Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 30 papers

Hepatocyte nuclear factor 1 alpha influences pancreatic cancer growth and metastasis.

  • Ramadevi Subramani‎ et al.
  • Scientific reports‎
  • 2020‎

Hepatocyte nuclear factor 1 homeobox alpha (HNF1α) is a transcription factor involved in endodermal organogenesis and pancreatic precursor cell differentiation and development. Earlier studies have reported a role for HNF1α in pancreatic ductal adenocarcinoma (PDAC) but it is controversial. The mechanism by which it impacts PDAC is yet to be explored in depth. In this study, using the online databases we observed that HNF1α is upregulated in PDAC, which was also confirmed by our immunohistochemical analysis of PDAC tissue microarray. Silencing HNF1α reduced the proliferative, migratory, invasive and colony forming capabilities of pancreatic cancer cells. Key markers involved in these processes (pPI3K, pAKT, pERK, Bcl2, Zeb, Snail, Slug) were significantly changed in response to alterations in HNF1α expression. On the other hand, overexpression of HNF1α did not induce any significant change in the aggressiveness of pancreatic cancer cells. Our results demonstrate that reduced expression of HNF1α leads to inhibition of pancreatic cancer growth and progression, which indicates that it could be a potential oncogene and target for PDAC.


Enhancement of CYP3A4 activity in Hep G2 cells by lentiviral transfection of hepatocyte nuclear factor-1 alpha.

  • Tsai-Shin Chiang‎ et al.
  • PloS one‎
  • 2014‎

Human hepatoma cell lines are commonly used as alternatives to primary hepatocytes for the study of drug metabolism in vitro. However, the phase I cytochrome P450 (CYP) enzyme activities in these cell lines occur at a much lower level than their corresponding activities in primary hepatocytes, and thus these cell lines may not accurately predict drug metabolism. In the present study, we selected hepatocyte nuclear factor-1 alpha (HNF1α) from six transcriptional regulators for lentiviral transfection into Hep G2 cells to optimally increase their expression of the CYP3A4 enzyme, which is the major CYP enzyme in the human body. We subsequently found that HNF1α-transfected Hep G2 enhanced the CYP3A4 expression in a time- and dose-dependent manner and the activity was noted to increase with time and peaked 7 days. With a multiplicity of infection (MOI) of 100, CYP3A4 expression increased 19-fold and enzyme activity more than doubled at day 7. With higher MOI (1,000 to 3,000), the activity increased 8- to 10-fold; however, it was noted the higher MOI, the higher cell death rate and lower cell survival. Furthermore, the CYP3A4 activity in the HNF1α-transfected cells could be induced by CYP3A4-specific inducer, rifampicin, and metabolized nifedipine in a dose-dependent manner. With an MOI of 3,000, nifedipine-metabolizing activity was 6-fold of control and as high as 66% of primary hepatocytes. In conclusion, forceful delivery of selected transcriptional regulators into human hepatoma cells might be a valuable method to enhance the CYP activity for a more accurate determination of drug metabolism in vitro.


Polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1 alpha are associated with C-reactive protein.

  • Alexander P Reiner‎ et al.
  • American journal of human genetics‎
  • 2008‎

Data from the Pharmacogenomics and Risk of Cardiovascular Disease (PARC) study and the Cardiovascular Health Study (CHS) provide independent and confirmatory evidence for association between common polymorphisms of the HNF1A gene encoding hepatocyte nuclear factor-1 alpha and plasma C-reactive protein (CRP) concentration. Analyses with the use of imputation-based methods to combine genotype data from both studies and to test untyped SNPs from the HapMap database identified several SNPs within a 5 kb region of HNF1A intron 1 with the strongest evidence of association with CRP phenotype.


Hepatocyte nuclear factor 1-alpha mutation in normal glucose-tolerant subjects and early-onset type 2 diabetic patients.

  • Dong Mee Lim‎ et al.
  • The Korean journal of internal medicine‎
  • 2008‎

The prevalence of diabetes in Korea is reported to be approximately 10%, but cases of maturity-onset diabetes of the young (MODY) are rare in Korea. A diagnostic technique for autosomal dominant MODY is being actively sought. In this regard, we used a DNA chip to investigate the frequency of mutations of the MODY3 gene (hepatocyte nuclear factor-1alpha) in Korean patients with early-onset type 2 diabetes.


Diffuse glomerular nodular lesions in diabetic pigs carrying a dominant-negative mutant hepatocyte nuclear factor 1-alpha, an inheritant diabetic gene in humans.

  • Satoshi Hara‎ et al.
  • PloS one‎
  • 2014‎

Glomerular nodular lesions, known as Kimmelstiel-Wilson nodules, are a pathological hallmark of progressive human diabetic nephropathy. We have induced severe diabetes in pigs carrying a dominant-negative mutant hepatocyte nuclear factor 1-alpha (HNF1α) P291fsinsC, a maturity-onset diabetes of the young type-3 (MODY3) gene in humans. In this model, glomerular pathology revealed that formation of diffuse glomerular nodules commenced as young as 1 month of age and increased in size and incidence until the age of 10 months, the end of the study period. Immunohistochemistry showed that the nodules consisted of various collagen types (I, III, IV, V and VI) with advanced glycation end-product (AGE) and Nε-carboxymethyl-lysine (CML) deposition, similar to those in human diabetic nodules, except for collagen type I. Transforming growth factor-beta (TGF-β) was also expressed exclusively in the nodules. The ultrastructure of the nodules comprised predominant interstitial-type collagen deposition arising from the mesangial matrices. Curiously, these nodules were found predominantly in the deep cortex. However, diabetic pigs failed to show any of the features characteristic of human diabetic nephropathy; e.g., proteinuria, glomerular basement membrane thickening, exudative lesions, mesangiolysis, tubular atrophy, interstitial fibrosis, and vascular hyalinosis. The pigs showed only Armanni-Ebstein lesions, a characteristic tubular manifestation in human diabetes. RT-PCR analysis showed that glomeruli in wild-type pigs did not express endogenous HNF1α and HNF1β, indicating that mutant HNF1α did not directly contribute to glomerular nodular formation in diabetic pigs. In conclusion, pigs harboring the dominant-negative mutant human MODY3 gene showed reproducible and distinct glomerular nodules, possibly due to AGE- and CML-based collagen accumulation. Although the pathology differed in several respects from that of human glomerular nodular lesions, the somewhat acute and constitutive formation of nodules in this mammalian model might provide information facilitating identification of the principal mechanism underlying diabetic nodular sclerosis.


Abnormal nephron development associated with a frameshift mutation in the transcription factor hepatocyte nuclear factor-1 beta.

  • C Bingham‎ et al.
  • Kidney international‎
  • 2000‎

The transcription factor hepatocyte nuclear factor (HNF)-1 beta functions as a homodimer or as a heterodimer with the structurally related protein HNF-1 alpha. Both are expressed sequentially in rat kidney development, with HNF-1 beta being detected from the earliest inductory phases. HNF-1 beta gene mutations are associated with a unique disorder characterized by maturity-onset diabetes of the young (MODY) and early-onset and progressive nondiabetic renal dysfunction, which may lead to chronic renal failure.


Genetic Study of Hepatocyte Nuclear Factor 1 Alpha Variants in Development of Early-Onset Diabetes Type 2 and Maturity-Onset Diabetes of the Young 3 in Iran.

  • Aliasgar Mohammadi‎ et al.
  • Advanced biomedical research‎
  • 2019‎

Maturity-onset diabetes of the young (MODY) is a clinically and genetically heterogeneous group of diabetes characterized by noninsulin-dependent, autosomal-dominant disorder with strong familial history, early age of onset, and pancreatic beta-cell dysfunction. Mutations in at least 14 different genes are responsible for various MODY subtypes. Heterozygous mutations in the hepatocyte nuclear factor 1 alpha (HNF1A) gene are responsible for the MODY3 subtype, which is a common subtype of MODY in different studied populations. To date, more than 450 different variants of this gene have been reported as disease causing for MODY3. This study was carried out to evaluate HNF1A mutations in Iranian diabetic families fulfilling MODY criteria.


Hepatocyte nuclear factor 1A (HNF1A) as a possible tumor suppressor in pancreatic cancer.

  • Zhaofan Luo‎ et al.
  • PloS one‎
  • 2015‎

HNF1A (Hepatocyte nuclear factor 1 alpha) is a transcription factor that is known to regulate pancreatic differentiation and maintain homeostasis of endocrine pancreas. Recently, genome-wide association studies have implicated HNF1A as a susceptibility gene for pancreatic cancer. However, the functional significance and molecular mechanism of HNF1A in pancreatic carcinogenesis remains unclear.


Generation of an induced pluripotent stem cell (iPSC) line from a patient with maturity-onset diabetes of the young type 3 (MODY3) carrying a hepatocyte nuclear factor 1-alpha (HNF1A) mutation.

  • Frank Griscelli‎ et al.
  • Stem cell research‎
  • 2018‎

Heterozygous non-synonymous (p.S142F) mutation in HNF1A leads to maturity-onset diabetes of the young (MODY) type 3, which is a subtype of dominant inherited young-onset non-autoimmune diabetes due to the defect of insulin secretion from pancreatic beta cells. We generated induced pluripotent stem cells (iPSCs) from a patient with HNF1A p.S142F mutation. Cells from this patient, which were reprogrammed by non-integrative viral transduction had normal karyotype, harboured the HNF1A p.S142F mutation, expressed pluripotency hallmarks.


Serine 249 phosphorylation by ATM protein kinase regulates hepatocyte nuclear factor-1α transactivation.

  • Long Zhao‎ et al.
  • Biochimica et biophysica acta‎
  • 2014‎

Hepatocyte nuclear factor-1 alpha (HNF1α) exerts important effects on gene expression in multiple tissues. Several studies have directly or indirectly supported the role of phosphorylation processes in the activity of HNF1α. However, the molecular mechanism of this phosphorylation remains largely unknown. Using microcapillary liquid chromatography MS/MS and biochemical assays, we identified a novel phosphorylation site in HNF1α at Ser249. We also found that the ATM protein kinase phosphorylated HNF1α at Ser249 in vitro in an ATM-dependent manner and that ATM inhibitor KU55933 treatment inhibited phosphorylation of HNF1α at Ser249 in vivo. Coimmunoprecipitation assays confirmed the association between HNF1α and ATM. Moreover, ATM enhanced HNF1α transcriptional activity in a dose-dependent manner, whereas the ATM kinase-inactive mutant did not. The use of KU55933 confirmed our observation. Compared with wild-type HNF1α, a mutation in Ser249 resulted in a pronounced decrease in HNF1α transactivation, whereas no dominant-negative effect was observed. The HNF1αSer249 mutant also exhibited normal nuclear localization but decreased DNA-binding activity. Accordingly, the functional studies of HNF1αSer249 mutant revealed a defect in glucose metabolism. Our results suggested that ATM regulates the activity of HNF1α by phosphorylation of serine 249, particularly in glucose metabolism, which provides valuable insights into the undiscovered mechanisms of ATM in the regulation of glucose homeostasis.


Cyanidin-3-glucoside enhances mitochondrial function and biogenesis in a human hepatocyte cell line.

  • Rashad Mogalli‎ et al.
  • Cytotechnology‎
  • 2018‎

Mitochondrial dysfunction has been identified as one of the primary factors contributing to liver diseases. Pathways that control mitochondrial biogenesis are potential therapeutic targets for the amelioration of hepatocyte dysfunction and liver disease. Research on natural pharmacological agents that ameliorate liver diseases has intensified over the last two decades. Cyanidin-3-glucoside (Cy3g), a dietary flavonoid compound extracted from a wide variety of fruits and vegetables, reportedly has several beneficial health effects. In this study, we used an adult human hepatoma cell line (HuH7) to investigate the effects of the Cy3g polyphenolic compound on mitochondrial function and biogenesis in vitro. An increase in intracellular mitochondrial reductase levels was observed after treatment with Cy3g, but cytotoxicity was not induced. In addition, mitochondrial membrane potential and ATP production were increased following Cy3g treatment. Cy3g treatment also resulted in a dose- and time-dependent upregulation of the gene expression of peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α), a transcription factor considered a master regulator of mitochondrial biogenesis and metabolism. Additionally, the expression of sirtuin 1 (SIRT1), which plays a key role in deacetylating PGC-1α, was also increased in a dose- and time-dependent manner. Cy3g treatment also increased the expression of downstream PGC-1α genes, nuclear respiratory factor 1 and mitochondrial transcription factor A (TFAM). Our results suggest that Cy3g has potential as a hepatoprotective therapeutic agent that enhances mitochondrial function and biogenesis in hepatocytes.


Comprehensive Molecular Evaluation of HNF-1 Alpha, miR-27a, and miR-146 Gene Variants and Their Link with Predisposition and Progression in Type 2 Diabetes Patients.

  • Rashid Mir‎ et al.
  • Journal of personalized medicine‎
  • 2023‎

Type 2 diabetes (T2D) is a metabolic condition induced by insulin resistance and pancreatic beta cell dysfunction. MicroRNAs (miRNAs) have biological significance because they regulate processes such as the molecular signaling pathways involved in the pathophysiology of diabetes mellitus. The hepatocyte nuclear factor-1 alpha (HNF-1 alpha) is a transcription factor found in hepatocytes and the pancreas. Mutations in the HNF-1 alpha gene were reportedly associated with maturity-onset diabetes of the young (MODY). The objective of the present study was to examine the associations between MiR-27a, MiR-146, and HNF-1 alpha single-nucleotide variations (SNVs) with T2D risk in the Saudi population.


A single dose of dapagliflozin, an SGLT-2 inhibitor, induces higher glycosuria in GCK- and HNF1A-MODY than in type 2 diabetes mellitus.

  • J Hohendorff‎ et al.
  • Endocrine‎
  • 2017‎

SGLT2 inhibitors are a new class of oral hypoglycemic agents used in type 2 diabetes (T2DM). Their effectiveness in maturity onset diabetes of the young (MODY) is unknown. We aimed to assess the response to a single dose of 10 mg dapagliflozin in patients with Hepatocyte Nuclear Factor 1 Alpha (HNF1A)-MODY, Glucokinase (GCK)-MODY, and type 2 diabetes.


Characterisation of HNF1A variants in paediatric diabetes in Norway using functional and clinical investigations to unmask phenotype and monogenic diabetes.

  • Pernille Svalastoga‎ et al.
  • Diabetologia‎
  • 2023‎

Correctly diagnosing MODY is important, as individuals with this diagnosis can discontinue insulin injections; however, many people are misdiagnosed. We aimed to develop a robust approach for determining the pathogenicity of variants of uncertain significance in hepatocyte nuclear factor-1 alpha (HNF1A)-MODY and to obtain an accurate estimate of the prevalence of HNF1A-MODY in paediatric cases of diabetes.


Romidepsin (FK228) in a Mouse Model of Lipopolysaccharide-Induced Acute Kidney Injury is Associated with Down-Regulation of the CYP2E1 Gene.

  • Shulin Cheng‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2020‎

BACKGROUND Romidepsin (FK228) or depsipeptide, is a selective inhibitor of histone deacetylase 1 (HDAC1) and HDAC2. This study aimed to investigate the effects and molecular mechanisms of romidepsin (FK228) in a mouse model of acute kidney injury (AKI) induced by lipopolysaccharide (LPS). MATERIAL AND METHODS The mouse model of AKI was developed by intraperitoneal injection of LPS. The mice were also treated intraperitoneally with romidepsin (FK228) six hours following injection of LPS. Markers of renal injury were measured, including blood urea nitrogen (BUN), serum creatinine (SCR), and serum cystatin C (Cys C) were measured. Histology and transmission electron microscopy were performed to evaluate tissue injury further. Levels of HDACs were detected by quantitative real-time polymerase chain reaction (qRT-PCR) and Western blot. Co-immunoprecipitation (Co-IP) and chromatin immunoprecipitation (ChIP) assays were used to investigate the regulation of CYP2E1 expression. RESULTS Treatment with romidepsin (FK228) significantly reduced the levels of BUN, SCR, and Cys C induced by LPS. Histology of the mouse kidneys showed that treatment with romidepsin (FK228) reduced the degree of renal injury. CYP2E1 significantly reduced following treatment with romidepsin (FK228) in the mouse model of AKI. Also, acetylation of H3 was upregulated following treatment with romidepsin (FK228), and binding of hepatocyte nuclear factor-1 alpha (HNF-1a) on the CYP2E1 promoter was significantly increased. CONCLUSIONS In a mouse model of LPS-induced AKI, treatment with romidepsin (FK228) downregulated the expression of CYP2E1 by inhibiting the binding if HNF-1a with the CYP2E1 promoter to reduce renal injury.


Best practice guidelines for the molecular genetic diagnosis of maturity-onset diabetes of the young.

  • S Ellard‎ et al.
  • Diabetologia‎
  • 2008‎

Mutations in the GCK and HNF1A genes are the most common cause of the monogenic forms of diabetes known as 'maturity-onset diabetes of the young'. GCK encodes the glucokinase enzyme, which acts as the pancreatic glucose sensor, and mutations result in stable, mild fasting hyperglycaemia. A progressive insulin secretory defect is seen in patients with mutations in the HNF1A and HNF4A genes encoding the transcription factors hepatocyte nuclear factor-1 alpha and -4 alpha. A molecular genetic diagnosis often changes management, since patients with GCK mutations rarely require pharmacological treatment and HNF1A/4A mutation carriers are sensitive to sulfonylureas. These monogenic forms of diabetes are often misdiagnosed as type 1 or 2 diabetes. Best practice guidelines for genetic testing were developed to guide testing and reporting of results.


Defective functions of HNF1A variants on BCL2L1 transactivation and beta-cell growth.

  • Jatuporn Sujjitjoon‎ et al.
  • Biochemical and biophysical research communications‎
  • 2020‎

Maturity-onset diabetes of the young type 3 (MODY3) is caused by mutations in a gene encoding transcription factor hepatocyte nuclear factor 1-alpha (HNF1A). Although the roles of HNF1A in regulation of hepatic and pancreatic genes to maintain glucose homeostasis were investigated, the functions of HNF1A are not completely elucidated. To better understand the functions of HNF1A, we characterized mutations of HNF1A in Thai MODY3 patients and studied the functions of wild-type HNF1A and variant proteins. We demonstrate for the first time that HNF1A upregulates transactivation of an anti-apoptotic gene BCL2 Like 1 (BCL2L1) and that all the identified HNF1A variants including p.D80V, p.R203C, p.P475L, and p.G554fsX556, reduce this ability. The four HNF1A variants impair HNF1A function in promoting INS-1 cell transition from G1 to S phase of cell cycle, which thereby retard cell growth. This finding indicates the role of HNF1A in beta-cell viability by upregulation of anti-apoptotic gene expression and also reaffirms its role in beta-cell growth through cell cycle control.


Mesenchymal Stem/ Stromal Cells metabolomic and bioactive factors profiles: A comparative analysis on the umbilical cord and dental pulp derived Stem/ Stromal Cells secretome.

  • Ana Rita Caseiro‎ et al.
  • PloS one‎
  • 2019‎

Mesenchymal Stem/ Stromal Cells assume a supporting role to the intrinsic mechanisms of tissue regeneration, a feature mostly assigned to the contents of their secretome. A comparative study on the metabolomic and bioactive molecules/factors content of the secretome of Mesenchymal Stem/ Stromal Cells derived from two expanding sources: the umbilical cord stroma and the dental pulp is presented and discussed. The metabolic profile (Nuclear Magnetic Resonance Spectroscopy) evidenced some differences in the metabolite dynamics through the conditioning period, particularly on the glucose metabolism. Despite, overall similar profiles are suggested. More prominent differences are highlighted for the bioactive factors (Multiplexing Laser Bear Analysis), in which Follistatin, Growth Regulates Protein, Hepatocyte Growth Factor, Interleukin-8 and Monocyte Chemotactic Protein-1 dominate in Umbilical Cord Mesenchymal Stem/ Stromal Cells secretion, while in Dental Pulp Stem/ Stromal Cells the Vascular Endothelial Growth Factor-A and Follistatin are more evident. The distinct secretory cocktail did not result in significantly different effects on endothelial cell populations dynamics including proliferation, migration, tube formation capacity and in vivo angiogenesis, or in chemotaxis for both Mesenchymal Stem/ Stromal Cells populations.


Organic anion and cation SLC22 "drug" transporter (Oat1, Oat3, and Oct1) regulation during development and maturation of the kidney proximal tubule.

  • Thomas F Gallegos‎ et al.
  • PloS one‎
  • 2012‎

Proper physiological function in the pre- and post-natal proximal tubule of the kidney depends upon the acquisition of selective permeability, apical-basolateral epithelial polarity and the expression of key transporters, including those involved in metabolite, toxin and drug handling. Particularly important are the SLC22 family of transporters, including the organic anion transporters Oat1 (originally identified as NKT) and Oat3 as well as the organic cation transporter Oct1. In ex vivo cultures of metanephric mesenchyme (MM; the embryonic progenitor tissue of the nephron) Oat function was evident before completion of nephron segmentation and corresponded with the maturation of tight junctions as measured biochemically by detergent extractability of the tight junction protein, ZO-1. Examination of available time series microarray data sets in the context of development and differentiation of the proximal tubule (derived from both in vivo and in vitro/ex vivo developing nephrons) allowed for correlation of gene expression data to biochemically and functionally defined states of development. This bioinformatic analysis yielded a network of genes with connectivity biased toward Hnf4α (but including Hnf1α, hyaluronic acid-CD44, and notch pathways). Intriguingly, the Oat1 and Oat3 genes were found to have strong temporal co-expression with Hnf4α in the cultured MM supporting the notion of some connection between the transporters and this transcription factor. Taken together with the ChIP-qPCR finding that Hnf4α occupies Oat1, Oat3, and Oct1 proximal promoters in the in vivo differentiating rat kidney, the data suggest a network of genes with Hnf4α at its center plays a role in regulating the terminal differentiation and capacity for drug and toxin handling by the nascent proximal tubule of the kidney.


Development of an exoglycosidase plate-based assay for detecting α1-3,4 fucosylation biomarker in individuals with HNF1A-MODY.

  • Daniel Demus‎ et al.
  • Glycobiology‎
  • 2022‎

Maturity-onset diabetes of the young due to hepatocyte nuclear factor-1 alpha variants (HNF1A-MODY) causes monogenic diabetes. Individuals carrying damaging variants in HNF1A show decreased levels of α1-3,4 fucosylation, as demonstrated on antennary fucosylation of blood plasma N-glycans. The excellent diagnostic performance of this glycan biomarker in blood plasma N-glycans of individuals with HNF1A-MODY has been demonstrated using liquid chromatography methods. Here, we have developed a high-throughput exoglycosidase plate-based assay to measure α1-3,4 fucosylation levels in blood plasma samples. The assay has been optimized and its validity tested using 1000 clinical samples from a cohort of individuals with young-adult onset diabetes including cases with HNF1A-MODY. The α1-3,4 fucosylation levels in blood plasma showed a good differentiating power in identifying cases with damaging HNF1A variants, as demonstrated by receiver operating characteristic curve analysis with the AUC values of 0.87 and 0.95. This study supports future development of a simple diagnostic test to measure this glycan biomarker for application in a clinical setting.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: