in total squares covered and a trend toward normalization in rearing events and grooming time compared to control-treated Idua(-/-) animals. We conclude that AAV-mediated transduction of the IDUA gene in newborn Idua(-/-) mice was sufficient to have a major curative impact on several of the most important parameters of the disease.


Neurocognitive and somatic stabilization in pediatric patients with severe Mucopolysaccharidosis Type I after 52 weeks of intravenous brain-penetrating insulin receptor antibody-iduronidase fusion protein (valanafusp alpha): an open label phase 1-2 trial.

  • Roberto Giugliani‎ et al.
  • Orphanet journal of rare diseases‎
  • 2018‎

Mucopolysaccharidosis (MPS) Type I (MPSI) is caused by mutations in the gene encoding the lysosomal enzyme, α-L-iduronidase (IDUA), and a majority of patients present with severe neurodegeneration and cognitive impairment. Recombinant IDUA does not cross the blood-brain barrier (BBB). To enable BBB transport, IDUA was re-engineered as an IgG-IDUA fusion protein, valanafusp alpha, where the IgG domain targets the BBB human insulin receptor to enable transport of the enzyme into the brain. We report the results of a 52-week clinical trial on the safety and efficacy of valanafusp alpha in pediatric MPSI patients with cognitive impairment. In the phase I trial, 6 adults with attenuated MPSI were administered 0.3, 1, and 3 mg/kg doses of valanafusp alpha by intravenous (IV) infusion. In the phase II trial, 11 pediatric subjects, 2-15 years of age, were treated for 52 weeks with weekly IV infusions of valanafusp alpha at 1, 3, or 6 mg/kg. Assessments of adverse events, cognitive stabilization, and somatic stabilization were made. Outcomes at 52 weeks were compared to baseline.


Comment on "report of 5 novel mutations of the α-L-iduronidase gene and comparison of Korean mutations in relation with those of Japan or China in patients with mucopolysaccharidosis I".

  • Edina Poletto‎ et al.
  • BMC medical genetics‎
  • 2018‎

In this comment, we highlight that the IDUA pathogenic variants 704ins5 and c.613_617dupTGCTC are the same, but have different names depending on the nomenclature guideline used. Therefore, the frequency of this variant is 17.6% of alleles in Korean patients. This commentary stresses the importance of proper variant annotation and the use of guidelines when describing or reviewing mutations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: