Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 253 papers

Contribution of Uremia to Ureaplasma-Induced Hyperammonemia.

  • Derek Fleming‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Lung transplant recipients (LTRs) are vulnerable to hyperammonemia syndrome (HS) in the early postoperative period, a condition typically unresponsive to nonantibiotic interventions. HS in LTRs is strongly correlated with Ureaplasma infection of the respiratory tract, although it is not well understood what makes LTRs preferentially susceptible to HS compared to other immunocompromised hosts. Ureaplasma species harbor highly active ureases, and postoperative LTRs commonly experience uremia. We hypothesized that uremia could be a potentiating comorbidity, providing increased substrate for ureaplasmal ureases. Using a novel dialyzed flow system, the ammonia-producing capacities of four isolates of Ureaplasma parvum and six isolates of Ureaplasma urealyticum in media formulations relating to normal and uremic host conditions were tested. For all isolates, growth under simulated uremic conditions resulted in increased ammonia production over 24 h, despite similar endpoint bacterial quantities. Further, transcripts of ureC (from the ureaplasmal urease gene cluster) from U. urealyticum IDRL-10763 and ATCC-27816 rose at similar rates under uremic and nonuremic conditions, with similar endpoint populations under the two conditions (despite markedly increased ammonia concentrations under uremic conditions), indicating that the difference in ammonia production by these isolates is due to increased urease activity, not expression. Lastly, uremic mice infected with an Escherichia coli strain harboring a U. urealyticum serovar 8 gene cluster exhibited higher blood ammonia levels compared to nonuremic mice infected with the same strain. Taken together, these data show that U. urealyticum and U. parvum produce more ammonia under uremic conditions compared to nonuremic conditions. This implies that uremia is a plausible contributing factor to Ureaplasma-induced HS in LTRs. IMPORTANCE Ureaplasma-induced hyperammonemia syndrome is a deadly complication affecting around 4% of lung transplant recipients and, to a lesser extent, other solid organ transplant patients. Understanding the underlying mechanisms will inform patient management, potentially decreasing mortality and morbidity. Here, it is shown that uremia is a plausible contributing factor to the pathophysiology of the condition.


Curcumin-resveratrol nano-formulation counteracting hyperammonemia in rats.

  • Maha Nasr‎ et al.
  • Metabolic brain disease‎
  • 2023‎

Malnutrition and low dietary protein intake could be risk factors for developing peripheral and central hyperammonemia, especially in pediatrics. Both curcumin and resveratrol proved to be effective against several hepatic and cerebral injuries. They were reported to be beneficial in lowering circulating ammonia levels, yet both are known for their low bioavailability. The use of pharmaceutical nano-formulations as delivery systems for these two nutraceuticals could solve the aforementioned problem. Hence, the present study aimed to investigate the valuable outcome of using a combination of curcumin and resveratrol in a nanoemulsion formulation, to counteract protein-deficient diet (PDD)-induced hyperammonemia and the consequent complications in male albino rats. Results revealed that using a nanoemulsion containing both curcumin and resveratrol at a dose of (5 + 5 mg/kg) effectively reduced hepatic and brain ammonia levels, serum ALT and AST levels, hepatic and brain nitric oxide levels, oxidative DNA damage as well as disrupted cellular energy performance. In addition, there was a substantial increase in brain levels of monoamines, and a decrease in glutamate content. Therefore, it can be concluded that the use of combined curcumin and resveratrol nanoemulsion is an effective means of ameliorating the hepatic and cerebral adverse effects resulting from PDD-induced hyperammonemia in rats.


Flurofamide Prevention and Treatment of Ureaplasma-Induced Hyperammonemia.

  • Derek Fleming‎ et al.
  • Microbiology spectrum‎
  • 2022‎

Hyperammonemia (HA) syndrome caused by respiratory infection with ammonia (NH3)-producing Ureaplasma species occurs in 4% of lung transplant recipients (LTRs) and is associated with high mortality. Although Ureaplasma-targeted antibiotic intervention is effective, the threat of antibiotic resistance development and pre-existing resistance make an alternative to antibiotics desirable. Considering that the underlying pathology of Ureaplasma-induced hyperammonemia (UIHA) is dependent upon ureaplasmal urease converting urea to NH3, urease inhibition could represent a targeted treatment approach. Here, the ability of the urease inhibitor, flurofamide, to prevent and treat UIHA was investigated. To confirm that flurofamide is broadly active against Ureaplasma respiratory isolates, the minimum urease inhibitory concentration against 4 isolates of Ureaplasma parvum and 5 isolates of Ureaplasma urealyticum was first determined in vitro. NH3 production by all isolates was inhibited by ≤2 μM flurofamide. To test the ability of flurofamide to prevent and treat UIHA, a mouse model of Ureaplasma respiratory infection was utilized. When animals were administered 6 mg/kg flurofamide via intraperitoneal injection 1 h prior to infection with U. parvum, flurofamide-administered animals exhibited significantly lower blood NH3 levels than did non-prophylaxed animals (10.9 ± 4.0 μmol/L compared to 26.5 ± 17.7 μmol/L; P = 0.0146) 24 h post-treatment. When U. parvum-infected hyperammonemic mice were treated with 6 mg/kg flurofamide, treated animals had significantly greater decreases in blood-NH3 levels 6 h post-treatment than did untreated mice (56.4 ± 17.1% compared to 9.1 ± 33.5% reduction; P = 0.0152). Together, these results indicate that flurofamide is a promising non-antibiotic treatment for UIHA in LTRs. IMPORTANCE Ureaplasma-associated hyperammonemia syndrome occurs in 4% of lung transplant recipients and has historically been almost universally fatal. While Ureaplasma-targeted antibiotics have been shown to be protective, the possibility of underlying resistance and resistance selection render non-antibiotic interventions an interesting approach.


Acute pediatric hyperammonemia: current diagnosis and management strategies.

  • Nadia Savy‎ et al.
  • Hepatic medicine : evidence and research‎
  • 2018‎

Acute hyperammonemia may induce a neurologic impairment leading to an acute life-threatening condition. Coma duration, ammonia peak level, and hyperammonemia duration are the main risk factors of hyperammonemia-related neurologic deficits and death. In children, hyperammonemia is mainly caused by severe liver failure and inborn errors of metabolism. In an acute setting, obtaining reliable plasma ammonia levels can be challenging because of the preanalytical difficulties that need to be addressed carefully. The management of hyperammonemia includes 1) identification of precipitating factors and cerebral edema presence, 2) a decrease in ammonia production by reducing protein intake and reversing catabolism, and 3) ammonia removal with pharmacologic treatment and, in the most severe cases, with extracorporeal therapies. In case of severe coma, transcranial Doppler ultrasound could be the method of choice to noninvasively monitor cerebral blood flow and titrate therapies.


Histamine-induced plasticity and gene expression in corticostriatal pathway under hyperammonemia.

  • Olga A Sergeeva‎ et al.
  • CNS neuroscience & therapeutics‎
  • 2020‎

Histamine H3 receptor (H3R) antagonists/inverse agonists increase vigilance. We studied brain histaminergic pathways under hyperammonemia and the transcriptome of receptors and their signaling cascades to provide a rationale for wake-promoting therapies.


Characterizing the neurological phenotype of the hyperinsulinism hyperammonemia syndrome.

  • Elizabeth Rosenfeld‎ et al.
  • Orphanet journal of rare diseases‎
  • 2022‎

Hyperinsulinism hyperammonemia (HI/HA) syndrome is caused by activating mutations in GLUD1, encoding glutamate dehydrogenase (GDH). Atypical absence seizures and neuropsychological disorders occur at high rates in this form of hyperinsulinism. Dysregulated central nervous system (CNS) glutamate balance, due to GDH overactivity in the brain, has been hypothesized to play a role. This study aimed to describe the neurologic phenotype in HI/HA syndrome and investigate CNS glutamate levels using glutamate weighted chemical exchange saturation transfer magnetic resonance imaging (GluCEST MRI). In this cross-sectional study, 12 subjects with HI/HA syndrome had plasma ammonia measurement, self- or parent-completed neurocognitive assessments, electroencephalogram (EEG), and GluCEST MRI at 7 T performed. GluCEST MRI measures were compared to a historic reference population of 10 healthy adults.


Ureaplasma urealyticum Causes Hyperammonemia in an Experimental Immunocompromised Murine Model.

  • Xiaohui Wang‎ et al.
  • PloS one‎
  • 2016‎

Hyperammonemia syndrome is an often fatal complication of lung transplantation which has been recently associated with Ureaplasma infection. It has not been definitely established that Ureaplasma species can cause hyperammonemia. We established a novel immunocompromised murine model of Ureaplasma urealyticum infection and used it to confirm that U. urealyticum can cause hyperammonemia. Male C3H mice were pharmacologically immunosuppressed with mycophenolate mofetil, tacrolimus and oral prednisone for seven days, and then challenged intratracheally (IT) and/or intraperitoneally (IP) with 107 CFU U. urealyticum over six days, while continuing immunosuppression. Spent U. urealyticum-free U9 broth was used as a negative control, with uninfected immunocompetent mice, uninfected immunosuppressed mice, and infected immunocompetent mice serving as additional controls. Plasma ammonia concentrations were compared using Wilcoxon ranks sum tests. Plasma ammonia concentrations of immunosuppressed mice challenged IT/IP with spent U9 broth (n = 14) (range 155-330 μmol/L) were similar to those of normal mice (n = 5), uninfected immunosuppressed mice (n = 5), and U. urealyticum IT/IP challenged immunocompetent mice (n = 5) [range 99-340 μmol/L, p = 0.60]. However, immunosuppressed mice challenged with U. urealyticum IT/IP (n = 20) or IP (n = 15) had higher plasma ammonia concentrations (range 225-945 μmol/L and 276-687 μmol/L, respectively) than those challenged IT/IP with spent U9 broth (p<0.001). U. urealyticum administered IT/IP or IP causes hyperammonemia in mice pharmacologically immunosuppressed with a regimen similar to that administered to lung transplant recipients.


PNC2 (SLC25A36) Deficiency Associated With the Hyperinsulinism/Hyperammonemia Syndrome.

  • Maher A Shahroor‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2022‎

The hyperinsulinism/hyperammonemia (HI/HA) syndrome, the second-most common form of congenital hyperinsulinism, has been associated with dominant mutations in GLUD1, coding for the mitochondrial enzyme glutamate dehydrogenase, that increase enzyme activity by reducing its sensitivity to allosteric inhibition by GTP.


Metabolic changes associated with hyperammonemia in patients with propionic acidemia.

  • Heather R Filipowicz‎ et al.
  • Molecular genetics and metabolism‎
  • 2006‎

Propionic acidemia is an autosomal recessive disorder caused by deficiency of propionyl CoA carboxylase. Affected patients can develop severe hyperammonemia, whose causative mechanism is unknown. In this study, we monitored changes in metabolic parameters associated with hyperammonemia in patients with propionic acidemia. Levels of ammonia were correlated with plasma levels of individual amino acids and carnitine and with urinary organic acids. Significance of correlations was determined with analysis of variance. Hyperammonemia positively correlated with an increase in branched-chain amino acids (leucine and isoleucine) and a decrease in glutamine/glutamate and esterified carnitine. The urinary excretion of methylcitric acid, formed by the combination of propionic acid with oxaloacetate from the Krebs cycle, increased while that of citric acid decreased with hyperammonemia. These results suggest that in propionic acidemia, hyperammonemia is triggered by catabolism with the accumulation of propionic acid derivatives. The decrease of the plasma levels of glutamine/glutamate with hyperammonemia in patients with propionic acidemia indicates that the mechanism producing hyperammonemia differs from that in urea cycle defects. The increase in methylcitric acid and decline in citric acid urinary excretion suggest that hyperammonemia in propionic acidemia might be related to inability to maintain adequate levels of glutamine precursors through a dysfunctional Krebs cycle.


Flaxseed Oil (Linum usitatissimum) Prevents Cognitive and Motor Damage in Rats with Hyperammonemia.

  • Marcos F Ocaña-Sánchez‎ et al.
  • Nutrients‎
  • 2023‎

Hyperammonemia is characterized by the excessive accumulation of ammonia in the body as a result of the loss of liver detoxification, leading to the development of hepatic encephalopathy (HE). These metabolic alterations carry cognitive and motor deficits and cause neuronal damage, with no effective treatment at present. In this study, we aimed to evaluate the effect of two subacute oral administrations of flaxseed oil (0.26 and 0.52 mL/kg) on short- and long-term memory, visuospatial memory, locomotor activity, motor coordination, and the neuronal morphology of the prefrontal cortex (PFC) via tests on Wistar rats with hyperammonemia. The goal was to identify its role in the regulation of cerebral edema, without liver damage causing cerebral failure. In contrast with an ammonium-rich diet, flaxseed oil and normal foods did not cause cognitive impairment or motor alterations, as evidenced in the short-term and visuospatial memory tests. Furthermore, the flaxseed oil treatment maintained a regular neuronal morphology of the prefrontal cortex, which represents a neuroprotective effect. We conclude that the oral administration of flaxseed oil prevents cognitive and motor impairments as well as neuronal alterations in rats with hyperammonemia, which supports the potential use of this oil to ameliorate the changes that occur in hepatic encephalopathy.


Saline is as effective as nitrogen scavengers for treatment of hyperammonemia.

  • G van Straten‎ et al.
  • Scientific reports‎
  • 2017‎

Urea cycle enzyme deficiency (UCED) patients with hyperammonemia are treated with sodium benzoate (SB) and sodium phenylacetate (SPA) to induce alternative pathways of nitrogen excretion. The suggested guidelines supporting their use in the management of hyperammonemia are primarily based on non-analytic studies such as case reports and case series. Canine congenital portosystemic shunting (CPSS) is a naturally occurring model for hyperammonemia. Here, we performed cross-over, randomized, placebo-controlled studies in healthy dogs to assess safety and pharmacokinetics of SB and SPA (phase I). As follow-up safety and efficacy of SB was evaluated in CPSS-dogs with hyperammonemia (phase II). Pharmacokinetics of SB and SPA were comparable to those reported in humans. Treatment with SB and SPA was safe and both nitrogen scavengers were converted into their respective metabolites hippuric acid and phenylacetylglutamine or phenylacetylglycine, with a preference for phenylacetylglycine. In CPSS-dogs, treatment with SB resulted in the same effect on plasma ammonia as the control treatment (i.e. saline infusion) suggesting that the decrease is a result of volume expansion and/or forced diuresis rather than increased production of nitrogenous waste. Consequentially, treatment of hyperammonemia justifies additional/placebo-controlled trials in human medicine.


Metabolic reprogramming during hyperammonemia targets mitochondrial function and postmitotic senescence.

  • Avinash Kumar‎ et al.
  • JCI insight‎
  • 2021‎

Ammonia is a cytotoxic metabolite with pleiotropic molecular and metabolic effects, including senescence induction. During dysregulated ammonia metabolism, which occurs in chronic diseases, skeletal muscle becomes a major organ for nonhepatocyte ammonia uptake. Muscle ammonia disposal occurs in mitochondria via cataplerosis of critical intermediary metabolite α-ketoglutarate, a senescence-ameliorating molecule. Untargeted and mitochondrially targeted data were analyzed by multiomics approaches. These analyses were validated experimentally to dissect the specific mitochondrial oxidative defects and functional consequences, including senescence. Responses to ammonia lowering in myotubes and in hyperammonemic portacaval anastomosis rat muscle were studied. Whole-cell transcriptomics integrated with whole-cell, mitochondrial, and tissue proteomics showed distinct temporal clusters of responses with enrichment of oxidative dysfunction and senescence-related pathways/proteins during hyperammonemia and after ammonia withdrawal. Functional and metabolic studies showed defects in electron transport chain complexes I, III, and IV; loss of supercomplex assembly; decreased ATP synthesis; increased free radical generation with oxidative modification of proteins/lipids; and senescence-associated molecular phenotype-increased β-galactosidase activity and expression of p16INK, p21, and p53. These perturbations were partially reversed by ammonia lowering. Dysregulated ammonia metabolism caused reversible mitochondrial dysfunction by transcriptional and translational perturbations in multiple pathways with a distinct skeletal muscle senescence-associated molecular phenotype.


Prognosis of Patients with Sepsis and Non-Hepatic Hyperammonemia: A Cohort Study.

  • Lina Zhao‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2020‎

BACKGROUND Hyperammonemia has been reported in some critically ill patients with sepsis who do not have hepatic failure. A significant proportion of patients with non-hepatic hyperammonemia have underlying sepsis, but the association between non-hepatic hyperammonemia and prognosis is unclear. MATERIAL AND METHODS Information about patients with sepsis and non-hepatic hyperammonemia was retrieved from the Medical Information Mart for Intensive Care-III database. Survival rates were analyzed using the Kaplan-Meier method. Multivariate logistic regression models were employed to identify prognostic factors. Receiver operating characteristic (ROC) curve analysis was used to measure the predictive ability of ammonia in terms of patient mortality. RESULTS A total of 265 patients with sepsis were enrolled in this study. Compared with the non-hyperammonemia group, the patients with hyperammonemia had significantly higher rates of hospital (59.8% vs. 43.0%, P=0.007), 30-day (47.7% vs. 34.8%, P=0.036), 90-day (61.7% vs. 43.7%, P=0.004), and 1-year mortality (67.3% vs. 49.4%, P=0.004). In the survival analysis, hyperammonemia was associated with these outcomes. Serum ammonia level was an independent predictor of hospital mortality. The area under the ROC curve for the ammonia levels had poor discriminative capacity. The hyperammonemia group also had significantly lower Glasgow Coma Scale scores (P=0.020) and higher incidences of delirium (15.9% vs. 8.2%, P=0.034) and encephalopathy (37.4% vs. 19.6%, P=0.001). Intestinal infection and urinary tract infection with organisms such as Escherichia coli may be risk factors for hyperammonemia in patients who have sepsis. CONCLUSIONS Higher ammonia levels are associated with poorer prognosis in patients with sepsis. Ammonia also may be associated with sepsis-associated encephalopathy. Therefore, we recommend that serum ammonia levels be measured in patients who are suspected of having sepsis.


Treatment of Hyperammonemia by Transplanting a Symbiotic Pair of Intestinal Microbes.

  • Jing Liu‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2021‎

Hyperammonemia is a deleterious and inevitable consequence of liver failure. However, no adequate therapeutic agent is available for hyperammonemia. Although recent studies showed that the pharmabiotic approach could be a therapeutic option for hyperammonemia, its development is clogged with poor identification of etiological microbes and low transplantation efficiency of candidate microbes. In this study, we developed a pharmabiotic treatment for hyperammonemia that employs a symbiotic pair of intestinal microbes that are both able to remove ammonia from the surrounding environment. By a radioactive tracing experiment in mice, we elucidated how the removal of ammonia by probiotics in the intestinal lumen leads to lower blood ammonia levels. After determination of the therapeutic mechanism, ammonia-removing probiotic strains were identified by high-throughput screening of gut microbes. The symbiotic partners of ammonia-removing probiotic strains were identified by screening intestinal microbes of a human gut, and the pairs were administrated to hyperammonemic mice to evaluate therapeutic efficacy. Blood ammonia was in a chemical equilibrium relationship with intestinal ammonia. Lactobacillus reuteri JBD400 removed intestinal ammonia to shift the chemical equilibrium to lower the blood ammonia level. L. reuteri JBD400 was successfully transplanted with a symbiotic partner, Streptococcus rubneri JBD420, improving transplantation efficiency 2.3×103 times more compared to the sole transplantation while lowering blood ammonia levels significantly. This work provides new pharmabiotics for the treatment of hyperammonemia as well as explains its therapeutic mechanism. Also, this approach provides a concept of symbiotic pairs approach in the emerging field of pharmabiotics.


Enhanced BDNF and TrkB Activation Enhance GABA Neurotransmission in Cerebellum in Hyperammonemia.

  • Yaiza M Arenas‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Hyperammonemia is a main contributor to minimal hepatic encephalopathy (MHE) in cirrhotic patients. Hyperammonemic rats reproduce the motor incoordination of MHE patients, which is due to enhanced GABAergic neurotransmission in the cerebellum as a consequence of neuroinflammation. In hyperammonemic rats, neuroinflammation increases BDNF by activating the TNFR1-S1PR2-CCR2 pathway. (1) Identify mechanisms enhancing GABAergic neurotransmission in hyperammonemia; (2) assess the role of enhanced activation of TrkB; and (3) assess the role of the TNFR1-S1PR2-CCR2-BDNF pathway. In the cerebellum of hyperammonemic rats, increased BDNF levels enhance TrkB activation in Purkinje neurons, leading to increased GAD65, GAD67 and GABA levels. Enhanced TrkB activation also increases the membrane expression of the γ2, α2 and β3 subunits of GABAA receptors and of KCC2. Moreover, enhanced TrkB activation in activated astrocytes increases the membrane expression of GAT3 and NKCC1. These changes are reversed by blocking TrkB or the TNFR1-SP1PR2-CCL2-CCR2-BDNF-TrkB pathway. Hyperammonemia-induced neuroinflammation increases BDNF and TrkB activation, leading to increased synthesis and extracellular GABA, and the amount of GABAA receptors in the membrane and chloride gradient. These factors enhance GABAergic neurotransmission in the cerebellum. Blocking TrkB or the TNFR1-SP1PR2-CCL2-CCR2-BDNF-TrkB pathway would improve motor function in patients with hepatic encephalopathy and likely with other pathologies associated with neuroinflammation.


Long Noncoding RNAs Regulate Hyperammonemia-Induced Neuronal Damage in Hepatic Encephalopathy.

  • So Yeong Cheon‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2022‎

Hyperammonemia can result in various neuropathologies, including sleep disturbance, memory loss, and motor dysfunction in hepatic encephalopathy. Long noncoding RNA (lncRNA) as a group of noncoding RNA longer than 200 nucleotides is emerging as a promising therapeutic target to treat diverse diseases. Although lncRNAs have been linked to the pathogenesis of various diseases, their function in hepatic encephalopathy has not yet been elucidated. Research Design and Methods. To identify the roles of lncRNAs in hepatic encephalopathy brain, we used a bile duct ligation (BDL) mouse model and examined the alteration of neuronal cell death markers and neuronal structure-related proteins in BDL mouse cortex tissue. Furthermore, analysis of the transcriptome of BDL mouse brain cortex tissues revealed several lncRNAs critical to the apoptosis and neuronal structural changes associated with hepatic encephalopathy.


Loss of expression of glial fibrillary acidic protein in acute hyperammonemia.

  • Mireille Bélanger‎ et al.
  • Neurochemistry international‎
  • 2002‎

Glial fibrillary acid protein (GFAP) is a major component of the glial filament network and alterations in expression of this protein in cultured astrocytes have been reported in response to acute ammonia exposure in vitro. In order to determine the effects of acute hyperammonemia in vivo on GFAP expression, brain extracts from rats with acute liver failure due to hepatic devascularization (portacaval anastomosis followed 24h later by hepatic artery ligation, HAL) were analyzed for GFAP mRNA using reverse transcription-polymerase chain reaction (RT-PCR) and appropriate oligonucleotide primers. GFAP protein was assayed by immunoblotting using a polyclonal antibody. Hepatic devascularization resulted in a significant 55-68% decrease (P<0.01) of GFAP mRNA and a concomitant loss of GFAP protein at precoma and coma stages of encephalopathy when brain water content was significantly increased and brain ammonia concentrations were in the millimolar range (1-5mM). Expression of a second glial filament protein S-100beta was unaffected by acute hyperammonemia. These findings suggest a role for GFAP in cell volume regulation and that loss of GFAP expression could contribute to the pathogenesis of brain edema in acute hyperammonemic syndromes.


A novel biochemically salvageable animal model of hyperammonemia devoid of N-acetylglutamate synthase.

  • Emilee Senkevitch‎ et al.
  • Molecular genetics and metabolism‎
  • 2012‎

All knockout mouse models of urea cycle disorders die in the neonatal period or shortly thereafter. Since N-acetylglutamate synthase (NAGS) deficiency in humans can be effectively treated with N-carbamyl-l-glutamate (NCG), we sought to develop a mouse model of this disorder that could be rescued by biochemical intervention, reared to adulthood, reproduce, and become a novel animal model for hyperammonemia. Founder NAGS knockout heterozygous mice were obtained from the trans-NIH Knock-Out Mouse Project. Genotyping of the mice was performed by PCR and confirmed by Western blotting of liver and intestine. NCG and L-citrulline (Cit) were used to rescue the NAGS knockout homozygous (Nags(-/-)) pups and the rescued animals were characterized. We observed an 85% survival rate of Nags(-/-) mice when they were given intraperitoneal injections with NCG and Cit during the newborn period until weaning and supplemented subsequently with both compounds in their drinking water. This regimen has allowed for normal development, apparent health, and reproduction. Interruption of this rescue intervention resulted in the development of severe hyperammonemia and death within 48 h. In addition to hyperammonemia, interruption of rescue supplementation was associated with elevated plasma glutamine, glutamate, and lysine, and reduced citrulline, arginine, ornithine and proline levels. We conclude that NAGS deprived mouse model has been developed which can be rescued by NCG and Cit and reared to reproduction and beyond. This biochemically salvageable mouse model recapitulates the clinical phenotype of proximal urea cycle disorders and can be used as a reliable model of induced hyperammonemia by manipulating the administration of the rescue compounds.


Valproic Acid-induced hyperammonemia in the elderly: a review of the literature.

  • Vikrant Mittal‎ et al.
  • Case reports in medicine‎
  • 2009‎

Valproic acid and its derivatives are commonly used to treat many psychiatric conditions in the elderly. Hyperammonemia is a less common but important side effect of these drugs. The elderly patient appears highly vulnerable to this side effect of this group of medications. In this paper, we systematically review the published literature for hyperammonemia induced by valproic acid and its derivatives. We describe the three reported cases and review possible treatment strategies for this condition.


Hyperammonemia alters the mismatch negativity in the auditory evoked potential by altering functional connectivity and neurotransmission.

  • Raquel García-García‎ et al.
  • Journal of neurochemistry‎
  • 2020‎

Minimal hepatic encephalopathy (MHE) is a neuropsychiatric syndrome produced by central nervous system dysfunction subsequent to liver disease. Hyperammonemia and inflammation act synergistically to alter neurotransmission, leading to the cognitive and motor alterations in MHE, which are reproduced in rat models of chronic hyperammonemia. Patients with MHE show altered functional connectivity in different neural networks and a reduced response in the cognitive potential mismatch negativity (MMN), which correlates with attention deficits. The mechanisms by which MMN is altered in MHE remain unknown. The objectives of this work are as follows: To assess if rats with chronic hyperammonemia reproduce the reduced response in the MMN found in patients with MHE. Analyze the functional connectivity between the areas (CA1 area of the dorsal hippocampus, prelimbic cortex, primary auditory cortex, and central inferior colliculus) involved in the generation of the MMN and its possible alterations in hyperammonemia. Granger causality analysis has been applied to detect the net flow of information between the population neuronal activities recorded from a local field potential approach. Analyze if altered MMN response in hyperammonemia is associated with alterations in glutamatergic and GABAergic neurotransmission. Extracellular levels of the neurotransmitters and/or membrane expression of their receptors have been analyzed after the tissue isolation of the four target sites. The results show that rats with chronic hyperammonemia show reduced MMN response in hippocampus, mimicking the reduced MMN response of patients with MHE. This is associated with altered functional connectivity between the areas involved in the generation of the MMN. Hyperammonemia also alters membrane expression of glutamate and GABA receptors in hippocampus and reduces the changes in extracellular GABA and glutamate induced by the MMN paradigm of auditory stimulus in hippocampus of control rats. The changes in glutamatergic and GABAergic neurotransmission and in functional connectivity between the brain areas analyzed would contribute to the impairment of the MMN response in rats with hyperammonemia and, likely, also in patients with MHE.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: