Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,219 papers

Hepatocyte growth factor, hepatocyte growth factor activator and arginine in a rat fulminant colitis model.

  • Nathan P Zwintscher‎ et al.
  • Annals of medicine and surgery (2012)‎
  • 2016‎

Dextran sodium sulfate (DSS) is commonly used to induce a murine fulminant colitis model. Hepatocyte growth factor (HGF) has been shown to decrease the symptoms of inflammatory bowel disease (IBD) but the effect of its activator, HGFA, is not well characterized. Arginine reduces effects of oxidative stress but its effect on IBD is not well known. The primary aim is to determine whether HGF and HGFA, or arginine will decrease IBD symptoms such as pain and diarrhea in a DSS-induced fulminant colitis murine model.


Direct binding of hepatocyte growth factor and vascular endothelial growth factor to CD44v6.

  • Yvonne Volz‎ et al.
  • Bioscience reports‎
  • 2015‎

CD44v6, a member of the CD44 family of transmembrane glycoproteins is a co-receptor for two receptor tyrosine kinases (RTKs), Met and VEGFR-2 (vascular endothelial growth factor receptor 2). CD44v6 is not only required for the activation of these RTKs but also for signalling. In order to understand the role of CD44v6 in Met and VEGFR-2 activation and signalling we tested whether CD44v6 binds to their ligands, HGF (hepatocyte growth factor) and VEGF (vascular endothelial growth factor), respectively. FACS analysis and cellular ELISA showed binding of HGF and VEGF only to cells expressing CD44v6. Direct binding of CD44v6 to HGF and VEGF was demonstrated in pull-down assays and the binding affinities were determined using MicroScale Thermophoresis, fluorescence correlation spectroscopy and fluorescence anisotropy. The binding affinity of CD44v6 to HGF is in the micromolar range in contrast with the high-affinity binding measured in the case of VEGF and CD44v6, which is in the nanomolar range. These data reveal a heparan sulfate-independent direct binding of CD44v6 to the ligands of Met and VEGFR-2 and suggest different roles of CD44v6 for these RTKs.


Hepatocyte growth factor induces epithelial cell motility through transactivation of the epidermal growth factor receptor.

  • Julie K Spix‎ et al.
  • Experimental cell research‎
  • 2007‎

Hepatocyte growth factor (HGF) is a potent inducer of motility in epithelial cells. Since we have previously found that activation of the epidermal growth factor receptor (EGFR) is an absolute prerequisite for induction of motility of corneal epithelial cells after wounding, we investigated whether induction of motility in response to HGF is also dependent on activation of the EGFR. We now report that HGF induces transactivation of the EGFR in an immortalized line of corneal epithelial cells, in human skin keratinocytes, and in Madin-Darby canine kidney cells. EGFR activation is unconditionally required for induction of motility in corneal epithelial cells, and for induction of a fully motile phenotype in Madin-Darby canine kidney cells. Activation of the EGFR occurs through amphiregulin and heparin-binding epidermal growth factor-like growth factor. Early after HGF stimulation, blocking EGFR activation does not inhibit extracellular-signal regulated kinase 1/2 (ERK1/2) activation by HGF, but the converse is seen after approximately 1 h, indicating the existence of EGFR-dependent and -independent routes of ERK1/2 activation. In summary, HGF induces transactivation of the EGFR in epithelial cells, and this is a prerequisite for induction of full motility.


Rilotumumab Resistance Acquired by Intracrine Hepatocyte Growth Factor Signaling.

  • Fabiola Cecchi‎ et al.
  • Cancers‎
  • 2023‎

Drug resistance is a long-standing impediment to effective systemic cancer therapy and acquired drug resistance is a growing problem for molecularly-targeted therapeutics that otherwise have shown unprecedented successes in disease control. The hepatocyte growth factor (HGF)/Met receptor pathway signaling is frequently involved in cancer and has been a subject of targeted drug development for nearly 30 years. To anticipate and study specific resistance mechanisms associated with targeting this pathway, we engineered resistance to the HGF-neutralizing antibody rilotumumab in glioblastoma cells harboring autocrine HGF/Met signaling, a frequent abnormality of this brain cancer in humans. We found that rilotumumab resistance was acquired through an unusual mechanism comprising dramatic HGF overproduction and misfolding, endoplasmic reticulum (ER) stress-response signaling and redirected vesicular trafficking that effectively sequestered rilotumumab and misfolded HGF from native HGF and activated Met. Amplification of MET and HGF genes, with evidence of rapidly acquired intron-less, reverse-transcribed copies in DNA, was also observed. These changes enabled persistent Met pathway activation and improved cell survival under stress conditions. Point mutations in the HGF pathway or other complementary or downstream growth regulatory cascades that are frequently associated with targeted drug resistance in other prevalent cancer types were not observed. Although resistant cells were significantly more malignant, they retained sensitivity to Met kinase inhibition and acquired sensitivity to inhibition of ER stress signaling and cholesterol biosynthesis. Defining this mechanism reveals details of a rapidly acquired yet highly-orchestrated multisystem route of resistance to a selective molecularly-targeted agent and suggests strategies for early detection and effective intervention.


Hepatocyte growth factor regulates proteoglycan synthesis in interstitial fibroblasts.

  • Emi Kobayashi‎ et al.
  • Kidney international‎
  • 2003‎

Hepatocyte growth factor (HGF) is a clinically important growth factor with therapeutic potential for the treatment of interstitial fibrosis and chronic renal failure. Proteoglycans are components of the renal interstitium, which have multiple actions, including growth regulation. In this study, we examined the effects of HGF on proteoglycan synthesis in interstitial fibroblasts, and the mechanisms of these effects.


Basic fibroblast growth factor enhances proliferation and hepatocyte growth factor expression of feline mesenchymal stem cells.

  • Youhei Fujimoto‎ et al.
  • Regenerative therapy‎
  • 2020‎

The objective of this study is to evaluate the effect of basic fibroblast growth factor (bFGF) on the proliferation and secretion activity of feline adipose-derived mesenchymal stem cells (MSC).


Heparin-binding epidermal growth factor-like growth factor and hepatocyte growth factor inhibit cholestatic liver injury in mice through different mechanisms.

  • Kouichi Sakamoto‎ et al.
  • International journal of molecular medicine‎
  • 2016‎

In contrast to hepatocyte growth factor (HGF), the therapeutic potential and pathophysiologic roles of heparin-binding epidermal growth factor-like growth factor (HB-EGF) in liver diseases remain relatively unknown. To address the lack of effective pharmacologic treatments for cholestatic liver injuries, as well as to clarify the biologic features of these growth factors, we explored the effects of HB-EGF and HGF in mice with cholestatic liver injury induced by bile duct ligation (BDL). The mice were assessed 3, 5 and/or 14 days after BDL (acute, subacute and/or chronic phases, respectively) and intravenous injection of adenoviral vector expressing LacZ (control), HB-EGF, HGF, or HB-EGF and HGF. HB-EGF, HGF, or a combination of the growth factors exerted potent antioncotic (antinecrotic), antiapoptotic, anticholestatic, and regenerative effects on hepatocytes in vivo, whereas no robust antiapoptotic or regenerative effects were detected in interlobular bile ducts. Based on serum transaminase levels, the acute protective effects of HB-EGF on hepatocytes were greater than those of HGF. On the other hand, liver fibrosis and cholestasis during the chronic phase were more potently inhibited by HGF compared with HB-EGF. Compared with either growth factor alone, combining HB-EGF and HGF produced greater anticholestatic and regenerative effects during the chronic phase. Taken together, these findings suggest that HB-EGF and HGF inhibited BDL-induced cholestatic liver injury, predominantly by exerting acute cytoprotective and chronic antifibrotic effects, respectively; combining the growth factors enhanced the anticholestatic effects and liver regeneration during the chronic phase. Our results contribute to a better understanding of the pathophysiologic roles of HB-EGF and HGF, as well as to the development of novel effective therapies for cholestatic liver injuries.


Hepatocyte growth factor (HGF) modulates GABAergic inhibition and seizure susceptibility.

  • Mihyun H Bae‎ et al.
  • Experimental neurology‎
  • 2010‎

Disrupted ontogeny of forebrain inhibitory interneurons leads to neurological disorders, including epilepsy. Adult mice lacking the urokinase plasminogen activator receptor (Plaur) have decreased numbers of neocortical GABAergic interneurons and spontaneous seizures, attributed to a reduction of hepatocyte growth factor/scatter factor (HGF/SF). We report that by increasing endogenous HGF/SF concentration in the postnatal Plaur null mouse brain maintains the interneuron populations in the adult, reverses the seizure behavior and stabilizes the spontaneous electroencephalogram activity. The perinatal intervention provides a pathway to reverse potential birth defects and ameliorate seizures in the adult.


The neurotrophic hepatocyte growth factor induces protolerogenic human dendritic cells.

  • Nicolas Molnarfi‎ et al.
  • Journal of neuroimmunology‎
  • 2014‎

Hepatocyte growth factor (HGF) limits mouse autoimmune neuroinflammation by promoting the development of tolerogenic dendritic cells (DCs). Given the role played by DCs in the establishment of immunological tolerance, agents that coerce DCs to adopt a protolerogenic function are currently under investigation for multiple sclerosis (MS) therapy. Here, we studied the immunomodulatory effects of HGF on DCs derived from human monocytes. DCs differentiated in the presence of HGF adopt a protolerogenic phenotype with increased ability to generate regulatory T cells, a property that might be exploited therapeutically in T cell-mediated immune disorders such as MS.


Hepatocyte growth factor activator inhibitor-2 prevents shedding of matriptase.

  • Brian R Larsen‎ et al.
  • Experimental cell research‎
  • 2013‎

Hepatocyte growth factor activator inhibitor-2 (HAI-2) is an inhibitor of many proteases in vitro, including the membrane-bound serine protease, matriptase. Studies of knock-out mice have shown that HAI-2 is essential for placental development only in mice expressing matriptase, suggesting that HAI-2 is important for regulation of matriptase. Previous studies have shown that recombinant expression of matriptase was unsuccessful unless co-expressed with another HAI, HAI-1. In the present study we show that when human matriptase is recombinantly expressed alone in the canine cell line MDCK, then human matriptase mRNA can be detected and the human matriptase ectodomain is shed to the media, suggesting that matriptase expressed alone is rapidly transported through the secretory pathway and shed. Whereas matriptase expressed together with HAI-1 or HAI-2 accumulates on the plasma membrane where it is activated, as judged by cleavage at Arg614 and increased peptidolytic activity of the cell extracts. Mutagenesis of Kunitz domain 1 but not Kunitz domain 2 abolished this function of HAI-2. HAI-2 seems to carry out its function intracellularly as this is where the vast majority of HAI-2 is located and since HAI-2 could not be detected on the basolateral plasma membrane where matriptase resides. However, minor amounts of HAI-2 not undergoing endocytosis could be detected on the apical plasma membrane. Our results suggest that Kunitz domain 1 of HAI-2 cause matriptase to accumulate in a membrane-bound form on the basolateral plasma membrane.


Hepatocyte nuclear factor 4α negatively regulates connective tissue growth factor during liver regeneration.

  • Junmei Zhou‎ et al.
  • FASEB journal : official publication of the Federation of American Societies for Experimental Biology‎
  • 2020‎

Liver regeneration after injury requires fine-tune regulation of connective tissue growth factor (Ctgf). It also involves dynamic expression of hepatocyte nuclear factor (Hnf)4α, Yes-associated protein (Yap), and transforming growth factor (Tgf)-β. The upstream inducers of Ctgf, such as Yap, etc, are well-known. However, the negative regulator of Ctgf remains unclear. Here, we investigated the Hnf4α regulation of Ctgf post-various types of liver injury. Both wild-type animals and animals contained siRNA-mediated Hnf4α knockdown and Cre-mediated Ctgf conditional deletion were used. We observed that Ctgf induction was associated with Hnf4α decline, nuclear Yap accumulation, and Tgf-β upregulation during early stage of liver regeneration. The Ctgf promoter contained an Hnf4α binding sequence that overlapped with the cis-regulatory element for Yap and Tgf-β. Ctgf loss attenuated inflammation, hepatocyte proliferation, and collagen synthesis, whereas Hnf4α knockdown enhanced Ctgf induction and liver fibrogenesis. These findings provided a new mechanism about fine-tuned regulation of Ctgf through Hnf4α antagonism of Yap and Tgf-β activities to balance regenerative and fibrotic signals.


Hepatocyte growth factor signalizes peritoneal membrane failure in peritoneal dialysis.

  • Ana Paula Bernardo‎ et al.
  • BMC nephrology‎
  • 2014‎

Hepatocyte growth factor (HGF) counteracts peritoneal fibrosis in animal models and in-vitro studies, but no study explored effluent HGF in peritoneal dialysis (PD) patients with ultrafiltration failure (UFF). Our aim was to assess the relationship between effluent HGF with UF profile, free water transport (FWT) and small-solute transport.


Hepatocyte growth factor-loaded biomaterials for mesenchymal stem cell recruitment.

  • Julia van de Kamp‎ et al.
  • Stem cells international‎
  • 2013‎

Human adult mesenchymal stem cells (MSC) can be readily harvested from bone marrow through aspiration. MSC are involved in tissue regeneration and repair, particularly in wound healing. Due to their high self-renewal capacity and excellent differentiation potential in vitro, MSC are ideally suited for regenerative medicine. The complex interactions of MSC with their environment and their influence on the molecular and functional levels are widely studied but not completely understood. MSC secrete, for example, hepatocyte growth factor (HGF), whose concentration is enhanced in wounded areas and which is shown to act as a chemoattractant for MSC. We produced HGF-loaded biomaterials based on collagen and fibrin gels to develop a recruitment system for endogenous MSC to improve wound healing. Here, we report that HGF incorporated into collagen or fibrin gels leads to enhanced and directed MSC migration in vitro. HGF-loaded biomaterials might be potentially used as in vivo wound dressings to recruit endogenous MSC from tissue-specific niches towards the wounded area. This novel approach may help to reduce costly multistep procedures of cell isolation, in vitro culture, and transplantation usually used in tissue engineering.


Suppression of lipopolysaccharide-induced corneal opacity by hepatocyte growth factor.

  • Elsayed Elbasiony‎ et al.
  • Scientific reports‎
  • 2022‎

Keratitis induced by bacterial toxins, including lipopolysaccharide (LPS), is a major cause of corneal opacity and vision loss. Our previous study demonstrates hepatocyte growth factor (HGF) promotes epithelial wound healing following mechanical corneal injury. Here, we investigated whether HGF has the capacity to suppress infectious inflammatory corneal opacity using a new model of LPS-induced keratitis. Keratitis, induced by two intrastromal injections of LPS on day 1 and 4 in C57BL/6 mice, resulted in significant corneal opacity for up to day 10. Following keratitis induction, corneas were topically treated with 0.1% HGF or PBS thrice daily for 5 days. HGF-treated mice showed a significantly smaller area of corneal opacity compared to PBS-treated mice, thus improving corneal transparency. Moreover, HGF treatment resulted in suppression of α-SMA expression, compared to PBS treatment. HGF-treated corneas showed normalized corneal structure and reduced expression of pro-inflammatory cytokine, demonstrating that HGF restores corneal architecture and immune quiescence in corneas with LPS-induced keratitis. These findings offer novel insight into the potential application of HGF-based therapies for the prevention and treatment of infection-induced corneal opacity.


Hepatocyte growth factor/scatter factor and MET are involved in arterial repair and atherogenesis.

  • Heather McKinnon‎ et al.
  • The American journal of pathology‎
  • 2006‎

Several studies have shown that in the arterial wall hepatocyte growth factor/scatter factor (HGF/SF) is expressed by smooth muscle cells (SMCs) but acts on endothelial cells, not SMCs. Other studies, however, have indicated that SMCs can respond to HGF/SF. We have reinvestigated expression and activity of HGF/SF and its receptor MET in arterial SMC and endothelial cell cultures and in whole arteries after superficial or deep injury or atherogenesis. High-density cultures of SMCs produced HGF/SF but did not express MET, whereas SMCs, at the leading edge of injured cultures, expressed both ligand and receptor and showed a dramatic motility and growth response to HGF/SF. In line with these results, HGF/SF and MET expression was undetectable in the media of uninjured carotid arteries but was induced after deep arterial injury in areas of SMC migration in the neointima. Strong MET expression was also observed in the SMCs of the atherosclerotic lesions of homozygous apoE(-/-) mice, whereas HGF/SF was expressed by macrophage-derived foam cells. These results demonstrate that MET is induced in migrating and proliferating SMCs and that HGF/SF and MET are key mediators of the SMC response in atherogenesis.


Total synthesis of biotinylated N domain of human hepatocyte growth factor.

  • Laurent Raibaut‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2013‎

Hepatocyte growth factor/scatter factor (HGF/SF) is the high affinity ligand of MET tyrosine kinase receptor. We report here the total synthesis of a biotinylated analogue of human HGF/SF N domain. Functionally, N domain is part of the HGF/SF high affinity binding site for MET and also the main HGF/SF binding site for heparin. The 97 Aa linear chain featuring a C-terminal biotin group was assembled in high yield using an N-to-C one-pot three segments assembly strategy relying on a sequential Native Chemical Ligation (NCL)/bis(2-sulfanylethyl)amido (SEA) native peptide ligation process. The folded protein displayed the native disulfide bond pattern and showed the ability to bind heparin.


Hepatocyte Growth Factor from a Clinical Perspective: A Pancreatic Cancer Challenge.

  • Wasia Rizwani‎ et al.
  • Cancers‎
  • 2015‎

Pancreatic cancer is the fourth leading cause of cancer-related deaths in the United States and incidence rates are rising. Both detection and treatment options for pancreatic cancer are limited, providing a less than 5% five-year survival advantage. The need for new biomarkers for early detection and treatment of pancreatic cancer demands the efficient translation of bench knowledge to provide clinical benefit. One source of therapeutic resistance is the pancreatic tumor microenvironment, which is characterized by desmoplasia and hypoxia making it less conducive to current therapies. A major factor regulating desmoplasia and subsequently promoting chemoresistance in pancreatic cancer is hepatocyte growth factor (HGF), the sole ligand for c-MET (mesenchymal-epithelial transition), an epithelial tyrosine kinase receptor. Binding of HGF to c-MET leads to receptor dimerization and autophosphorylation resulting in the activation of multiple cellular processes that support cancer progression. Inhibiting activation of c-MET in cancer cells, in combination with other approaches for reducing desmoplasia in the tumor microenvironment, might significantly improve the success of chemotherapy. Therefore, HGF makes a potent novel target for developing therapeutic strategies in combination with existing drugs for treating pancreatic adenocarcinoma. This review provides a comprehensive analysis of HGF and its promising potential as a chemotherapeutic target for pancreatic cancer.


Hepatocyte nuclear factor 1 alpha influences pancreatic cancer growth and metastasis.

  • Ramadevi Subramani‎ et al.
  • Scientific reports‎
  • 2020‎

Hepatocyte nuclear factor 1 homeobox alpha (HNF1α) is a transcription factor involved in endodermal organogenesis and pancreatic precursor cell differentiation and development. Earlier studies have reported a role for HNF1α in pancreatic ductal adenocarcinoma (PDAC) but it is controversial. The mechanism by which it impacts PDAC is yet to be explored in depth. In this study, using the online databases we observed that HNF1α is upregulated in PDAC, which was also confirmed by our immunohistochemical analysis of PDAC tissue microarray. Silencing HNF1α reduced the proliferative, migratory, invasive and colony forming capabilities of pancreatic cancer cells. Key markers involved in these processes (pPI3K, pAKT, pERK, Bcl2, Zeb, Snail, Slug) were significantly changed in response to alterations in HNF1α expression. On the other hand, overexpression of HNF1α did not induce any significant change in the aggressiveness of pancreatic cancer cells. Our results demonstrate that reduced expression of HNF1α leads to inhibition of pancreatic cancer growth and progression, which indicates that it could be a potential oncogene and target for PDAC.


Transforming growth factor-β1 selectively inhibits hepatocyte growth factor expression via a micro-RNA-199-dependent posttranscriptional mechanism.

  • Ognoon Mungunsukh‎ et al.
  • Molecular biology of the cell‎
  • 2013‎

Hepatocyte growth factor (HGF) is a multipotent endogenous repair factor secreted primarily by mesenchymal cells with effects on cells expressing its receptor, Met. HGF promotes normal tissue regeneration and inhibits fibrotic remodeling in part by promoting proliferation and migration of endothelial and epithelial cells and protecting these cells from apoptosis. HGF also inhibits myofibroblast proliferation. The profibrotic cytokine transforming growth factor beta 1 (TGF-β1) suppresses HGF expression but not the expression of NK2, an HGF splice variant that antagonizes HGF-induced proliferation. We investigated the mechanism for differential regulation of HGF and NK2 by TGF-β1. TGF-β1 down-regulated HGF in primary human adult pulmonary fibroblasts (HLFb) and increased the expression of miR-199a-3p, a microRNA (miRNA) associated with fibrotic remodeling. HGF and NK2 contain completely different 3' untranslated regions (UTRs), and we determined that miR-199a-3p targeted HGF mRNA for suppression but not NK2. A pre-miR-199 mimic inhibited the expression of a luciferase reporter harboring the HGF 3' UTR but not a pmirGLO reporter containing the NK2 3' UTR. In contrast, an anti-miRNA inhibitor specific for miR-199a-3p prevented TGF-β1-induced reduction of both HGF mRNA and HGF protein secretion. Taken together, these findings demonstrate that HGF is distinctly regulated at the posttranscriptional level from its antagonist NK2.


Hepatocyte growth factor signaling in intrapancreatic ductal cells drives pancreatic morphogenesis.

  • Ryan M Anderson‎ et al.
  • PLoS genetics‎
  • 2013‎

In a forward genetic screen for regulators of pancreas development in zebrafish, we identified donut(s908) , a mutant which exhibits failed outgrowth of the exocrine pancreas. The s908 mutation leads to a leucine to arginine substitution in the ectodomain of the hepatocyte growth factor (HGF) tyrosine kinase receptor, Met. This missense mutation impedes the proteolytic maturation of the receptor, its trafficking to the plasma membrane, and diminishes the phospho-activation of its kinase domain. Interestingly, during pancreatogenesis, met and its hgf ligands are expressed in pancreatic epithelia and mesenchyme, respectively. Although Met signaling elicits mitogenic and migratory responses in varied contexts, normal proliferation rates in donut mutant pancreata together with dysmorphic, mislocalized ductal cells suggest that met primarily functions motogenically in pancreatic tail formation. Treatment with PI3K and STAT3 inhibitors, but not with MAPK inhibitors, phenocopies the donut pancreatic defect, further indicating that Met signals through migratory pathways during pancreas development. Chimera analyses showed that Met-deficient cells were excluded from the duct, but not acinar, compartment in the pancreatic tail. Conversely, wild-type intrapancreatic duct and "tip cells" at the leading edge of the growing pancreas rescued the donut phenotype. Altogether, these results reveal a novel and essential role for HGF signaling in the intrapancreatic ducts during exocrine morphogenesis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: