Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 739 papers

The Effect of Novel Heterocyclic Compounds on Cryptococcal Biofilm.

  • Maya Korem‎ et al.
  • Journal of fungi (Basel, Switzerland)‎
  • 2017‎

Biofilm formation by microorganisms depends on their communication by quorum sensing, which is mediated by small diffusible signaling molecules that accumulate in the extracellular environment. During human infection, the pathogenic yeast Cryptococcus neoformans can form biofilm on medical devices, which protects the organism and increases its resistance to antifungal agents. The aim of this study was to test two novel heterocyclic compounds, S-8 (thiazolidinedione derivative, TZD) and NA-8 (succinimide derivative, SI), for their anti-biofilm activity against strains of Cryptococcus neoformans and Cryptococcus gattii. Biofilms were formed in a defined medium in 96-well polystyrene plates and 8-well micro-slides. The effect of sub-inhibitory concentrations of S-8 and NA-8 on biofilm formation was measured after 48 h by a metabolic reduction assay and by confocal laser microscopy analysis using fluorescent staining. The formation and development of cryptococcal biofilms was inhibited significantly by these compounds in concentrations below the minimum inhibitory concentration (MIC) values. These compounds may have a potential role in preventing fungal biofilm development on indwelling medical devices or even as a therapeutic measure after the establishment of biofilm.


Pyrimidines-Based Heterocyclic Compounds: Synthesis, Cytoxicity Evaluation and Molecular Docking.

  • Mohamed A El-Atawy‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

A variety of structurally different pyrimidines were synthesized. Elemental analysis, FT-IR, 1H NMR, and 13C NMR spectroscopy were used to confirm the chemical structures of all prepared compounds. The synthesized pyrimidines were screened against the growth of five human cancer cell lines (prostate carcinoma PC3, liver carcinoma HepG-2, human colon cancer HCT-116, human breast cancer MCF-7, human lung cancer A-549), and normal human lung fibroblasts (MRC-5) using MTT assay. Most of the screened pyrimidines have anti-proliferative activity on the growth of the PC3 cell line. Compounds 3b and 3d were more potent than the reference vinblastine sulfate (~2 to 3 × fold) and they can be considered promising leads for treating prostate cancer disease. Moreover, the screened compounds 3b, 3f, 3g, 3h, and 5 were assessed according to the values of their selectivity index (SI) and were found to be more selective and safer than vinblastine sulfate. Furthermore, using in silico computational tools, the physicochemical properties of all pyrimidine ligands were assessed, and the synthesized compounds fall within the criteria of RO5, thus having the potential to be orally bioavailable.


Heterocyclic Compounds: Pharmacology of Pyrazole Analogs From Rational Structural Considerations.

  • Rafael Fernades Costa‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

Low quality of life and life-threatening conditions often demand pharmacological screening of lead compounds. A spectrum of pharmacological activities has been attributed to pyrazole analogs. The substitution, replacement, or removal of functional groups on a pyrazole ring appears consistent with diverse molecular interactions, efficacy, and potency of these analogs. This mini-review explores cytotoxic, cytoprotective, antinociceptive, anti-inflammatory, and antidepressant activities of some pyrazole analogs to advance structure-related pharmacological profiles and rational design of new analogs. Numerous interactions of these derivatives at their targets could impact future research considerations and prospects while offering opportunities for optimizing therapeutic activity with fewer adverse effects.


Inhibition of DNA gyrase by levofloxacin and related fluorine-containing heterocyclic compounds.

  • V L Tunitskaya‎ et al.
  • Acta naturae‎
  • 2011‎

Fluoroquinolones are an important class of modern and efficient antibacterial drugs with a broad spectrum of activity. Levofloxacin (the optically active form of ofloxacin) is one of the most promising fluoroquinolone drugs, and its antibacterial activity is substantially higher than the activity of other drugs of the fluoroquinolone family. Earlier, in the Postovsky Institute of Organic Synthesis, UB RAS, an original method of levofloxacin synthesis was developed, and now the pilot batch of the drug is being prepared. Bacterial DNA gyrase is a specific target of fluoroquinolones; hence, the study of the enzyme-drug interaction is of theoretical and practical importance. Moreover, the parameters of DNA gyrase inhibition may serve as a criterion for drug quality. Here, we present the results of studying the interaction of DNA gyrase with a number of fluoroquinolones and their analogs: intermediates and semi-products of the levofloxacin synthesis, and also samples from the pilot batches of this drug. The importance of two structural elements of the levofloxacin molecule for the efficiency of the inhibition is revealed. The data obtained may be useful for the design of new drugs derived from levofloxacin.


Novel Tetrahydroisoquinoline-Based Heterocyclic Compounds Efficiently Inhibit SARS-CoV-2 Infection In Vitro.

  • Xi Wang‎ et al.
  • Viruses‎
  • 2023‎

The ongoing COVID-19 pandemic has caused over six million deaths and huge economic burdens worldwide. Antivirals against its causative agent, SARS-CoV-2, are in urgent demand. Previously, we reported that heterocylic compounds, i.e., chloroquine (CQ) and hydroxychloroquine (HCQ), are potent in inhibiting SARS-CoV-2 replication in vitro. In this study, we discussed the syntheses of two novel heterocylic compounds: tert-butyl rel-4-(((3R,4S)-3-(1H-indol-3-yl)-1-oxo-2-propyl-1,2,3,4-tetrahydroisoquinolin-4-yl)methyl)piperazine-1-carboxylate (trans-1) and rel-(3R,4S)-3-(1H-indol-3-yl)-4-(piperazin-1-ylmethyl)-2-propyl-3,4-dihydroisoquinolin-1(2H)-one (trans-2), which effectively suppressed authentic SARS-CoV-2 replication in Vero E6 cells. Compound trans-1 showed higher anti-SARS-CoV-2 activity than trans-2, with a half maximal effective concentration (EC50) of 3.15 μM and a selective index (SI) exceeding 63.49, which demonstrated comparable potency to CQ or HCQ. Additional anti-SARS-CoV-2 tests on Calu-3 human lung cells showed that trans-1 efficiently inhibited viral replication (EC50 = 2.78 μM; SI: > 71.94) and performed better than CQ (EC50 = 44.90 μM; SI = 2.94). The time of an addition assay showed that the action mechanism of trans-1 differed from that of CQ, as it mainly inhibited the post-entry viral replication in both Vero E6 and Calu-3 cells. In addition, the differences between the antiviral mechanisms of these novel compounds and CQ were discussed.


Identification of substituted 5-membered heterocyclic compounds as potential anti-leukemic agents.

  • Taotao Ling‎ et al.
  • European journal of medicinal chemistry‎
  • 2019‎

Although pediatric leukemia is generally treatable, certain leukemic subtypes face poor prognosis in the clinic suggesting new selective therapeutic agents are needed. Thus, to identify selective apoptosis inducers, a small-molecule library screening approach was conducted using an isogenic leukemic murine p185+ B-ALL cell line pair (BCR-ABL-WT and the BAX/BAK deficient BCR-ABL-DKO). Gratifyingly, the investigation revealed several compounds featuring substituted aromatic five-membered-ring heterocycles with significant activity against murine and human leukemic cellular models. The identified compounds represent potentially novel antileukemic molecular scaffolds exemplified by compounds 1, 2 and 7, which demonstrated EC50 values in the nanomolar and low micromolar range against various leukemia subtypes (SUP-B15, KOPN-8, NALM-06, UoC-B1 cellular models) and pro-apoptotic properties in solid tumor cell models (MDA-MB-231, SUM149) with ample therapeutic index in normal cells. Herein, we highlight compounds 1, 2 and 7 which promote cell death mediated by caspase 3/7 induction. Our study establishes a strategic platform for the development of potent and selective anti-leukemic agents.


Nitro-Heterocyclic compounds induce apoptosis-like effects in Leishmania (L). amazonensis promastigotes.

  • Daiane Barros Dias Mendonça‎ et al.
  • The journal of venomous animals and toxins including tropical diseases‎
  • 2019‎

Three drugs - pentavalent antimonials, amphotericin B and pentamidine - are currently used for leishmaniasis treatment. They are administered for long periods, only parenterally, and have high cardiac, renal and hepatic toxicities. Therefore, the investigation of new compounds is required. Nitro-heterocyclic derivatives have been used as possible drug candidates to treat diseases caused by trypanosomatids.


Facile synthesis of indole heterocyclic compounds based micellar nano anti-cancer drugs.

  • Imran Ali‎ et al.
  • RSC advances‎
  • 2018‎

Facile synthesis of micellar "nano" indole heterocyclic anti-cancer compounds is described. The synthesized compounds (11-23) were characterized by UV-VIS, 1H NMR, FT-IR and mass spectroscopy. The binding energies of DNA-compound adducts varied from -20.08 to -23.85 kJ mol-1, and they were stabilized by hydrophobic interactions and H-bonding. The synthesized compounds enter into minor grooves of DNA during adduct formation. The DNA binding constant of compounds 11-23 was 1.00 to 2.00 × 105 M-1. The drug-loading efficiency and drug-loading content in their micellar forms were recorded. Compounds 11, 12, 14 and 19 at a micellar concentration of 670 μL mL-1 displayed excellent anticancer activities against the HepG2/C3A line (25-50%). The potency of nano anticancer drugs was predicted by drug likeness using Lipinski's "rule of five". Taken together, compounds 11-23 could be used to treat cancers.


Modification of carboxymethyl inulin with heterocyclic compounds: Synthesis, characterization, antioxidant and antifungal activities.

  • Yingqi Mi‎ et al.
  • International journal of biological macromolecules‎
  • 2021‎

A series of novel inulin derivatives were designed and synthesized by the introduction of amino heterocyclic moieties onto carboxymethyl inulin with the aid of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride and N-hydroxysuccinimide. The target products were prepared via three - step chemical synthesis, and structures were identified by FTIR and 1H NMR spectroscopy. Antioxidant activities of inulin derivatives including DPPH - radical scavenging assay, superoxide - radical scavenging assay, hydroxyl - radical scavenging assay, and reducing power were estimated. Meanwhile, their antifungal activities, including Colletotrichum lagenarium and Botrytis cinerea, were also explored by hyphal measurement. In particular, inulin derivatives bearing heterocyclic moieties exhibited a remarkable improvement over inulin on antioxidant and antifungal activities, and their bioactivities decreased roughly in the order of 2ATCMI > 4APCMI > 3APCMI > 2APCMI > 3ATCMI > CMI > inulin. Furthermore, the cytotoxicities of inulin derivatives against L929 cells were evaluated by CCK-8 in vitro, and all samples showed weak cytotoxicities. In a nutshell, the paper provides a practical approach to synthesize novel inulin derivatives with dramatically enhanced bioactivity and good biocompatibility. The product described in paper might serve as a new leading structure for further design of antioxidants or antifungal agents in biomedicine, cosmetics, and other fields.


Synthesis and in vitro antimicrobial evaluation of new N-heterocyclic diquaternary pyridinium compounds.

  • Bianca Furdui‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2014‎

A series of bis-pyridinium quaternary ammonium salts (bis-PyQAs) with different aryl and heteroaryl moieties were synthesized and their antimicrobial activity investigated. The inhibition effect of the compounds was evaluated against bacteria, molds and yeasts; the activities were expressed as the minimum inhibitory concentrations (MIC). The relationships between the structure descriptors (logP, polarizability, polar surface area (2D), van der Waals area (3D)) and the biological activity of the tested bis-PyQAs are discussed.


Synthesis and broad-spectrum antiviral activity of some novel benzo-heterocyclic amine compounds.

  • Da-Jun Zhang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2014‎

A series of novel unsaturated five-membered benzo-heterocyclic amine derivatives were synthesized and assayed to determine their in vitro broad-spectrum antiviral activities. The biological results showed that most of our synthesized compounds exhibited potent broad-spectrum antiviral activity. Notably, compounds 3f (IC50=3.21-5.06 μM) and 3g (IC50=0.71-34.87 μM) showed potent activity towards both RNA viruses (influenza A, HCV and Cox B3 virus) and a DNA virus (HBV) at low micromolar concentrations. An SAR study showed that electron-withdrawing substituents located on the aromatic or heteroaromatic ring favored antiviral activity towards RNA viruses.


Characterization of Oxygenated Heterocyclic Compounds and in vitro Antioxidant Activity of Pomelo Essential Oil.

  • Guijie Li‎ et al.
  • Drug design, development and therapy‎
  • 2021‎

Citrus essential oils are widely used for aromatherapy and the alternative treatment of chronic diseases. Beyond the aroma substances, they are known to contain bioactive nonvolatile components; however, little knowledge has been gained about nonvolatiles in the essential oil of pomelo (Citrus grandis Osbeck), the largest citrus fruit. The purpose of this study was to analyze the nonvolatile oxygenated heterocyclic compounds (OHCs) of pomelo essential oils and evaluate their in vitro antioxidant activities for further development.


Polyhalonitrobutadienes as Versatile Building Blocks for the Biotargeted Synthesis of Substituted N-Heterocyclic Compounds.

  • Viktor A Zapol'skii‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2020‎

Substituted nitrogen heterocycles are structural key units in many important pharmaceuticals. A new synthetic approach towards heterocyclic compounds displaying antibacterial activity against Staphylococcus aureus or cytotoxic activity has been developed. The selective synthesis of a series of 64 new N-heterocycles from the three nitrobutadienes 2-nitroperchloro-1,3-butadiene, 4-bromotetrachloro-2-nitro-1,3-butadiene and (Z)-1,1,4-trichloro-2,4-dinitrobuta-1,3-diene proved feasible. Their reactions with N-, O- and S-nucleophiles provide rapid access to push-pull substituted benzoxazolines, benzimidazolines, imidazolidines, thiazolidinones, pyrazoles, pyrimidines, pyridopyrimidines, benzoquinolines, isothiazoles, dihydroisoxazoles, and thiophenes with unique substitution patterns. Antibacterial activities of 64 synthesized compounds were examined. Additionally, seven compounds (thiazolidinone, nitropyrimidine, indole, pyridopyrimidine, and thiophene derivatives) exhibited a significant cytotoxicity with IC50-values from 1.05 to 20.1 µM. In conclusion, it was demonstrated that polyhalonitrobutadienes have an interesting potential as structural backbones for a variety of highly functionalized, pharmaceutically active heterocycles.


Recognition of Pharmacological Bi-Heterocyclic Compounds by Using Terahertz Time Domain Spectroscopy and Chemometrics.

  • Maciej Roman Nowak‎ et al.
  • Sensors (Basel, Switzerland)‎
  • 2019‎

In this study, we presented the concept and implementation of a fully functional system for the recognition of bi-heterocyclic compounds. We have conducted research into the application of machine learning methods to correctly recognize compounds based on THz spectra, and we have described the process of selecting optimal parameters for the kernel support vector machine (KSVM) with an additional `unknown' class. The chemical compounds used in the study contain a target molecule, used in pharmacy to combat inflammatory states formed in living organisms. Ready-made medical products with similar properties are commonly referred to as non-steroidal anti-inflammatory drugs (NSAIDs) once authorised on the pharmaceutical market. It was crucial to clearly determine whether the tested sample is a chemical compound known to researchers or is a completely new structure which should be additionally tested using other spectrometric methods. Our approach allows us to achieve 100% accuracy of the classification of the tested chemical compounds in the time of several milliseconds counted for 30 samples of the test set. It fits perfectly into the concept of rapid recognition of bi-heterocyclic compounds without the need to analyse the percentage composition of compound components, assuming that the sample is classified in a known group. The method allows us to minimize testing costs and significant reduction of the time of analysis.


Molecular docking and pharmacophore studies of heterocyclic compounds as Heat shock protein 90 (Hsp90) Inhibitors.

  • Suby T Baby‎ et al.
  • Bioinformation‎
  • 2016‎

Heat Shock Protein 90 was a key molecular chaperone involved in the proteome stability maintenance and its interference in many signaling networks associated with cancer progression, makes it of an important target for cancer therapeutics. The present study aimed to identify potential lead molecule among the selected heterocyclic compounds against Human Hsp90 (PDB: 1YET) through docking using GOLD 3.1 and pharmacophore studies using Discovery studio 2.1. On the basis of the GOLD Fitness scores, the compounds Q1G and T21 showed better binding affinity. Further the analyzed structure pharmacophore results are in consistence with the docking results indicating that both these compounds show antagonistic activity towards HSP90 respectively.


Utilization of Cyanoacetohydrazide and Oxadiazolyl Acetonitrile in the Synthesis of Some New Cytotoxic Heterocyclic Compounds.

  • Soheir A Shaker‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

A (pyridazinyl)acetate derivative was reacted with thiosemicarbazide and hydrazine hydrate to yield spiropyridazinone and acetohydrazide derivatives, respectively. The acetohydrazide derivative was used as a starting material for synthesizing some new heterocyclic compounds such as oxoindolinylidene, dimethylpyrazolyl, methylpyrazolyl, oxopyrazolyl, cyanoacetylacetohydrazide and oxadiazolylacetonitrile derivatives. The behavior of the cyanoacetylacetohydrazide and oxadiazolylacetonitrile derivatives towards nitrogen and carbon nucleophiles was investigated. The assigned structures of the prepared compounds were elucidated by spectral methods (IR, ¹H-NMR (13)C-NMR and mass spectroscopy). Some of the newly prepared compounds were tested in vitro against a panel of four human tumor cell lines, namely hepatocellular carcinoma (liver) HePG-2, colon cancer HCT-116, human prostate cancer PC3, and mammary gland breast MCF-7. Also they were tested as antioxidants. Almost all of the tested compounds showed satisfactory activity.


Halloysite Nanotubes as Bimodal Lewis/Brønsted Acid Heterogeneous Catalysts for the Synthesis of Heterocyclic Compounds.

  • Jiaying Yu‎ et al.
  • Nanomaterials (Basel, Switzerland)‎
  • 2023‎

Halloysite nanotubes can be used for the preparation of solid catalysts. Owing to their natural availability at low-cost as well as to their large and easy-to-functionalize surface, they can be conveniently activated with mineral acids or derivatized with acidic groups. Nevertheless, the use of HNTs as catalysts in complex transformations is still limited. Herein, we report two strategies to utilize HNT-based materials as solid acidic catalysts for the Biginelli reaction. To this aim, two methods for increasing the number of acidic sites on the HNTs were explored: (i) the treatment with piranha solution (Pir-HNTs) and (ii) the functionalization with phenylboronic acid (in particular with benzene-1,4-diboronic acid: the sample is denoted as HNT-BOA). Interestingly, both strategies enhance the performance of the multicomponent reaction. Pir-HNTs and HNT-BOA show an increased reactivity (72% and 89% yield, respectively) in comparison with pristine HNTs (52%). Additionally, Pir-HNTs can be reused up to five times without significant performance loss. Moreover, the method also displays good reaction scope, as demonstrated by the preparation of 12 different 3,4-dihydropyrimidinones in up to 71% yield. Therefore, the described strategies are promising for enhancing the acidity of the HNTs as catalysts for the organic reaction.


Novel Homo-Bivalent and Polyvalent Compounds Based on Ligustrazine and Heterocyclic Ring as Anticancer Agents.

  • Jiawen Wang‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

Bivalent and polyvalent inhibitors can be used as antitumor agents. In this experiment, eight ligustrazine dimers and seven ligustrazine tetramers linked by alkane diamine with different lengths of carbon chain lengths were synthesized. After screening their antiproliferation activities against five cancer cell lines, most ligustrazine derivatives showed better cytotoxicity than the ligustrazine monomer. In particular, ligustrazine dimer 8e linked with decane-1,10-diamine exhibited the highest cytotoxicity in FaDu cells with an IC50 (50% inhibiting concentration) value of 1.36 nM. Further mechanism studies suggested that 8e could induce apoptosis of FaDu cells through the depolarization of mitochondrial membrane potential and S-phase cell cycle arrest. Inspired by these results, twenty-seven additional small molecule heterocyclic dimers linked with decane-1,10-diamine and nine cinnamic acid dimers bearing ether chain were synthesized and screened. Most monocyclic and bicyclic aromatic systems showed highly selective anti-proliferation activity to FaDu cells and low toxicity to normal MCF 10A cells. The structure-activity relationship revealed that the two terminal amide bonds and the alkyl linker with a chain length of 8-12 carbon were two important factors to maintain its antitumor activity. In addition, the ADMET calculation predicted that most of the potent compounds had good oral bioavailability.


Application of the Target Lipid Model to Assess Toxicity of Heterocyclic Aromatic Compounds to Aquatic Organisms.

  • Joy McGrath‎ et al.
  • Environmental toxicology and chemistry‎
  • 2021‎

Heterocyclic aromatic compounds can be found in crude oil and coal and often co-exist in environmental samples with their homocyclic aromatic counterparts. The target lipid model (TLM) is a modeling framework that relates aquatic toxicity to the octanol-water partition coefficient (KOW ) that has been calibrated and validated for hydrocarbons. A systematic analysis of the applicability of the TLM to heterocyclic aromatic compounds has not been performed. The objective of the present study was to compile reliable toxicity data for heterocycles and determine whether observed toxicity could be successfully described by the TLM. Results indicated that the TLM could be applied to this compound class by adopting an empirically derived coefficient that accounts for partitioning between water and lipid. This coefficient was larger than previously reported for aromatic hydrocarbons, indicating that these heterocyclic compounds exhibit higher affinity to target lipid and toxicity. A mechanistic evaluation confirmed that the hydrogen bonding accepting moieties of the heteroatoms helped explain differences in partitioning behavior. Given the TLM chemical class coefficient reported in the present study, heterocyclic aromatics can now be explicitly incorporated in TLM-based risk assessments of petroleum substances, other products, or environmental media containing these compounds. Environ Toxicol Chem 2021;40:3000-3009. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Synthesis, Characterization, Antimicrobial Activity, and Genotoxicity Assessment of Two Heterocyclic Compounds Containing 1,2,3-Selena- or 1,2,3-Thiadiazole Rings.

  • Mousa L Al-Smadi‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2019‎

New 1,2,3-thiadiazole and 1,2,3-selenadiazole derivatives, (4-[4-((4-bromobenzyl)oxy)-phenyl]-1,2,3-thiadiazole (5a), 4-[4-((4-chlorobenzyl)oxy)-phenyl]-1,2,3-thiadiazole (5b)), (4-[4-((4-bromobenzyl)oxy)-phenyl]-1,2,3-selenadiazole (6a), and 4-[4-((4-chlorobenzyl)oxy)-phenyl]-1,2,3-selenadiazole (6b)), were prepared and screened in vitro for their antimicrobial activity against various pathogenic microbes. In addition, two compounds (5a and 6a) were examined for their in vivo genotoxicity using rats and an 8-hydroxy-2'-deoxyguanosine (8-OHdG) assay. Compounds 5a and 5b were found to be highly active against Gram-positive and Gram-negative bacteria. In addition, a significant inhibition of urinary 8-OHdG level (50.2%) was observed upon treatment of animals with 500 mg/kg body weight (b.w.) of compound 6a (p < 0.0001). However, compound 5a increased urinary 8-OHdG levels. The lethal dose (LD50) values for compounds 5a and 6a were determined by an up-and-down procedure (OECD 425; OECD 1998), which showed that these compounds are safe, since the LD50 was >5000 mg/kg b.w. Thus, the tested compounds might have the potential for use as antibiotics, since they have low genotoxicity and strong antimicrobial activity.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: