Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 42 papers

Sequence and structure based assessment of nonsynonymous SNPs in hypertrichosis universalis.

  • Rabiya Waheed‎ et al.
  • Bioinformation‎
  • 2012‎

Hairs are complex structures, making a protective layer and serves different biological functions. TRPS1, a transcription factor is one of the candidate genes causing congenital hypertrichosis, an excessive hair growth at inappropriate body parts. SNPs of TRPS1 were retrieved from dbSNP which were screened by SIFT and PolyPhen servers based on their functional impacts. Out of the screened SNPs, rs181507248 and rs146506752 were predicted as intolerant and damaging by both the servers. The predicted tertiary structure of the native TRPS1 after refinement and validation was successfully submitted to the Protein Model Database and was assigned with PMDB ID PM0077843, as it was previously unpredicted. It was observed through the structure based analysis that, the SNPs rs181507248 and rs146506752 caused significant changes in the secondary and tertiary structures as well as the physiochemical properties of TRPS1 protein. It can thus be concluded that the changed properties due to these single nucleotide polymorphisms effect the interactions of TRPS1 which result in congenital hypertrichosis.


De Novo Mutations in SLC25A24 Cause a Craniosynostosis Syndrome with Hypertrichosis, Progeroid Appearance, and Mitochondrial Dysfunction.

  • Nadja Ehmke‎ et al.
  • American journal of human genetics‎
  • 2017‎

Gorlin-Chaudhry-Moss syndrome (GCMS) is a dysmorphic syndrome characterized by coronal craniosynostosis and severe midface hypoplasia, body and facial hypertrichosis, microphthalmia, short stature, and short distal phalanges. Variable lipoatrophy and cutis laxa are the basis for a progeroid appearance. Using exome and genome sequencing, we identified the recurrent de novo mutations c.650G>A (p.Arg217His) and c.649C>T (p.Arg217Cys) in SLC25A24 in five unrelated girls diagnosed with GCMS. Two of the girls had pronounced neonatal progeroid features and were initially diagnosed with Wiedemann-Rautenstrauch syndrome. SLC25A24 encodes a mitochondrial inner membrane ATP-Mg/Pi carrier. In fibroblasts from affected individuals, the mutated SLC25A24 showed normal stability. In contrast to control cells, the probands' cells showed mitochondrial swelling, which was exacerbated upon treatment with hydrogen peroxide (H2O2). The same effect was observed after overexpression of the mutant cDNA. Under normal culture conditions, the mitochondrial membrane potential of the probands' fibroblasts was intact, whereas ATP content in the mitochondrial matrix was lower than that in control cells. However, upon H2O2 exposure, the membrane potential was significantly elevated in cells harboring the mutated SLC25A24. No reduction of mitochondrial DNA copy number was observed. These findings demonstrate that mitochondrial dysfunction with increased sensitivity to oxidative stress is due to the SLC25A24 mutations. Our results suggest that the SLC25A24 mutations induce a gain of pathological function and link mitochondrial ATP-Mg/Pi transport to the development of skeletal and connective tissue.


X-linked congenital hypertrichosis syndrome is associated with interchromosomal insertions mediated by a human-specific palindrome near SOX3.

  • Hongwen Zhu‎ et al.
  • American journal of human genetics‎
  • 2011‎

X-linked congenital generalized hypertrichosis (CGH), an extremely rare condition characterized by universal overgrowth of terminal hair, was first mapped to chromosome Xq24-q27.1 in a Mexican family. However, the underlying genetic defect remains unknown. We ascertained a large Chinese family with an X-linked congenital hypertrichosis syndrome combining CGH, scoliosis, and spina bifida and mapped the disease locus to a 5.6 Mb critical region within the interval defined by the previously reported Mexican family. Through the combination of a high-resolution copy-number variation (CNV) scan and targeted genomic sequencing, we identified an interchromosomal insertion at Xq27.1 of a 125,577 bp intragenic fragment of COL23A1 on 5q35.3, with one X breakpoint within and the other very close to a human-specific short palindromic sequence located 82 kb downstream of SOX3. In the Mexican family, we found an interchromosomal insertion at the same Xq27.1 site of a 300,036 bp genomic fragment on 4q31.2, encompassing PRMT10 and TMEM184C and involving parts of ARHGAP10 and EDNRA. Notably, both of the two X breakpoints were within the short palindrome. The two palindrome-mediated insertions fully segregate with the CGH phenotype in each of the families, and the CNV gains of the respective autosomal genomic segments are not present in the public database and were not found in 1274 control individuals. Analysis of control individuals revealed deletions ranging from 173 bp to 9104 bp at the site of the insertions with no phenotypic consequence. Taken together, our results strongly support the pathogenicity of the identified insertions and establish X-linked congenital hypertrichosis syndrome as a genomic disorder.


Trps1 and its target gene Sox9 regulate epithelial proliferation in the developing hair follicle and are associated with hypertrichosis.

  • Katherine A Fantauzzo‎ et al.
  • PLoS genetics‎
  • 2012‎

Hereditary hypertrichoses are a group of hair overgrowth syndromes that are extremely rare in humans. We have previously demonstrated that a position effect on TRPS1 is associated with hypertrichosis in humans and mice. To gain insight into the functional role of Trps1, we analyzed the late morphogenesis vibrissae phenotype of Trps1(Δgt) mutant mice, which is characterized by follicle degeneration after peg downgrowth has been initiated. We found that Trps1 directly represses expression of the hair follicle stem cell regulator Sox9 to control proliferation of the follicle epithelium. Furthermore, we identified a copy number variation upstream of SOX9 in a family with hypertrichosis that significantly decreases expression of the gene in the hair follicle, providing new insights into the long-range regulation of SOX9. Our findings uncover a novel transcriptional hierarchy that regulates epithelial proliferation in the developing hair follicle and contributes to the pathology of hypertrichosis.


A case of Barber-Say syndrome in a male Japanese newborn.

  • Kenichi Suga‎ et al.
  • Clinical case reports‎
  • 2014‎

We reported a case of Barber-Say syndrome (BSS) in a Japanese newborn. Distinctive features of BSS were found; macrostomia, gingival dysplasia, cup-shaped low-set ears, wrinkling redundant skin, and hypertrichosis. Fundus showed subretinal drusenoid deposits, a novel finding of BSS. Genetic analysis is underway using next-generation genome sequencing and microarray analysis.


Wiedemann-Steiner Syndrome with a Pathogenic Variant in KMT2A from Taiwan.

  • Chung-Lin Lee‎ et al.
  • Children (Basel, Switzerland)‎
  • 2021‎

Wiedemann-Steiner syndrome (WSS) is a rare genetic disorder. Patients with WSS have characteristics of growth retardation, facial dysmorphism, hypertrichosis cubiti (HC), and neurodevelopmental delays. WSS is in an autosomal dominant inherited pattern caused by a mutation of the KMT2A gene (NM_001197104.2). In this article, we discuss a 5-year-old boy who has mild intellectual disability (ID), hypotonia, HC, hypertrichosis on the back, dysmorphic facies, psychomotor retardation, and growth delay. Trio-based whole-exome sequencing (trio-WES) was carried out on this patient and his parents, confirming the variants with Sanger sequencing. Trio-WES showed a de novo mutation of the KMT2A gene (NM_001197104.2: c.4696G>A, p.Gly1566Arg). On the basis of the clinical features and the results of the WES, WSS was diagnosed. Therefore, medical professionals should consider a diagnosis of WSS if patients have growth retardation and development delay as well as hirsutism, particularly HC.


Three de novo variants in KMT2A (MLL) identified by whole exome sequencing in patients with Wiedemann-Steiner syndrome.

  • Sukun Luo‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2021‎

Wiedemann-Steiner syndrome (WSS) is an autosomal dominant disorder characterized by short stature, hypertrichosis, intellectual disability, developmental delay, along with facial dysmorphism. WSS patients exhibit great phenotypic heterogeneities. Some variants in KMT2A (MLL) gene have been identified as the cause of WSS.


De novo mutations in MLL cause Wiedemann-Steiner syndrome.

  • Wendy D Jones‎ et al.
  • American journal of human genetics‎
  • 2012‎

Excessive growth of terminal hair around the elbows (hypertrichosis cubiti) has been reported both in isolation and in association with a variable spectrum of associated phenotypic features. We identified a cohort of six individuals with hypertrichosis cubiti associated with short stature, intellectual disability, and a distinctive facial appearance, consistent with a diagnosis of Wiedemann-Steiner syndrome (WSS). Utilizing a whole-exome sequencing approach, we identified de novo mutations in MLL in five of the six individuals. MLL encodes a histone methyltransferase that regulates chromatin-mediated transcription through the catalysis of methylation of histone H3K4. Each of the five mutations is predicted to result in premature termination of the protein product. Furthermore, we demonstrate that transcripts arising from the mutant alleles are subject to nonsense-mediated decay. These findings define the genetic basis of WSS, provide additional evidence for the role of haploinsufficency of histone-modification enzymes in multiple-congenital-anomaly syndromes, and further illustrate the importance of the regulation of histone modification in development.


Mutations in the cholesterol transporter gene ABCA5 are associated with excessive hair overgrowth.

  • Gina M DeStefano‎ et al.
  • PLoS genetics‎
  • 2014‎

Inherited hypertrichoses are rare syndromes characterized by excessive hair growth that does not result from androgen stimulation, and are often associated with additional congenital abnormalities. In this study, we investigated the genetic defect in a case of autosomal recessive congenital generalized hypertrichosis terminalis (CGHT) (OMIM135400) using whole-exome sequencing. We identified a single base pair substitution in the 5' donor splice site of intron 32 in the ABC lipid transporter gene ABCA5 that leads to aberrant splicing of the transcript and a decrease in protein levels throughout patient hair follicles. The homozygous recessive disruption of ABCA5 leads to reduced lysosome function, which results in an accumulation of autophagosomes, autophagosomal cargos as well as increased endolysosomal cholesterol in CGHT keratinocytes. In an unrelated sporadic case of CGHT, we identified a 1.3 Mb cryptic deletion of chr17q24.2-q24.3 encompassing ABCA5 and found that ABCA5 levels are dramatically reduced throughout patient hair follicles. Collectively, our findings support ABCA5 as a gene underlying the CGHT phenotype and suggest a novel, previously unrecognized role for this gene in regulating hair growth.


Genetic and clinical heterogeneity in Korean patients with Rubinstein-Taybi syndrome.

  • Naye Choi‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2021‎

Rubinstein-Taybi syndrome (RSTS) is a rare congenital malformation syndrome with clinical characteristics such as hypertrichosis, high arched eyebrows, large beaked nose, and broad thumbs and halluces. RSTS patients showed intellectual disability and health problems such as short stature, ophthalmologic abnormalities, congenital heart defects, genitourinary defects, and variable types of tumors. Although mutations in CREBBP and EP300 genes are associated with RSTS features, genetic causation is still unknown in 30% of patients.


Establishment of an induced pluripotent stem cell (iPSC) line SDQLCHi045-A from peripheral blood mononuclear cells of a patient with Coffin-Siris syndrome 1 carrying a mutation in ARID1B gene.

  • Xiaomeng Yang‎ et al.
  • Stem cell research‎
  • 2023‎

Coffin-Siris syndrome 1 (CSS1) is a multiple malformation syndrome characterized by mental retardation associated with coarse facial features, hypertrichosis, sparse scalp hair, and hypoplastic or absent fifth fingernails or toenails. Mutations in the ARID1B gene are the most common cause of CSS1. Here, we generated an induced pluripotent stem cell line SDQLCHi045-A from a one-year-old girl with CSS1 caused by heterozygous mutation (c.1924C>T, p.Q642X) in the ARID1B gene (OMIM*135900). The established iPSC line was validated by pluripotency markers, original gene mutation and demonstrated trilineage differentiation potential in vitro.


Mutations in SLC29A3, encoding an equilibrative nucleoside transporter ENT3, cause a familial histiocytosis syndrome (Faisalabad histiocytosis) and familial Rosai-Dorfman disease.

  • Neil V Morgan‎ et al.
  • PLoS genetics‎
  • 2010‎

The histiocytoses are a heterogeneous group of disorders characterised by an excessive number of histiocytes. In most cases the pathophysiology is unclear and treatment is nonspecific. Faisalabad histiocytosis (FHC) (MIM 602782) has been classed as an autosomal recessively inherited form of histiocytosis with similarities to Rosai-Dorfman disease (RDD) (also known as sinus histiocytosis with massive lymphadenopathy (SHML)). To elucidate the molecular basis of FHC, we performed autozygosity mapping studies in a large consanguineous family and identified a novel locus at chromosome 10q22.1. Mutation analysis of candidate genes within the target interval identified biallelic germline mutations in SLC29A3 in the FHC kindred and in two families reported to have familial RDD. Analysis of SLC29A3 expression during mouse embryogenesis revealed widespread expression by e14.5 with prominent expression in the central nervous system, eye, inner ear, and epithelial tissues including the gastrointestinal tract. SLC29A3 encodes an intracellular equilibrative nucleoside transporter (hENT3) with affinity for adenosine. Recently germline mutations in SLC29A3 were also described in two rare autosomal recessive disorders with overlapping phenotypes: (a) H syndrome (MIM 612391) that is characterised by cutaneous hyperpigmentation and hypertrichosis, hepatomegaly, heart anomalies, hearing loss, and hypogonadism; and (b) PHID (pigmented hypertrichosis with insulin-dependent diabetes mellitus) syndrome. Our findings suggest that a variety of clinical diagnoses (H and PHID syndromes, FHC, and familial RDD) can be included in a new diagnostic category of SLC29A3 spectrum disorder.


Gain-of-Function Mutations in KCNN3 Encoding the Small-Conductance Ca2+-Activated K+ Channel SK3 Cause Zimmermann-Laband Syndrome.

  • Christiane K Bauer‎ et al.
  • American journal of human genetics‎
  • 2019‎

Zimmermann-Laband syndrome (ZLS) is characterized by coarse facial features with gingival enlargement, intellectual disability (ID), hypertrichosis, and hypoplasia or aplasia of nails and terminal phalanges. De novo missense mutations in KCNH1 and KCNK4, encoding K+ channels, have been identified in subjects with ZLS and ZLS-like phenotype, respectively. We report de novo missense variants in KCNN3 in three individuals with typical clinical features of ZLS. KCNN3 (SK3/KCa2.3) constitutes one of three members of the small-conductance Ca2+-activated K+ (SK) channels that are part of a multiprotein complex consisting of the pore-forming channel subunits, the constitutively bound Ca2+ sensor calmodulin, protein kinase CK2, and protein phosphatase 2A. CK2 modulates Ca2+ sensitivity of the channels by phosphorylating SK-bound calmodulin. Patch-clamp whole-cell recordings of KCNN3 channel-expressing CHO cells demonstrated that disease-associated mutations result in gain of function of the mutant channels, characterized by increased Ca2+ sensitivity leading to faster and more complete activation of KCNN3 mutant channels. Pretreatment of cells with the CK2 inhibitor 4,5,6,7-tetrabromobenzotriazole revealed basal inhibition of wild-type and mutant KCNN3 channels by CK2. Analogous experiments with the KCNN3 p.Val450Leu mutant previously identified in a family with portal hypertension indicated basal constitutive channel activity and thus a different gain-of-function mechanism compared to the ZLS-associated mutant channels. With the report on de novo KCNK4 mutations in subjects with facial dysmorphism, hypertrichosis, epilepsy, ID, and gingival overgrowth, we propose to combine the phenotypes caused by mutations in KCNH1, KCNK4, and KCNN3 in a group of neurological potassium channelopathies caused by an increase in K+ conductance.


Syndrome of Congenital Insulin Resistance Caused by a Novel INSR Gene Mutation.

  • Aleksandra Rojek‎ et al.
  • Journal of clinical research in pediatric endocrinology‎
  • 2023‎

Mutations in the INSR gene result in rare inherited syndromes causing insulin resistance, such as leprechaunism (Donohue syndrome), Rabson-Mendenhall syndrome and insulin resistance type A. Leprechaunism is an autosomal recessive disorder associated with extreme insulin resistance that leads to hyperinsulinemia, impaired glucose homeostasis, fasting hypoglycemia and postprandial hyperglycemia. Impaired insulin action causes prenatal and postnatal growth retardation. Lipoatrophy, dysmorphic facies, hypertrichosis, macrogenitosomia and hypertrophy of internal organs are also present. A male infant with congenital insulin resistance was born at term after a normal pregnancy with a weight of 1905 g (<3 c), a length of 48 cm (<3 c), and an Apgar score of 10. Intrauterine growth retardation, transient hypoglycemia, pneumonia, urinary tract infection and heart defects [patent foramen ovale (PFO); patent ductus arteriosus (PDA)] were diagnosed after birth. At 5 weeks of age, he was admitted to the regional hospital with severe fever, diarrhea and dehydration. Hyperglycemia was observed (672 mg/dL), and insulin was administered. He was referred to a hospital at 7 weeks of age for suspected neonatal diabetes and hypertrophic cardiomyopathy. The physical examination revealed a loud systolic heart murmur, tachycardia, tachypnea, dysmorphic facies, hypertrichosis, acanthosis nigricans, hypotonia, swollen nipples and enlarged testicles. Glycemic fluctuations (50-250 mg/dL) were observed. The serum insulin concentration was high (maximum 1200 IU/mL) at normoglycemia. Ultrasound of the heart confirmed progressive hypertrophic cardiomyopathy. Leprechaunism was confirmed by genetic analysis of INSR, in which a novel c.320C>G; p. Thr107Arg homozygous missense mutation was found in exon 2.


The H syndrome is caused by mutations in the nucleoside transporter hENT3.

  • Vered Molho-Pessach‎ et al.
  • American journal of human genetics‎
  • 2008‎

The H syndrome is a recently reported autosomal-recessive disorder characterized by cutaneous hyperpigmentation, hypertrichosis, hepatosplenomegaly, heart anomalies, hearing loss, hypogonadism, short stature, hallux valgus, and fixed flexion contractures of the toe joints and the proximal interphalangeal joints. Homozygosity mapping in five consanguineous families resulted in the identification of mutations in the SLC29A3 gene, which encodes the equilibrative nucleoside transporter hENT3. Three mutations were found in 11 families of Arab and Bulgarian origin. The finding of several different mutations in a small geographic region implies that the H syndrome might be rather common. The identification of mutations in the SLC29A3 gene in patients with a mild clinical phenotype suggests that this is a largely underdiagnosed condition and strongly suggests that even oligosymptomatic individuals might have the disorder.


Cyclosporine A stimulated hair growth from mouse vibrissae follicles in an organ culture model.

  • Wenrong Xu‎ et al.
  • Journal of biomedical research‎
  • 2012‎

Hypertrichosis is one of the most common side effects of systemic cyclosporine A therapy. It has been previously shown that cyclosporine A induces anagen and inhibits catagen development in mice. In the present study, to explore the mechanisms of cyclosporine A, we investigated the effects of cyclosporine A on hair shaft elongation, hair follicle cell proliferation, apoptosis, and mRNA expression of selected growth factors using an organ culture model of mouse vibrissae. In this model, cyclosporine A stimulated hair growth of normal mouse vibrissae follicles by inhibiting catagen-like development and promoting matrix cell proliferation. In addition, cyclosporine A caused an increase in the expression of vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and nerve growth factor (NGF), and inhibited follistatin expression. Our findings provide an explanation for the clinically observed effects of cyclosporine A on hair growth. The mouse vibrissae organ culture offers an attractive model for identifying factors involved in the modulation of hair growth.


Genotype-Phenotype Correlations in 208 Individuals with Coffin-Siris Syndrome.

  • Ashley Vasko‎ et al.
  • Genes‎
  • 2021‎

Coffin-Siris syndrome (CSS, MIM 135900) is a multi-system intellectual disability syndrome characterized by classic dysmorphic features, developmental delays, and organ system anomalies. Genes in the BRG1(BRM)-associated factors (BAF, Brahma associated factor) complex have been shown to be causative, including ARID1A, ARID1B, ARID2, DPF2, SMARCA4, SMARCB1, SMARCC2, SMARCE1, SOX11, and SOX4. In order to describe more robust genotype-phenotype correlations, we collected data from 208 individuals from the CSS/BAF complex registry with pathogenic variants in seven of these genes. Data were organized into cohorts by affected gene, comparing genotype groups across a number of binary and quantitative phenotypes. We determined that, while numerous phenotypes are seen in individuals with variants in the BAF complex, hypotonia, hypertrichosis, sparse scalp hair, and hypoplasia of the distal phalanx are still some of the most common features. It has been previously proposed that individuals with ARID-related variants are thought to have more learning and developmental struggles, and individuals with SMARC-related variants, while they also have developmental delay, tend to have more severe organ-related complications. SOX-related variants also have developmental differences and organ-related complications but are most associated with neurodevelopmental differences. While these generalizations still overall hold true, we have found that all individuals with BAF-related conditions are at risk of many aspects of the phenotype, and management and surveillance should be broad.


Efficacy and safety of diazoxide for treating hyperinsulinemic hypoglycemia: A systematic review and meta-analysis.

  • Xiaohong Chen‎ et al.
  • PloS one‎
  • 2021‎

Diazoxide is the first-line drug for treating hyperinsulinism and the only pharmacological agent approved for hyperinsulinism by the Federal Drug Administration. This systemic review and meta-analysis aimed to investigate the efficacy and safety of diazoxide for treating hyperinsulinemic hypoglycemia (HH). The meta-analysis of the efficacy and safety of diazoxide in treating HH was performed by searching relevant studies in the PubMed, Embase, and Cochrane databases. The findings were summarized, and the pooled effect size and its 95% confidence interval (CI) were calculated. A total of 6 cohort studies, involving 1142 participants, met the inclusion criteria. Among the cohort studies, the pooled estimate of the response rate of diazoxide therapy was 71% (95% CI 50%-93%, Pheterogeneity< 0.001, I2 = 98.3%, Peffect< 0.001). The common side effects were hypertrichosis (45%), fluid retention (20%), gastrointestinal reaction (13%), edema (11%), and neutropenia (9%). Other adverse events included pulmonary hypertension (2%) and thrombocytopenia (2%). This meta-analysis suggested that diazoxide was potentially useful in HH management; however, it had some side effects, which needed careful monitoring. Furthermore, well-designed large-scale studies, such as randomized controlled trials, might be necessary in the future to obtain more evidence.


Cantú syndrome is caused by mutations in ABCC9.

  • Bregje W M van Bon‎ et al.
  • American journal of human genetics‎
  • 2012‎

Cantú syndrome is a rare disorder characterized by congenital hypertrichosis, neonatal macrosomia, a distinct osteochondrodysplasia, and cardiomegaly. Using an exome-sequencing approach applied to one proband-parent trio and three unrelated single cases, we identified heterozygous mutations in ABCC9 in all probands. With the inclusion of the remaining cohort of ten individuals with Cantú syndrome, a total of eleven mutations in ABCC9 were found. The de novo occurrence in all six simplex cases in our cohort substantiates the presence of a dominant disease mechanism. All mutations were missense, and several mutations affect Arg1154. This mutation hot spot lies within the second type 1 transmembrane region of this ATP-binding cassette transporter protein, which may suggest an activating mutation. ABCC9 encodes the sulfonylurea receptor (SUR) that forms ATP-sensitive potassium channels (K(ATP) channels) originally shown in cardiac, skeletal, and smooth muscle. Previously, loss-of-function mutations in this gene have been associated with idiopathic dilated cardiomyopathy type 10 (CMD10). These findings identify the genetic basis of Cantú syndrome and suggest that this is a new member of the potassium channelopathies.


Expanding the spectrum of rearrangements involving chromosome 19: a mild phenotype associated with a 19p13.12-p13.13 deletion.

  • Giuseppe Marangi‎ et al.
  • American journal of medical genetics. Part A‎
  • 2012‎

We report on a patient with a 1.2 Mb 19p13.12-p13.13 deletion. Compared to previously reported individuals with partially overlapping deletions, the propositus presented with a less severe phenotype, consisting of mild intellectual disability and behavior anomalies, with episodes of simple febrile seizures and without significant physical anomalies or major malformations. The deleted region includes 29 coding genes, some of which have already been demonstrated to be involved in cognitive processes. Mutations in two of them, CC2D1A and TECR, were recently reported to be responsible for non-syndromal, autosomal recessive intellectual disability. The residual alleles of all of these genes were submitted to sequence analysis. No sequence variants were found that could be considered pathogenic. This patient constitutes a further example of the wide phenotypic variability associated with chromosomal rearrangements, likely due to the different size of deleted/duplicated segments.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: