Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,916 papers

Nucleosome conformation dictates the histone code.

  • Matthew R Marunde‎ et al.
  • eLife‎
  • 2024‎

Histone post-translational modifications (PTMs) play a critical role in chromatin regulation. It has been proposed that these PTMs form localized 'codes' that are read by specialized regions (reader domains) in chromatin-associated proteins (CAPs) to regulate downstream function. Substantial effort has been made to define [CAP: histone PTM] specificities, and thus decipher the histone code and guide epigenetic therapies. However, this has largely been done using the reductive approach of isolated reader domains and histone peptides, which cannot account for any higher-order factors. Here, we show that the [BPTF PHD finger and bromodomain: histone PTM] interaction is dependent on nucleosome context. The tandem reader selectively associates with nucleosomal H3K4me3 and H3K14ac or H3K18ac, a combinatorial engagement that despite being in cis is not predicted by peptides. This in vitro specificity of the BPTF tandem reader for PTM-defined nucleosomes is recapitulated in a cellular context. We propose that regulatable histone tail accessibility and its impact on the binding potential of reader domains necessitates we refine the 'histone code' concept and interrogate it at the nucleosome level.


Is There a Histone Code for Cellular Quiescence?

  • Kenya Bonitto‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Many of the cells in our bodies are quiescent, that is, temporarily not dividing. Under certain physiological conditions such as during tissue repair and maintenance, quiescent cells receive the appropriate stimulus and are induced to enter the cell cycle. The ability of cells to successfully transition into and out of a quiescent state is crucial for many biological processes including wound healing, stem cell maintenance, and immunological responses. Across species and tissues, transcriptional, epigenetic, and chromosomal changes associated with the transition between proliferation and quiescence have been analyzed, and some consistent changes associated with quiescence have been identified. Histone modifications have been shown to play a role in chromatin packing and accessibility, nucleosome mobility, gene expression, and chromosome arrangement. In this review, we critically evaluate the role of different histone marks in these processes during quiescence entry and exit. We consider different model systems for quiescence, each of the most frequently monitored candidate histone marks, and the role of their writers, erasers and readers. We highlight data that support these marks contributing to the changes observed with quiescence. We specifically ask whether there is a quiescence histone "code," a mechanism whereby the language encoded by specific combinations of histone marks is read and relayed downstream to modulate cell state and function. We conclude by highlighting emerging technologies that can be applied to gain greater insight into the role of a histone code for quiescence.


Machine learning uncovers cell identity regulator by histone code.

  • Bo Xia‎ et al.
  • Nature communications‎
  • 2020‎

Conversion between cell types, e.g., by induced expression of master transcription factors, holds great promise for cellular therapy. Our ability to manipulate cell identity is constrained by incomplete information on cell identity genes (CIGs) and their expression regulation. Here, we develop CEFCIG, an artificial intelligent framework to uncover CIGs and further define their master regulators. On the basis of machine learning, CEFCIG reveals unique histone codes for transcriptional regulation of reported CIGs, and utilizes these codes to predict CIGs and their master regulators with high accuracy. Applying CEFCIG to 1,005 epigenetic profiles, our analysis uncovers the landscape of regulation network for identity genes in individual cell or tissue types. Together, this work provides insights into cell identity regulation, and delivers a powerful technique to facilitate regenerative medicine.


Conservation and divergence of the histone code in nucleomorphs.

  • Georgi K Marinov‎ et al.
  • Biology direct‎
  • 2016‎

Nucleomorphs, the remnant nuclei of photosynthetic algae that have become endosymbionts to other eukaryotes, represent a unique example of convergent reductive genome evolution in eukaryotes, having evolved independently on two separate occasions in chlorarachniophytes and cryptophytes. The nucleomorphs of the two groups have evolved in a remarkably convergent manner, with numerous very similar features. Chief among them is the extreme reduction and compaction of nucleomorph genomes, with very small chromosomes and extremely short or even completely absent intergenic spaces. These characteristics pose a number of intriguing questions regarding the mechanisms of transcription and gene regulation in such a crowded genomic context, in particular in terms of the functioning of the histone code, which is common to almost all eukaryotes and plays a central role in chromatin biology.


Towards Unraveling the Histone Code by Fragment Blind Docking.

  • Mónika Bálint‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Histones serve as protein spools for winding the DNA in the nucleosome. High variability of their post-translational modifications result in a unique code system often responsible for the pathomechanisms of epigenetics-based diseases. Decoding is performed by reader proteins via complex formation with the N-terminal peptide tails of histones. Determination of structures of histone-reader complexes would be a key to unravel the histone code and the design of new drugs. However, the large number of possible histone complex variations imposes a true challenge for experimental structure determination techniques. Calculation of such complexes is difficult due to considerable size and flexibility of peptides and the shallow binding surfaces of the readers. Moreover, location of the binding sites is often unknown, which requires a blind docking search over the entire surface of the target protein. To accelerate the work in this field, a new approach is presented for prediction of the structure of histone H3 peptide tails docked to their targets. Using a fragmenting protocol and a systematic blind docking method, a collection of well-positioned fragments of the H3 peptide is produced. After linking the fragments, reconstitution of anchoring regions of the target-bound H3 peptide conformations was possible. As a first attempt of combination of blind and fragment docking approaches, our new method is named fragment blind docking (FBD).


The histone code reader Spin1 controls skeletal muscle development.

  • Holger Greschik‎ et al.
  • Cell death & disease‎
  • 2017‎

While several studies correlated increased expression of the histone code reader Spin1 with tumor formation or growth, little is known about physiological functions of the protein. We generated Spin1M5 mice with ablation of Spin1 in myoblast precursors using the Myf5-Cre deleter strain. Most Spin1M5 mice die shortly after birth displaying severe sarcomere disorganization and necrosis. Surviving Spin1M5 mice are growth-retarded and exhibit the most prominent defects in soleus, tibialis anterior, and diaphragm muscle. Transcriptome analyses of limb muscle at embryonic day (E) 15.5, E16.5, and at three weeks of age provided evidence for aberrant fetal myogenesis and identified deregulated skeletal muscle (SkM) functional networks. Determination of genome-wide chromatin occupancy in primary myoblast revealed direct Spin1 target genes and suggested that deregulated basic helix-loop-helix transcription factor networks account for developmental defects in Spin1M5 fetuses. Furthermore, correlating histological and transcriptome analyses, we show that aberrant expression of titin-associated proteins, abnormal glycogen metabolism, and neuromuscular junction defects contribute to SkM pathology in Spin1M5 mice. Together, we describe the first example of a histone code reader controlling SkM development in mice, which hints at Spin1 as a potential player in human SkM disease.


The histone code reader SPIN1 controls RET signaling in liposarcoma.

  • Henriette Franz‎ et al.
  • Oncotarget‎
  • 2015‎

The histone code reader Spindlin1 (SPIN1) has been implicated in tumorigenesis and tumor growth, but the underlying molecular mechanisms remain poorly understood. Here, we show that reducing SPIN1 levels strongly impairs proliferation and increases apoptosis of liposarcoma cells in vitro and in xenograft mouse models. Combining signaling pathway, genome-wide chromatin binding, and transcriptome analyses, we found that SPIN1 directly enhances expression of GDNF, an activator of the RET signaling pathway, in cooperation with the transcription factor MAZ. Accordingly, knockdown of SPIN1 or MAZ results in reduced levels of GDNF and activated RET explaining diminished liposarcoma cell proliferation and survival. In line with these observations, levels of SPIN1, GDNF, activated RET, and MAZ are increased in human liposarcoma compared to normal adipose tissue or lipoma. Importantly, a mutation of SPIN1 within the reader domain interfering with chromatin binding reduces liposarcoma cell proliferation and survival. Together, our data describe a molecular mechanism for SPIN1 function in liposarcoma and suggest that targeting SPIN1 chromatin association with small molecule inhibitors may represent a novel therapeutic strategy.


The histone code of Toxoplasma gondii comprises conserved and unique posttranslational modifications.

  • Sheila C Nardelli‎ et al.
  • mBio‎
  • 2013‎

Epigenetic gene regulation has emerged as a major mechanism for gene regulation in all eukaryotes. Histones are small, basic proteins that constitute the major protein component of chromatin, and posttranslational modifications (PTM) of histones are essential for epigenetic gene regulation. The different combinations of histone PTM form the histone code for an organism, marking functional units of chromatin that recruit macromolecular complexes that govern chromatin structure and regulate gene expression. To characterize the repertoire of Toxoplasma gondii histone PTM, we enriched histones using standard acid extraction protocols and analyzed them with several complementary middle-down and bottom-up proteomic approaches with the high-resolution Orbitrap mass spectrometer using collision-induced dissociation (CID), higher-energy collisional dissociation (HCD), and/or electron transfer dissociation (ETD) fragmentation. We identified 249 peptides with unique combinations of PTM that comprise the T. gondii histone code. T. gondii histones share a high degree of sequence conservation with human histones, and many modifications are conserved between these species. In addition, T. gondii histones have unique modifications not previously identified in other species. Finally, T. gondii histones are modified by succinylation, propionylation, and formylation, recently described histone PTM that have not previously been identified in parasitic protozoa. The characterization of the T. gondii histone code will facilitate in-depth analysis of how epigenetic regulation affects gene expression in pathogenic apicomplexan parasites and identify a new model system for elucidating the biological functions of novel histone PTM.


The histone-binding code of nuclear receptor co-repressors matches the substrate specificity of histone deacetylase 3.

  • Helen B Hartman‎ et al.
  • EMBO reports‎
  • 2005‎

Ligands for nuclear receptors facilitate the exchange of co-repressors for coactivators, leading to chromatin modifications that favour the activation of gene transcription. Here, we show that the repressed state of an endogenous retinoic acid-regulated gene is quickly re-established after ligand removal. As expected, repression is characterized by recruitment of N-CoR/SMRT-HDAC3 (histone deacetylase 3) co-repressor complexes, leading to local histone hypoacetylation. The achievement of the repressed state involves the ordered deacetylation of lysines in H4 tails. This order is determined by the inherent substrate specificity of HDAC3, and unexpectedly predicts the binding preference of N-CoR/SMRT for submaximally acetylated H4 tails. The match between the specificity of acetyl-histone deacetylation by HDAC3 and the histone-binding preference of N-CoR/SMRT allows the co-repressor complex to stabilize and propagate repression of nuclear hormone receptor gene targets.


An emerging perspective on 'histone code' mediated regulation of neural plasticity and disease.

  • Lorna A Farrelly‎ et al.
  • Current opinion in neurobiology‎
  • 2019‎

The last two decades have witnessed explosive advances in our understanding as to how the organization of chromatin, the association of DNA with histones and vast numbers of non-histone regulatory proteins, controls the expression of specific genes in brain. Prominent among such regulatory mechanisms are modifications of histones, along with the 'writers,' 'erasers,' and 'readers' of these modifications. Much of the work delineating these mechanisms has contributed to the idea that a 'histone code' may be a central determinant of a gene's activity and its potential to be activated or repressed in response to environmental perturbations (both beneficial and aberrant). Indeed, increasing evidence has demonstrated the significance of histone regulation in neurological plasticity and disease, although we are still at the earliest stages of examining all of the many potential chromatin changes involved. In this short review, we provide an emerging perspective on putative roles for histones, and their combinatorial readouts, in the context of neural plasticity, and we provide a conceptual framework for future mechanistic studies aimed at uncovering causal links between the neural 'histone code' and brain function/disease.


Insights into histone code syntax from structural and biochemical studies of CARM1 methyltransferase.

  • Wyatt W Yue‎ et al.
  • The EMBO journal‎
  • 2007‎

Coactivator-associated arginine methyltransferase (CARM1) is a transcriptional coactivator that methylates Arg17 and Arg26 in histone H3. CARM1 contains a conserved protein arginine methyltransferase (PRMT) catalytic core flanked by unique pre- and post-core regions. The crystal structures of the CARM1 catalytic core in the apo and holo states reveal cofactor-dependent formation of a substrate-binding groove providing a specific access channel for arginine to the active site. The groove is supported by the first eight residues of the post-core region (C-extension), not present in other PRMTs. In vitro methylation assays show that the C-extension is essential for all histone H3 methylation activity, whereas the pre-core region is required for methylation of Arg26, but not Arg17. Kinetic analysis shows Arg17 methylation is potentiated by pre-acetylation of Lys18, and this is reflected in k(cat) rather than K(m). Together with the absence of specificity subsites in the structure, this suggests an electrostatic sensing mechanism for communicating the modification status of vicinal residues as part of the syntax of the 'histone code.'


A Dynamic and Combinatorial Histone Code Drives Malaria Parasite Asexual and Sexual Development.

  • Hilde von Grüning‎ et al.
  • Molecular & cellular proteomics : MCP‎
  • 2022‎

Histone posttranslational modifications (PTMs) frequently co-occur on the same chromatin domains or even in the same molecule. It is now established that these "histone codes" are the result of cross talk between enzymes that catalyze multiple PTMs with univocal readout as compared with these PTMs in isolation. Here, we performed a comprehensive identification and quantification of histone codes of the malaria parasite, Plasmodium falciparum. We used advanced quantitative middle-down proteomics to identify combinations of PTMs in both the proliferative, asexual stages and transmissible, sexual gametocyte stages of P. falciparum. We provide an updated, high-resolution compendium of 77 PTMs on H3 and H3.3, of which 34 are newly identified in P. falciparum. Coexisting PTMs with unique stage distinctions were identified, indicating that many of these combinatorial PTMs are associated with specific stages of the parasite life cycle. We focused on the code H3R17me2K18acK23ac for its unique presence in mature gametocytes; chromatin proteomics identified a gametocyte-specific SAGA-like effector complex including the transcription factor AP2-G2, which we tied to this specific histone code, as involved in regulating gene expression in mature gametocytes. Ultimately, this study unveils previously undiscovered histone PTMs and their functional relationship with coexisting partners. These results highlight that investigating chromatin regulation in the parasite using single histone PTM assays might overlook higher-order gene regulation for distinct proliferation and differentiation processes.


Spindlin docking protein (SPIN.DOC) interaction with SPIN1 (a histone code reader) regulates Wnt signaling.

  • Mairembam Saroj Devi‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Indepth studies of protein-protein interactions are essential for discovering the molecular mechanisms and the biological context of protein functions. Even though previous study on the purification of SPIN1 interacting protein complex has shown Spindlin docking protein (SPIN.DOC) as the most abundant interacting protein partner; the study on the molecular function of SPIN.DOC is limited. Since the role of SPIN1 has been previously documented as a histone code reader and transcriptional coactivator of Wnt signaling, SPIN.DOC may probably involve in epigenetic regulation and Wnt signaling. This study aims to purify SPIN.DOC interacting protein complex and characterize the molecular function of SPIN.DOC. The finding of this study revealed that the suppression of SPIN.DOC expression in HEK293 cells by shRNA, slightly destabilized SPIN1 without any change in its chromatin localization. However, knockdown of SPIN1 decreased the expression and chromatin localization of SPIN.DOC. Nevertheless, overexpression of SPIN.DOC increased the expression and chromatin localization of SPIN1 but no change in the SPIN.DOC protein expression and chromatin localization when SPIN1 is overexpressed. TOPflash reporter assays revealed that SPIN.DOC regulates gene expression in Wnt signaling pathway and act as transcriptional repressor. Further, we show that C-terminal deleted mutant of SPIN.DOC is unable to interact with SPIN1. Unlike the wild type SPIN.DOC which acts as transcriptional repressor, overexpression of C-terminal deletion mutant activates Wnt signaling suggesting that SPIN.DOC-SPIN1 complex may act as transcriptional repressor. Overall, our data revealed new molecular functions of SPIN.DOC.


The histone code of the fungal genus Aspergillus uncovered by evolutionary and proteomic analyses.

  • Xin Zhang‎ et al.
  • Microbial genomics‎
  • 2022‎

Chemical modifications of DNA and histone proteins impact the organization of chromatin within the nucleus. Changes in these modifications, catalysed by different chromatin-modifying enzymes, influence chromatin organization, which in turn is thought to impact the spatial and temporal regulation of gene expression. While combinations of different histone modifications, the histone code, have been studied in several model species, we know very little about histone modifications in the fungal genus Aspergillus, whose members are generally well studied due to their importance as models in cell and molecular biology as well as their medical and biotechnological relevance. Here, we used phylogenetic analyses in 94 Aspergilli as well as other fungi to uncover the occurrence and evolutionary trajectories of enzymes and protein complexes with roles in chromatin modifications or regulation. We found that these enzymes and complexes are highly conserved in Aspergilli, pointing towards a complex repertoire of chromatin modifications. Nevertheless, we also observed few recent gene duplications or losses, highlighting Aspergillus species to further study the roles of specific chromatin modifications. SET7 (KMT6) and other components of PRC2 (Polycomb Repressive Complex 2), which is responsible for methylation on histone H3 at lysine 27 in many eukaryotes including fungi, are absent in Aspergilli as well as in closely related Penicillium species, suggesting that these lost the capacity for this histone modification. We corroborated our computational predictions by performing untargeted MS analysis of histone post-translational modifications in Aspergillus nidulans. This systematic analysis will pave the way for future research into the complexity of the histone code and its functional implications on genome architecture and gene regulation in fungi.


Mechanism of retinoic acid-induced transcription: histone code, DNA oxidation and formation of chromatin loops.

  • Candida Zuchegna‎ et al.
  • Nucleic acids research‎
  • 2014‎

Histone methylation changes and formation of chromatin loops involving enhancers, promoters and 3' end regions of genes have been variously associated with active transcription in eukaryotes. We have studied the effect of activation of the retinoic A receptor, at the RARE-promoter chromatin of CASP9 and CYP26A1 genes, 15 and 45 min following RA exposure, and we found that histone H3 lysines 4 and 9 are demethylated by the lysine-specific demethylase, LSD1 and by the JMJ-domain containing demethylase, D2A. The action of the oxidase (LSD1) and a dioxygenase (JMJD2A) in the presence of Fe++ elicits an oxidation wave that locally modifies the DNA and recruits the enzymes involved in base and nucleotide excision repair (BER and NER). These events are essential for the formation of chromatin loop(s) that juxtapose the RARE element with the 5' transcription start site and the 3' end of the genes. The RARE bound-receptor governs the 5' and 3' end selection and directs the productive transcription cycle of RNA polymerase. These data mechanistically link chromatin loops, histone methylation changes and localized DNA repair with transcription.


Metabolic labeling in middle-down proteomics allows for investigation of the dynamics of the histone code.

  • Simone Sidoli‎ et al.
  • Epigenetics & chromatin‎
  • 2017‎

Middle-down mass spectrometry (MS), i.e., analysis of long (~50-60 aa) polypeptides, has become the method with the highest throughput and accuracy for the characterization of combinatorial histone posttranslational modifications (PTMs). The discovery of histone readers with multiple domains, and overall the cross talk of PTMs that decorate histone proteins, has revealed that histone marks have synergistic roles in modulating enzyme recruitment and subsequent chromatin activities. Here, we demonstrate that the middle-down MS strategy can be combined with metabolic labeling for enhanced quantification of histone proteins and their combinatorial PTMs in a dynamic manner.


Histone modifications form a cell-type-specific chromosomal bar code that persists through the cell cycle.

  • John A Halsall‎ et al.
  • Scientific reports‎
  • 2021‎

Chromatin configuration influences gene expression in eukaryotes at multiple levels, from individual nucleosomes to chromatin domains several Mb long. Post-translational modifications (PTM) of core histones seem to be involved in chromatin structural transitions, but how remains unclear. To explore this, we used ChIP-seq and two cell types, HeLa and lymphoblastoid (LCL), to define how changes in chromatin packaging through the cell cycle influence the distributions of three transcription-associated histone modifications, H3K9ac, H3K4me3 and H3K27me3. We show that chromosome regions (bands) of 10-50 Mb, detectable by immunofluorescence microscopy of metaphase (M) chromosomes, are also present in G1 and G2. They comprise 1-5 Mb sub-bands that differ between HeLa and LCL but remain consistent through the cell cycle. The same sub-bands are defined by H3K9ac and H3K4me3, while H3K27me3 spreads more widely. We found little change between cell cycle phases, whether compared by 5 Kb rolling windows or when analysis was restricted to functional elements such as transcription start sites and topologically associating domains. Only a small number of genes showed cell-cycle related changes: at genes encoding proteins involved in mitosis, H3K9 became highly acetylated in G2M, possibly because of ongoing transcription. In conclusion, modified histone isoforms H3K9ac, H3K4me3 and H3K27me3 exhibit a characteristic genomic distribution at resolutions of 1 Mb and below that differs between HeLa and lymphoblastoid cells but remains remarkably consistent through the cell cycle. We suggest that this cell-type-specific chromosomal bar-code is part of a homeostatic mechanism by which cells retain their characteristic gene expression patterns, and hence their identity, through multiple mitoses.


Reveal cell type-specific regulatory elements and their characterized histone code classes via a hidden Markov model.

  • Can Wang‎ et al.
  • BMC genomics‎
  • 2018‎

With the maturity of next generation sequencing technology, a huge amount of epigenomic data have been generated by several large consortia in the last decade. These plenty resources leave us the opportunity about sufficiently utilizing those data to explore biological problems.


Organ-specific characteristics govern the relationship between histone code dynamics and transcriptional reprogramming during nitrogen response in tomato.

  • Russell Julian‎ et al.
  • Communications biology‎
  • 2023‎

Environmental stimuli trigger rapid transcriptional reprogramming of gene networks. These responses occur in the context of the local chromatin landscape, but the contribution of organ-specific dynamic chromatin modifications in responses to external signals remains largely unexplored. We treated tomato seedlings with a supply of nitrate and measured the genome-wide changes of four histone marks, the permissive marks H3K27ac, H3K4me3, and H3K36me3 and repressive mark H3K27me3, in shoots and roots separately, as well as H3K9me2 in shoots. Dynamic and organ-specific histone acetylation and methylation were observed at functionally relevant gene loci. Integration of transcriptomic and epigenomic datasets generated from the same organ revealed largely syngenetic relations between changes in transcript levels and histone modifications, with the exception of H3K27me3 in shoots, where an increased level of this repressive mark is observed at genes activated by nitrate. Application of a machine learning approach revealed organ-specific rules regarding the importance of individual histone marks, as H3K36me3 is the most successful mark in predicting gene regulation events in shoots, while H3K4me3 is the strongest individual predictor in roots. Our integrated study substantiates a view that during plant environmental responses, the relationships between histone code dynamics and gene regulation are highly dependent on organ-specific contexts.


A 'selfish' B chromosome induces genome elimination by disrupting the histone code in the jewel wasp Nasonia vitripennis.

  • John C Aldrich‎ et al.
  • Scientific reports‎
  • 2017‎

Intragenomic conflict describes a phenomenon in which genetic elements act 'selfishly' to gain a transmission advantage at the expense of the whole genome. A non-essential, selfish B chromosome known as Paternal Sex Ratio (PSR) induces complete elimination of the sperm-derived hereditary material in the jewel wasp Nasonia vitripennis. PSR prevents the paternal chromatin from forming chromosomes during the first embryonic mitosis, leading to its loss. Although paternally transmitted, PSR evades self-elimination in order to be inherited. We examined important post-translational modifications to the DNA packaging histones on the normal genome and the PSR chromosome in the fertilized embryo. Three histone marks - H3K9me2,3, H3K27me1, and H4K20me1 - became abnormally enriched and spread to ectopic positions on the sperm's chromatin before entry into mitosis. In contrast, other histone marks and DNA methylation were not affected by PSR, suggesting that its effect on the paternal genome is specific to a subset of histone marks. Contrary to the paternally derived genome, the PSR chromosome was visibly devoid of the H3K27me1 and H4K20me1 marks. These findings strongly suggest that PSR causes paternal genome elimination by disrupting at least three histone marks following fertilization, while PSR avoids self-elimination by evading two of these marks.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: