Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 76 papers

Isoform-specific loss of dystonin causes hereditary motor and sensory neuropathy.

  • William W Motley‎ et al.
  • Neurology. Genetics‎
  • 2020‎

To determine the genetic cause of axonal Charcot-Marie-Tooth disease in a small family with 2 affected siblings, one of whom had cerebellar features on examination.


N-myc downstream-regulated gene 1 is mutated in hereditary motor and sensory neuropathy-Lom.

  • L Kalaydjieva‎ et al.
  • American journal of human genetics‎
  • 2000‎

Hereditary motor and sensory neuropathies, to which Charcot-Marie-Tooth (CMT) disease belongs, are a common cause of disability in adulthood. Growing awareness that axonal loss, rather than demyelination per se, is responsible for the neurological deficit in demyelinating CMT disease has focused research on the mechanisms of early development, cell differentiation, and cell-cell interactions in the peripheral nervous system. Autosomal recessive peripheral neuropathies are relatively rare but are clinically more severe than autosomal dominant forms of CMT, and understanding their molecular basis may provide a new perspective on these mechanisms. Here we report the identification of the gene responsible for hereditary motor and sensory neuropathy-Lom (HMSNL). HMSNL shows features of Schwann-cell dysfunction and a concomitant early axonal involvement, suggesting that impaired axon-glia interactions play a major role in its pathogenesis. The gene was previously mapped to 8q24.3, where conserved disease haplotypes suggested genetic homogeneity and a single founder mutation. We have reduced the HMSNL interval to 200 kb and have characterized it by means of large-scale genomic sequencing. Sequence analysis of two genes located in the critical region identified the founder HMSNL mutation: a premature-termination codon at position 148 of the N-myc downstream-regulated gene 1 (NDRG1). NDRG1 is ubiquitously expressed and has been proposed to play a role in growth arrest and cell differentiation, possibly as a signaling protein shuttling between the cytoplasm and the nucleus. We have studied expression in peripheral nerve and have detected particularly high levels in the Schwann cell. Taken together, these findings point to NDRG1 having a role in the peripheral nervous system, possibly in the Schwann-cell signaling necessary for axonal survival.


The TRK-fused gene is mutated in hereditary motor and sensory neuropathy with proximal dominant involvement.

  • Hiroyuki Ishiura‎ et al.
  • American journal of human genetics‎
  • 2012‎

Hereditary motor and sensory neuropathy with proximal dominant involvement (HMSN-P) is an autosomal-dominant neurodegenerative disorder characterized by widespread fasciculations, proximal-predominant muscle weakness, and atrophy followed by distal sensory involvement. To date, large families affected by HMSN-P have been reported from two different regions in Japan. Linkage and haplotype analyses of two previously reported families and two new families with the use of high-density SNP arrays further defined the minimum candidate region of 3.3 Mb in chromosomal region 3q12. Exome sequencing showed an identical c.854C>T (p.Pro285Leu) mutation in the TRK-fused gene (TFG) in the four families. Detailed haplotype analysis suggested two independent origins of the mutation. Pathological studies of an autopsied patient revealed TFG- and ubiquitin-immunopositive cytoplasmic inclusions in the spinal and cortical motor neurons. Fragmentation of the Golgi apparatus, a frequent finding in amyotrophic lateral sclerosis, was also observed in the motor neurons with inclusion bodies. Moreover, TAR DNA-binding protein 43 kDa (TDP-43)-positive cytoplasmic inclusions were also demonstrated. In cultured cells expressing mutant TFG, cytoplasmic aggregation of TDP-43 was demonstrated. These findings indicate that formation of TFG-containing cytoplasmic inclusions and concomitant mislocalization of TDP-43 underlie motor neuron degeneration in HMSN-P. Pathological overlap of proteinopathies involving TFG and TDP-43 highlights a new pathway leading to motor neuron degeneration.


Whole-exome sequencing identifies a heterozygous mutation in SLC12A6 associated with hereditary sensory and motor neuropathy.

  • Jiaying Shi‎ et al.
  • Neuromuscular disorders : NMD‎
  • 2021‎

Charcot-Marie-Tooth disease (CMT) represents a phenotypically and genetically heterogeneous disorder of the peripheral nervous system. Biallelic variants in SLC12A6 have been reported as the cause of autosomal-recessive (AR) hereditary motor and sensory neuropathy with agenesis of the corpus callosum (HMSN/ACC). Here we identified an autosomal-dominant (AD) heterozygous mutation in SLC12A6 in a Chinese patient with intermediate CMT. The patient presented with slowly progressive distal muscle weakness and atrophy. Electrophysiological examination showed a mixed axonal/demyelinating neuropathy. Cognition and brain MRI were normal. A single heterozygous missense mutation c.620G>A (p.R207H) in exon 5 of SLC12A6 was identified as the likely pathogenic mutation by whole-exome sequencing consistent with two previously published cases. It affects evolutionarily highly conserved amino acid residue and is predicted to be deleterious by using in silico tools. Modelling of the mutant KCC3 cotransporter showed altered formation of hydrogen bonds and weakened interaction force between the mutated site and its surrounding amino acid residues. Our findings expand the genotypic and phenotypic spectrum associated with SLC12A6 mutations from AR-HMSN/ACC to AD-CMT. The differences in the inheritance pattern might be associated with a dominant-negative pathomechanism.


Biallelic SORD pathogenic variants cause Chinese patients with distal hereditary motor neuropathy.

  • Hai-Lin Dong‎ et al.
  • NPJ genomic medicine‎
  • 2021‎

Sorbitol dehydrogenase gene (SORD) has been identified as a novel causative gene of recessive forms of hereditary neuropathy, including Charcot-Marie-Tooth disease type 2 and distal hereditary motor neuropathy (dHMN). Our findings reveal two novel variants (c.404 A > G and c.908 + 1 G > C) and one known variant (c.757delG) within SORD in four Chinese dHMN families. Ex vivo cDNA polymerase chain reaction confirmed that c.908 + 1 G > C variant was associated with impaired splicing of the SORD transcript. In vitro cell functional studies showed that c.404 A > G variant resulted in aggregate formation of SORD and low protein solubility, confirming the pathogenicity of SORD variants. We have provided more evidence to establish SORD as a causative gene for dHMN.


Late-onset sensory-motor axonal neuropathy, a novel SLC12A6-related phenotype.

  • Sissel Løseth‎ et al.
  • Brain : a journal of neurology‎
  • 2023‎

We describe five families from different regions in Norway with a late-onset autosomal-dominant hereditary polyneuropathy sharing a heterozygous variant in the SLC12A6 gene. Mutations in the same gene have previously been described in infants with autosomal-recessive hereditary motor and sensory neuropathy with corpus callosum agenesis and mental retardation (Andermann syndrome), and in a few case reports describing dominantly acting de novo mutations, most of them with onset in childhood. The phenotypes in our families demonstrated heterogeneity. Some of our patients only had subtle to moderate symptoms and some individuals even no complaints. None had CNS manifestations. Clinical and neurophysiological evaluations revealed a predominant sensory axonal polyneuropathy with slight to moderate motor components. In all 10 patients the identical SLC12A6 missense variant, NM_001365088.1 c.1655G>A p.(Gly552Asp), was identified. For functional characterization, the mutant potassium chloride cotransporter 3 was modelled in Xenopus oocytes. This revealed a significant reduction in potassium influx for the p.(Gly552Asp) substitution. Our findings further expand the spectrum of SLC12A6 disease, from biallelic hereditary motor and sensory neuropathy with corpus callosum agenesis and mental retardation and monoallelic early-onset hereditary motor and sensory neuropathy caused by de novo mutations, to late-onset autosomal-dominant axonal neuropathy with predominant sensory deficits.


HSPB1 mutations causing hereditary neuropathy in humans disrupt non-cell autonomous protection of motor neurons.

  • Patrick L Heilman‎ et al.
  • Experimental neurology‎
  • 2017‎

Heat shock protein beta-1 (HSPB1), is a ubiquitously expressed, multifunctional protein chaperone. Mutations in HSPB1 result in the development of a late-onset, distal hereditary motor neuropathy type II (dHMN) and axonal Charcot-Marie Tooth disease with sensory involvement (CMT2F). The functional consequences of HSPB1 mutations associated with hereditary neuropathy are unknown. HSPB1 also displays neuroprotective properties in many neuronal disease models, including the motor neuron disease amyotrophic lateral sclerosis (ALS). HSPB1 is upregulated in SOD1-ALS animal models during disease progression, predominately in glial cells. Glial cells are known to contribute to motor neuron loss in ALS through a non-cell autonomous mechanism. In this study, we examined the non-cell autonomous role of wild type and mutant HSPB1 in an astrocyte-motor neuron co-culture model system of ALS. Astrocyte-specific overexpression of wild type HSPB1 was sufficient to attenuate SOD1(G93A) astrocyte-mediated toxicity in motor neurons, whereas, overexpression of mutHSPB1 failed to ameliorate motor neuron toxicity. Expression of a phosphomimetic HSPB1 mutant in SOD1(G93A) astrocytes also reduced toxicity to motor neurons, suggesting that phosphorylation may contribute to HSPB1 mediated-neuroprotection. These data provide evidence that astrocytic HSPB1 expression may play a central role in motor neuron health and maintenance.


Hereditary sensory neuropathy type 1-associated deoxysphingolipids cause neurotoxicity, acute calcium handling abnormalities and mitochondrial dysfunction in vitro.

  • Emma R Wilson‎ et al.
  • Neurobiology of disease‎
  • 2018‎

Hereditary sensory neuropathy type 1 (HSN-1) is a peripheral neuropathy most frequently caused by mutations in the SPTLC1 or SPTLC2 genes, which code for two subunits of the enzyme serine palmitoyltransferase (SPT). SPT catalyzes the first step of de novo sphingolipid synthesis. Mutations in SPT result in a change in enzyme substrate specificity, which causes the production of atypical deoxysphinganine and deoxymethylsphinganine, rather than the normal enzyme product, sphinganine. Levels of these abnormal compounds are elevated in blood of HSN-1 patients and this is thought to cause the peripheral motor and sensory nerve damage that is characteristic of the disease, by a largely unresolved mechanism. In this study, we show that exogenous application of these deoxysphingoid bases causes dose- and time-dependent neurotoxicity in primary mammalian neurons, as determined by analysis of cell survival and neurite length. Acutely, deoxysphingoid base neurotoxicity manifests in abnormal Ca2+ handling by the endoplasmic reticulum (ER) and mitochondria as well as dysregulation of cell membrane store-operated Ca2+ channels. The changes in intracellular Ca2+ handling are accompanied by an early loss of mitochondrial membrane potential in deoxysphingoid base-treated motor and sensory neurons. Thus, these results suggest that exogenous deoxysphingoid base application causes neuronal mitochondrial dysfunction and Ca2+ handling deficits, which may play a critical role in the pathogenesis of HSN-1.


Stem Cell Therapy Enhances Motor Activity of Triceps Surae Muscle in Mice with Hereditary Peripheral Neuropathy.

  • Iryna Govbakh‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Impaired motor and sensory functions are the main features of Charcot-Marie-Tooth disease. Mesenchymal stem cell (MSCs) therapy is one of the possible treatments for this disease. It was assumed that MSCs therapy can improve the contractile properties of the triceps surae (TS) muscles in mice with hereditary peripheral neuropathy. Murine adipose-derived mesenchymal stromal cells (AD-MSCs) were obtained for transplantation into TS muscles of FVB-C-Tg(GFPU)5Nagy/J mice. Three months after AD-MSCs transplantation, animals were subjected to electrophysiological investigations. Parameters of TS muscle tension after intermittent high frequency electrical sciatic nerve stimulations were analyzed. It was found that force of TS muscle tension contraction in animals after AD-MSCs treatment was two-time higher than in untreated mice. Normalized values of force muscle contraction in different phases of electrical stimulation were 0.3 ± 0.01 vs. 0.18 ± 0.01 and 0.26 ± 0.03 vs. 0.13 ± 0.03 for treated and untreated animals, respectively. It is assumed that the two-fold increase in TS muscle strength was caused by stem cell therapy. Apparently, AD-MSCs therapy can promote nerve regeneration and partial restoration of muscle function, and thus can be a potential therapeutic agent for the treatment of peripheral neuropathies.


Further Validation of the SIGMAR1 c.151+1G>T Mutation as Cause of Distal Hereditary Motor Neuropathy.

  • Jessica J Y Lee‎ et al.
  • Child neurology open‎
  • 2016‎

Distal hereditary motor neuropathies represent a group of rare genetic disorders characterized by progressive distal motor weakness without sensory loss. Their genetic heterogeneity is high and thus eligible for diagnostic whole exome sequencing. The authors report successful application of whole exome sequencing in diagnosing a second consanguineous family with distal hereditary motor neuropathy due to a homozygous c.151+1G>T variant in SIGMAR1. This variant was recently proposed as causal for the same condition in a consanguineous Chinese family. Compared to this family, the Afghan ethnic origin of our patient is distinct, yet the features are identical, validating the SIGMAR1 deficiency phenotype: progressive muscle wasting/weakness in lower and upper limbs without sensory loss. Rapid disease progression during adolescent growth is similar and may be due to SIGMAR1's role in regulating axon elongation and tau phosphorylation. Finally, the authors conclude that SIGMAR1 deficiency should be added to the differential diagnosis of distal hereditary motor neuropathies.


Length-dependent MRI of hereditary neuropathy with liability to pressure palsies.

  • Michael Pridmore‎ et al.
  • Annals of clinical and translational neurology‎
  • 2020‎

Hereditary neuropathy with liability to pressure palsies (HNPP) is caused by heterozygous deletion of the peripheral myelin protein 22 (PMP22) gene. Patients with HNPP present multifocal, reversible sensory/motor deficits due to increased susceptibility to mechanical pressure. Additionally, age-dependent axonal degeneration is reported. We hypothesize that length-dependent axonal loss can be revealed by MRI, irrespective of the multifocal phenotype in HNPP.


Clinical and Genetic Features of Biallelic Mutations in SORD in a Series of Chinese Patients With Charcot-Marie-Tooth and Distal Hereditary Motor Neuropathy.

  • Xiaoxuan Liu‎ et al.
  • Frontiers in neurology‎
  • 2021‎

Biallelic mutations in the sorbitol dehydrogenase (SORD) gene have recently been found to be one of the most frequent causes of autosomal recessive axonal Charcot-Marie-Tooth (CMT2) and distal hereditary motor neuropathy (dHMN). This study was performed to explore the frequency of SORD mutations and correlations of the phenotypic-genetic spectrum in a relatively large Chinese cohort. In this study, we screened a cohort of 485 unrelated Chinese patients with hereditary neuropathy by using Sanger sequencing, next generation sequencing, or whole exome sequencing after PMP22 duplication was initially excluded. SORD mutation was identified in five out of 78 undiagnosed patients. Two individuals carried the previously reported homozygous c.757 delG (p.A253Qfs*27) variant, and three individuals carried the heterozygous c.757delG (p.A253Qfs*27) variant together with a second novel likely pathogenic variant, including c.731 C>T (p.P244L), c.776 C>T (p.A259V), or c.851T>C (p.L284P). The frequency of SORD variants was calculated to be 6.4% (5/78) in unclarified CMT2 and dHMN patients. All patients presented with distal weakness and atrophy in the lower limb, two of whom had minor clinical sensory abnormalities and small fiber neuropathy. Our study provides further information on the genotype and phenotype of patients with SORD mutations.


Genes for hereditary sensory and autonomic neuropathies: a genotype-phenotype correlation.

  • Annelies Rotthier‎ et al.
  • Brain : a journal of neurology‎
  • 2009‎

Hereditary sensory and autonomic neuropathies (HSAN) are clinically and genetically heterogeneous disorders characterized by axonal atrophy and degeneration, exclusively or predominantly affecting the sensory and autonomic neurons. So far, disease-associated mutations have been identified in seven genes: two genes for autosomal dominant (SPTLC1 and RAB7) and five genes for autosomal recessive forms of HSAN (WNK1/HSN2, NTRK1, NGFB, CCT5 and IKBKAP). We performed a systematic mutation screening of the coding sequences of six of these genes on a cohort of 100 familial and isolated patients diagnosed with HSAN. In addition, we screened the functional candidate gene NGFR (p75/NTR) encoding the nerve growth factor receptor. We identified disease-causing mutations in SPTLC1, RAB7, WNK1/HSN2 and NTRK1 in 19 patients, of which three mutations have not previously been reported. The phenotypes associated with mutations in NTRK1 and WNK1/HSN2 typically consisted of congenital insensitivity to pain and anhidrosis, and early-onset ulcero-mutilating sensory neuropathy, respectively. RAB7 mutations were only found in patients with a Charcot-Marie-Tooth type 2B (CMT2B) phenotype, an axonal sensory-motor neuropathy with pronounced ulcero-mutilations. In SPTLC1, we detected a novel mutation (S331F) corresponding to a previously unknown severe and early-onset HSAN phenotype. No mutations were found in NGFB, CCT5 and NGFR. Overall disease-associated mutations were found in 19% of the studied patient group, suggesting that additional genes are associated with HSAN. Our genotype-phenotype correlation study broadens the spectrum of HSAN and provides additional insights for molecular and clinical diagnosis.


Identification of two novel KIF5A mutations in hereditary spastic paraplegia associated with mild peripheral neuropathy.

  • Eva López‎ et al.
  • Journal of the neurological sciences‎
  • 2015‎

Spastic paraplegia type 10 (SPG10) is a rare form of autosomal dominant hereditary spastic paraplegia (AD-HSP) due to mutations in KIF5A, a gene encoding the neuronal kinesin heavy-chain involved in axonal transport. KIF5A mutations have been associated with a wide clinical spectrum, ranging from pure HSP to isolated peripheral nerve involvement or complicated HSP phenotypes. Most KIF5A mutations are clustered in the motor domain of the protein that is necessary for microtubule interaction. Here we describe two Spanish families with an adult onset complicated AD-HSP in which neurological studies revealed a mild sensory neuropathy. Intention tremor was also present in both families. Molecular genetic analysis identified two novel mutations c.773 C>T and c.833 C>T in the KIF5A gene resulting in the P258L and P278L substitutions respectively. Both were located in the highly conserved kinesin motor domain of the protein which has previously been identified as a hot spot for KIF5A mutations. This study adds to the evidence associating the known occurrence of mild peripheral neuropathy in the adult onset SPG10 type of AD-HSP.


A Novel CCT5 Missense Variant Associated with Early Onset Motor Neuropathy.

  • Vincenzo Antona‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Diseases associated with acquired or genetic defects in members of the chaperoning system (CS) are increasingly found and have been collectively termed chaperonopathies. Illustrative instances of genetic chaperonopathies involve the genes for chaperonins of Groups I (e.g., Heat shock protein 60, Hsp60) and II (e.g., Chaperonin Containing T-Complex polypeptide 1, CCT). Examples of the former are hypomyelinating leukodystrophy 4 (HLD4 or MitCHAP60) and hereditary spastic paraplegia (SPG13). A distal sensory mutilating neuropathy has been linked to a mutation [p.(His147Arg)] in subunit 5 of the CCT5 gene. Here, we describe a new possibly pathogenic variant [p.(Leu224Val)] of the same subunit but with a different phenotype. This yet undescribed disease affects a girl with early onset demyelinating neuropathy and a severe motor disability. By whole exome sequencing (WES), we identified a homozygous CCT5 c.670C>G p.(Leu224Val) variant in the CCT5 gene. In silico 3D-structure analysis and bioinformatics indicated that this variant could undergo abnormal conformation and could be pathogenic. We compared the patient's clinical, neurophysiological and laboratory data with those from patients carrying p.(His147Arg) in the equatorial domain. Our patient presented signs and symptoms absent in the p.(His147Arg) cases. Molecular dynamics simulation and modelling showed that the Leu224Val mutation that occurs in the CCT5 intermediate domain near the apical domain induces a conformational change in the latter. Noteworthy is the striking difference between the phenotypes putatively linked to mutations in the same CCT subunit but located in different structural domains, offering a unique opportunity for elucidating their distinctive roles in health and disease.


Both Schwann cell and axonal defects cause motor peripheral neuropathy in Ebf2-/- mice.

  • Caterina Giacomini‎ et al.
  • Neurobiology of disease‎
  • 2011‎

Charcot-Marie-Tooth neuropathies are frequent hereditary disorders of the nervous system and most cases remain without a molecular definition. Mutations in transcription factors have been previously associated to various types of this disease. Mice carrying a null mutation in Ebf2 transcription factor present peripheral nerve abnormalities. To get insight into Ebf2 function in peripheral nervous system, here we characterize the peripheral neuropathy affecting these mice. We first show that Ebf2 is largely expressed in peripheral nerve throughout postnatal development, its expression being not only restricted to non-myelin forming Schwann cells, but also involving myelin forming Schwann cells and the perineurium. As a consequence, the onset of myelination is delayed and Schwann cell differentiation markers are downregulated in Ebf2-/- mice. Later in development, myelin pathology appears less severe and characterized by isolated clusters of hypomyelinated fibers. However, we find defects in the nerve architecture, such as abnormalities of the nodal region and shorter internodal length. Furthermore, we demonstrate a significant decrease in axonal calibre, with a lack of large calibre axons, and a severe impairment of motor nerve conduction velocity and amplitude, whereas the sensory nerve parameters are less affected. Interestingly, a clinical case with peripheral motor neuropathy and clinical features similar to Ebf2-/- mice phenotype was associated with a deletion encompassing EBF2 human genomic locus. These findings demonstrate that Ebf2 is a new molecule implicated in peripheral nerve development and a potential candidate gene for peripheral nerve disorders.


Evaluation of Pathogenicity and Causativity of Variants in the MPZ and SH3TC2 Genes in a Family Case of Hereditary Peripheral Neuropathy.

  • Olga Shchagina‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The implementation of NGS methods into clinical practice allowed researchers effectively to establish the molecular cause of a disorder in cases of a genetically heterogeneous pathology. In cases of several potentially causative variants, we need additional analysis that can help in choosing a proper causative variant. In the current study, we described a family case of hereditary motor and sensory neuropathy (HMSN) type 1 (Charcot-Marie-Tooth disease). DNA analysis revealed two variants in the SH3TC2 gene (c.279G>A and c.1177+5G>A), as well as a previously described variant c.449-9C>T in the MPZ gene, in a heterozygous state. This family segregation study was incomplete because of the proband's father's unavailability. To evaluate the variants' pathogenicity, minigene splicing assay was carried out. This study showed no effect of the MPZ variant on splicing, but the c.1177+5G>A variant in the SH3TC2 gene leads to the retention of 122 nucleotides from intron 10 in the RNA sequence, causing a frameshift and an occurrence of a premature stop codon (NP_078853.2:p.Ala393GlyfsTer2).


Clinical, electrophysiological and magnetic resonance findings in a family with hereditary neuropathy with liability to pressure palsies caused by a novel PMP22 mutation.

  • Izaskun Yurrebaso‎ et al.
  • Neuromuscular disorders : NMD‎
  • 2014‎

Hereditary neuropathy with liability to pressure palsies (HNPP) is a disorder mainly caused by a 1.5-Mb deletion at 17p11.2-12 (and in some rare cases by point mutations) and clinically associated with recurrent painless palsies. Here, we performed electrophysiological (motor, sensory and terminal latency index), MRI and genetic studies in a family referred for ulnar neuropathy with pain. Surprisingly, we found typical neurophysiological features of HNPP (prolongation of distal motor latencies and diffuse SNCV slowing with significant slowing of motor nerve conduction velocities). Besides, the proband presented conduction block in left ulnar, left median and both peroneal nerves. MRI findings were consistent with an underlying neuropathy. Molecular studies identified a novel frameshift mutation in PMP22 confirming the diagnosis of HNPP. Our data suggest that neurophysiological studies are essential to characterize underdiagnosed HNPP patients referred for peripheral neuropathy. Our experience shows that MRI could be a complementary tool for the diagnosis of these patients.


A neuropathy-associated kinesin KIF1A mutation hyper-stabilizes the motor-neck interaction during the ATPase cycle.

  • Manatsu Morikawa‎ et al.
  • The EMBO journal‎
  • 2022‎

The mechanochemical coupling of ATPase hydrolysis and conformational dynamics in kinesin motors facilitates intramolecular interaction cycles between the kinesin motor and neck domains, which are essential for microtubule-based motility. Here, we characterized a charge-inverting KIF1A-E239K mutant that we identified in a family with axonal-type Charcot-Marie-Tooth disease and also in 24 cases in human neuropathies including spastic paraplegia and hereditary sensory and autonomic neuropathy. We show that Glu239 in the β7 strand is a key residue of the motor domain that regulates the motor-neck interaction. Expression of the KIF1A-E239K mutation has decreased ability to complement Kif1a+/- neurons, and significantly decreases ATPase activity and microtubule gliding velocity. X-ray crystallography shows that this mutation causes an excess positive charge on β7, which may electrostatically interact with a negative charge on the neck. Quantitative mass spectrometric analysis supports that the mutation hyper-stabilizes the motor-neck interaction at the late ATP hydrolysis stage. Thus, the negative charge of Glu239 dynamically regulates the kinesin motor-neck interaction, promoting release of the neck from the motor domain upon ATP hydrolysis.


PINK1 and Parkin Ameliorate the Loss of Motor Activity and Mitochondrial Dysfunction Induced by Peripheral Neuropathy-Associated HSPB8 Mutants in Drosophila Models.

  • Kyong-Hwa Kang‎ et al.
  • Biomedicines‎
  • 2023‎

Charcot-Marie-Tooth disease (CMT) is a group of inherited peripheral nerve disorders characterized by progressive muscle weakness and atrophy, sensory loss, foot deformities and steppage gait. Missense mutations in the gene encoding the small heat shock protein HSPB8 (HSP22) have been associated with hereditary neuropathies, including CMT. HSPB8 is a member of the small heat shock protein family sharing a highly conserved α-crystallin domain that is critical to its chaperone activity. In this study, we modeled HSPB8 mutant-induced neuropathies in Drosophila. The overexpression of human HSPB8 mutants in Drosophila neurons produced no significant defect in fly development but led to a partial reduction in fly lifespan. Although these HSPB8 mutant genes failed to induce sensory abnormalities, they reduced the motor activity of flies and the mitochondrial functions in fly neuronal tissue. The motor defects and mitochondrial dysfunction were successfully restored by PINK1 and parkin, which are Parkinson's disease-associated genes that have critical roles in maintaining mitochondrial function and integrity. Consistently, kinetin riboside, a small molecule amplifying PINK1 activity, also rescued the loss of motor activity in our HSPB8 mutant model.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: