Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 87 papers

Migration of Hem-o-lok clip into the common hepatic duct after laparoscopic bile duct exploration: A case report.

  • Zhenhua Tan‎ et al.
  • Clinical case reports‎
  • 2021‎

Hem-o-lok clip migration into the bile duct can lead to stone formation and granulation tissue hyperplasia. This report discusses a case wherein four clips migrated into the bile duct after laparoscopic bile duct exploration.


Chondroitin Sulfate Protects the Liver in an Experimental Model of Extra-Hepatic Cholestasis Induced by Common Bile Duct Ligation.

  • Pedro L R Guedes‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2022‎

During liver fibrogenesis, there is an imbalance between regeneration and wound healing. The current treatment is the withdrawal of the causing agent; thus, investigation of new and effective treatments is important. Studies have highlighted the action of chondroitin sulfate (CS) in different cells; thus, our aim was to analyze its effect on an experimental model of bile duct ligation (BDL). Adult Wistar rats were subjected to BDL and treated with CS for 7, 14, 21, or 28 days intraperitoneally. We performed histomorphometric analyses on Picrosirius-stained liver sections. Cell death was analyzed according to caspase-3 and cathepsin B activity and using a TUNEL assay. Regeneration was evaluated using PCNA immunohistochemistry. BDL led to increased collagen content with corresponding decreased liver parenchyma. CS treatment reduced total collagen and increased parenchyma content after 21 and 28 days. The treatment also promoted changes in the hepatic collagen type III/I ratio. Furthermore, it was observed that CS treatment reduced caspase-3 activity and the percentage of TUNEL-positive cells after 14 days and cathepsin B activity only after 28 days. The regeneration increased after 14, 21, and 28 days of CS treatment. In conclusion, our study showed a promising hepatoprotective action of CS in fibrogenesis induced by BDL.


Biliary tract exploration through a common bile duct incision or left hepatic duct stump in laparoscopic left hemihepatectomy for left side hepatolithiasis: which is better?: A single-center retrospective case-control study.

  • Xintao Zeng‎ et al.
  • Medicine‎
  • 2018‎

Laparoscopic left hemihepatectomy (LLH) followed by biliary tract exploration is used to treat left-sided hepatolithiasis (LSH). The purpose of this study was to compare the efficacy of 2 methods of biliary tract exploration in LLH:biliary tract exploration through a common bile duct (CBD) incision (with T-tube drainage) or through the left hepatic duct (LHD) stump (without T-tube drainage).LSH patients (113 patients) were recruited retrospectively in our hospital from December 2008 to January 2016. To compare different methods of biliary tract exploration during LLH, the patients were divided into 2 groups: 41 patients underwent biliary tract exploration through the LHD stump (LHD group), and 72 patients underwent biliary tract exploration through a CBD incision (CBD group). Baseline characteristics, surgical outcomes, surgery-related complications, postoperative hospital stay (PHS) and long-term results were compared between the 2 groups.There was no unplanned reoperation in the 2 groups. One patient in the CBD group had a residual stone, which was removed by choledochoscopy 2 months postoperation. Two patients in the LHD group and 3 patients in the CBD group had bile leakage and were cured with abdominal drainage. There were no significant differences in the total operation time, incidence of residual stones and bile leakage between the 2 groups (P > .05). The PHS and the incidence of hypokalemia or hyponatremia in the LHD group were significantly lower than those in the CBD group (P < .05). T-tube-related complications occurred in 13.9% (10/72) of the CBD patients. The mean follow-up period was 37.2 ± 13.8 months. There were no significant differences in the incidence of recurrence stones or cholangitis (P > .05) between the 2 groups.Exploration of the biliary tract through the LHD stump without T-tube drainage is safe with satisfactory short- and long-term results for selected LSH patients.


A mouse model of hepatic encephalopathy: bile duct ligation induces brain ammonia overload, glial cell activation and neuroinflammation.

  • Wouter Claeys‎ et al.
  • Scientific reports‎
  • 2022‎

Hepatic encephalopathy (HE) is a common complication of chronic liver disease, characterized by an altered mental state and hyperammonemia. Insight into the brain pathophysiology of HE is limited due to a paucity of well-characterized HE models beyond the rat bile duct ligation (BDL) model. Here, we assess the presence of HE characteristics in the mouse BDL model. We show that BDL in C57Bl/6j mice induces motor dysfunction, progressive liver fibrosis, liver function failure and hyperammonemia, all hallmarks of HE. Swiss mice however fail to replicate the same phenotype, underscoring the importance of careful strain selection. Next, in-depth characterisation of metabolic disturbances in the cerebrospinal fluid of BDL mice shows glutamine accumulation and transient decreases in taurine and choline, indicative of brain ammonia overload. Moreover, mouse BDL induces glial cell dysfunction, namely microglial morphological changes with neuroinflammation and astrocyte reactivity with blood-brain barrier (BBB) disruption. Finally, we identify putative novel mechanisms involved in central HE pathophysiology, like bile acid accumulation and tryptophan-kynurenine pathway alterations. Our study provides the first comprehensive evaluation of a mouse model of HE in chronic liver disease. Additionally, this study further underscores the importance of neuroinflammation in the central effects of chronic liver disease.


Increased Phosphatase of Regenerating Liver-1 by Placental Stem Cells Promotes Hepatic Regeneration in a Bile-Duct-Ligated Rat Model.

  • Jong Ho Choi‎ et al.
  • Cells‎
  • 2021‎

Phosphatase of regenerating liver-1 (PRL-1) controls various cellular processes and liver regeneration. However, the roles of PRL-1 in liver regeneration induced by chorionic-plate-derived mesenchymal stem cells (CP-MSCs) transplantation remain unknown. Here, we found that increased PRL-1 expression by CP-MSC transplantation enhanced liver regeneration in a bile duct ligation (BDL) rat model by promoting the migration and proliferation of hepatocytes. Engrafted CP-MSCs promoted liver function via enhanced hepatocyte proliferation through increased PRL-1 expression in vivo and in vitro. Moreover, higher increased expression of PRL-1 regulated CP-MSC migration into BDL-injured rat liver through enhancement of migration-related signals by increasing Rho family proteins. The dual effects of PRL-1 on proliferation of hepatocytes and migration of CP-MSCs were substantially reduced when PRL-1 was silenced with siRNA-PRL-1 treatment. These findings suggest that PRL-1 may serve as a multifunctional enhancer for therapeutic applications of CP-MSC transplantation.


Expression and significance of histone methyltransferase SET domain containing 2 with histone H3 lysine 36 trimethylation in mouse hepatic oval cells differentiated into bile duct epithelial cells in vitro.

  • Liquan Jin‎ et al.
  • Molecular medicine reports‎
  • 2023‎

The present study aimed to identify the function and expression of trimethylated protein histone H3 lysine 36 (H3K36)me3 and the upstream specific enzyme histone methyltransferase SET domain containing 2 (SETD2), during the differentiation of hepatic oval cells (HOCs) into cholangiocytes in mice following partial liver resection and fed with 2‑acetamidofluorene. HOCs were isolated from Kunming male mice fed with 2‑acetamidofluorene for 10 days. Their liver tissues were then isolated following partial liver resection and another week of 2‑acetamidofluorene treatment. HOCs were collected following a two‑step enzyme digestion procedure involving protease E and collagenase 4. The target cells were cultured in DMEM/F12 supplemented with 10 µg/ml EGF, 5 µg/ml stem cell growth factor and 5 µg/ml leukemia inhibitory factor. Target cells using the markers OV‑6, CK‑19, SETD2, H3K36me3, were detected with flow cytometry and immunofluorescence microscopy; reverse transcription‑quantitative PCR and western blotting were used to quantify the protein levels of SETD2 and H3K36me3. The retrieved primary hepatocytes developed into cholangiocytes with increasing CK‑19 and decreasing OV‑6 expression in each subsequent passage, whereas the SETD2 and H3K36me3 levels gradually increased, suggesting the possible involvement of both of these factors in differentiation.


Impairment of the organization of locomotor and exploratory behaviors in bile duct-ligated rats.

  • Renata Leke‎ et al.
  • PloS one‎
  • 2012‎

Hepatic encephalopathy (HE) arises from acute or chronic liver diseases and leads to several problems, including motor impairment. Animal models of chronic liver disease have extensively investigated the mechanisms of this disease. Impairment of locomotor activity has been described in different rat models. However, these studies are controversial and the majority has primarily analyzed activity parameters. Therefore, the aim of the present study was to evaluate locomotor and exploratory behavior in bile duct-ligated (BDL) rats to explore the spatial and temporal structure of behavior. Adult female Wistar rats underwent common bile duct ligation (BDL rats) or the manipulation of common bile duct without ligation (control rats). Six weeks after surgery, control and BDL rats underwent open-field, plus-maze and foot-fault behavioral tasks. The BDL rats developed chronic liver failure and exhibited a decrease in total distance traveled, increased total immobility time, smaller number of rearings, longer periods in the home base area and decreased percentage of time in the center zone of the arena, when compared to the control rats. Moreover, the performance of the BDL rats was not different from the control rats for the elevated plus-maze and foot-fault tasks. Therefore, the BDL rats demonstrated disturbed spontaneous locomotor and exploratory activities as a consequence of altered spatio-temporal organization of behavior.


The Beneficial Effects of P2X7 Antagonism in Rats with Bile Duct Ligation-induced Cirrhosis.

  • Hung-Chun Tung‎ et al.
  • PloS one‎
  • 2015‎

Splanchnic angiogenesis in liver cirrhosis often leads to complications as gastroesophageal variceal hemorrhage and the treatment efficacy is adversely affected by poor portal-systemic collateral vasoresponsiveness related to nitric oxide (NO). Purinergic receptor subtype P2X7 participates in the modulation of inflammation, angiogenesis, fibrogenesis and vasoresponsiveness, but the relevant influence in cirrhosis is unknown. Common bile duct-ligated (CBDL) or sham-operated Spraque-Dawley rats received brilliant blue G (BBG, a P2X7 antagonist and food additive) or vehicle from the 15th to 28th day after operations, then hemodynamics, mesenteric angiogenesis, portal-systemic shunting, liver fibrosis, and protein expressions of angiogenic and fibrogenic factors were evaluated. The influence of oxidized ATP (oATP, another P2X7 receptor antagonist) on the collateral vasoresponsiveness to arginine vasopressin (AVP) was also surveyed. BBG decreased superior mesenteric artery (SMA) flow, portal-systemic shunting, mesenteric vascular density, and mesenteric protein expressions of vascular endothelial growth factor (VEGF), VEGF receptor 2 (VEGFR2), phospho (p)-VEGFR2, platelet-derived growth factor (PDGF), PDGF receptor beta (PDGFRβ), cyclooxygenase (COX)-1, COX-2, and endothelial NO synthase (eNOS) in CBDL rats. BBG also ameliorated liver fibrosis and down-regulated hepatic interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), PDGF, IL-1β, transforming growth factor-beta (TGF-β), p-extracellular-signal-regulated kinases (ERK), and alpha-smooth muscle actin (α-SMA) expressions in CBDL rats. The collateral vasocontractility to AVP was enhanced by oATP. oATP down-regulated eNOS, inducible NOS (iNOS), VEGF, Akt, p-Akt, and nuclear factor-kappa B (NF-κB) expressions in splenorenal shunt, the most prominent intra-abdominal collateral vessel in rodents. P2X7 antagonism alleviates splanchnic hyperemia, severity of portal-systemic shunting, mesenteric angiogenesis, liver fibrosis, and enhances portal-systemic collateral vasoresponsiveness in cirrhotic rats. P2X7 blockade may be a feasible strategy to control cirrhosis and complications.


Effect of bile duct ligation-induced liver dysfunction on methamphetamine pharmacokinetics in male and female rats.

  • Michael D Berquist‎ et al.
  • Drug and alcohol dependence‎
  • 2020‎

Several disease states commonly associated with methamphetamine (METH) use produce liver dysfunction, and in the bile duct ligation (BDL) model of hepatic dysfunction, rats with liver injury are more sensitive to METH effects. Additionally, both female rats and humans are known to be more sensitive to METH than males. In consideration of known sex-dependent differences in METH pharmacokinetics, this study sought to determine the potential interaction between sex and liver dysfunction variables on METH pharmacokinetics.


Triptolide increases resistance to bile duct ligation-induced liver injury and fibrosis in mice by inhibiting RELB.

  • Zihang Yuan‎ et al.
  • Frontiers in nutrition‎
  • 2022‎

Cholestasis is a common, chronic liver disease that may cause fibrosis and cirrhosis. Tripterygium wilfordii Hook.f (TWHF) is a species in the Euonymus family that is commonly used as a source of medicine and food in Eastern and Southern China. Triptolide (TP) is an epoxy diterpene lactone of TWHF, as well as the main active ingredient in TWHF. Here, we used a mouse model of common bile duct ligation (BDL) cholestasis, along with cultured human intrahepatic biliary epithelial cells, to explore whether TP can relieve cholestasis. Compared with the control treatment, TP at a dose of 70 or 140 μg/kg reduced the serum levels of the liver enzymes alanine transaminase, aspartate aminotransferase, and alkaline phosphatase in mice; hematoxylin and eosin staining also showed that TP reduced necrosis in tissues. Both in vitro and in vivo analyses revealed that TP inhibited cholangiocyte proliferation by reducing the expression of RelB. Immunohistochemical staining of CK19 and Ki67, as well as measurement of Ck19 mRNA levels in hepatic tissue, revealed that TP inhibited the BDL-induced ductular reaction. Masson 3 and Sirius Red staining for hepatic hydroxyproline showed that TP alleviated BDL-induced hepatic fibrosis. Additionally, TP substantially inhibited BDL-induced hepatic inflammation. In summary, TP inhibited the BDL-induced ductular reaction by reducing the expression of RelB in cholangiocytes, thereby alleviating liver injury, fibrosis, and inflammation.


Different iron-handling in inflamed small and large cholangiocytes and in small and large-duct type intrahepatic cholangiocarcinoma.

  • Romina Mancinelli‎ et al.
  • European journal of histochemistry : EJH‎
  • 2020‎

Cholangiocarcinoma (CCA) represents the second most common primary hepatic malignancy and originates from the neoplastic transformation of the biliary cells. The intrahepatic subtype includes two morpho-molecular forms: large-duct type intrahepatic CCA (iCCA) and small-duct type iCCA. Iron is fundamental for the cellular processes, contributing in tumor development and progression. The aim of this study was to evaluate iron uptake, storage, and efflux proteins in both lipopolysaccharide-inflamed small and large cholangiocytes as well as in different iCCA subtypes. Our results show that, despite an increase in interleukin-6 production by both small and large cholangiocytes, ferroportin (Fpn) was decreased only in small cholangiocytes, whereas transferrin receptor-1 (TfR1) and ferritin (Ftn) did not show any change. Differently from in vitro models, Fpn expression was increased in malignant cholangiocytes of small-duct type iCCA in comparison to large-duct type iCCA and peritumoral tissues. TfR1, Ftn and hepcidin were enhanced, even if at different extent, in both malignant cholangiocytes in comparison to the surrounding samples. Lactoferrin was higher in large-duct type iCCA in respect to small-duct type iCCA and peritumoral tissues. These findings show a different iron handling by inflamed small and large cholangiocytes, and small and large-duct type iCCA. The difference in iron homeostasis by the iCCA subtypes may have implications for the tumor management.


Calcium-dependent kinases in the brain have site-specific associations with locomotion and rearing impairments in rats with bile duct ligation.

  • Shamseddin Ahmadi‎ et al.
  • Behavioural brain research‎
  • 2019‎

We study the impairment of locomotion and rearing behavior in rats with a common bile duct ligation (BDL), and the possible involvement of the PKCγ and CamKIIα gene expression in the brain. Male Wistar rats undergo either sham operation or BDL to induce a rat model of cirrhotic hepatic encephalopathy (HE). Six groups of the animals were divided into three sets of sham-operated and BDL groups. In the first set, locomotion and rearing behavior were assessed on days 1, 7, 14, 21 and 28 of BDL. On day 28 of BDL, blood samples were collected from the second set of the animals for biochemical analysis, and the rats in the third set were used to extract the PFC, the hippocampus, and the cerebellar cortex for examining the Pkcγ and CamKIIα gene expression. The results showed that locomotion and rearing were decreased during 28 days of BDL with the most significant change on the 28th day. Biochemical analysis of the blood revealed hyperammonemia, increases in liver enzymes, and a decrease in albumin indicating liver damage and induction of cirrhotic HE. The results also showed that both of the Pkcγ and CamKIIα gene expressions were increased in the PFC but decreased in the hippocampus. However, the Pkcγ gene expression was decreased but the CamKIIα gene expression was increased in the cerebellar cortex. It can be concluded that the Ca2+-dependent kinases in different brain areas have a site-specific association with the impairment of locomotion and rearing behavior in the cirrhotic HE model rats.


Dynamic Regulation of miRNA Expression by Functionally Enhanced Placental Mesenchymal Stem Cells PromotesHepatic Regeneration in a Rat Model with Bile Duct Ligation.

  • Jae Yeon Kim‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

Placenta-derived mesenchymal stem cells (PD-MSCs) were highlighted as therapeutic sources in several degenerative diseases. Recently, microRNAs (miRNAs)were found to mediate one of the therapeutic mechanisms of PD-MSCs in regenerative medicine. To enhance the therapeutic effects of PD-MSCs, we established functionally enhanced PD-MSCs with phosphatase of regenerating liver-1 overexpression (PRL-1(+)). However, the profile and functions of miRNAs induced by PRL-1(+) PD-MSCs in a rat model with hepatic failure prepared by bile duct ligation (BDL) remained unclear. Hence, the objectives of the present study were to analyze the expression of miRNAs and investigate their therapeutic mechanisms for hepatic regeneration via PRL-1(+) in a rat model with BDL. We selected candidate miRNAs based on microarray analysis. Under hypoxic conditions, compared with migrated naïve PD-MSCs, migrated PRL-1(+) PD-MSCs showed improved integrin-dependent migration abilitythrough Ras homolog (RHO) family-targeted miRNA expression (e.g., hsa-miR-30a-5p, 340-5p, and 146a-3p). Moreover, rno-miR-30a-5p and 340-5p regulated engraftment into injured rat liver by transplantedPRL-1(+) PD-MSCs through the integrin family. Additionally, an increase inplatelet-derived growth factor receptor A (PDGFRA) by suppressing rno-miR-27a-3p improved vascular structure in rat liver tissues after PRL-1(+) PD-MSC transplantation. Furthermore, decreased rno-miR-122-5p was significantly correlated with increased proliferation of hepatocytes in liver tissues by PRL-1(+) PD-MSCs byactivating the interleukin-6 (IL-6) signaling pathway through the repression of rno-miR-21-5p. Taken together, these findings improve the understandingof therapeutic mechanisms based on miRNA-mediated stem-cell therapy in liver diseases.


A morphologic and immunocytochemical study of hepatic neoplasms in cats.

  • A K Patnaik‎
  • Veterinary pathology‎
  • 1992‎

A retrospective study was done of 47 neoplasms of the hepatic and biliary systems from 47 cats brought to The Animal Medical Center over a period of 10 years (1980 to 1989). Histologic examination of specimens taken at necropsy revealed that 87% (41/47) of the hepatic neoplasms were epithelial and 13% (6/47) were nonepithelial. Of the epithelial tumors, 25/47 (53%) were of intrahepatic bile duct origin, 9/47 (19%) were of hepatocellular origin, 5/47 (11%) involved the extrahepatic bile ducts, and 2/47 (4%) were adenocarcinomas of the gall bladder. Of the nonepithelial neoplasms, hemangiosarcomas were more common, 5/47 (11%), than leiomyosarcomas, 1/47 (2%). Multiple liver lobes were involved in 21/34 (62%) of the epithelial and all six of the nonepithelial intrahepatic neoplasms. Most of the bile duct adenocarcinomas (6/9) were predominantly characterized by acinar structures with mucin production, diffuse necrosis, and little desmoplasia. The hepatocellular carcinomas were characterized by three patterns-trabecular (five tumors), pseudoglandular pattern (two tumors), and anaplastic (one tumor). The hepatic carcinoid was characterized by various-sized groups of acinar and rosettelike structures, some with lumens, separated by thin fibrovascular stroma. The extrahepatic bile duct adenocarcinomas (4/4) were acinopapillary with moderate desmosplasia, whereas the adenocarcinomas of the gall bladder had elongated tubular structures lined by anaplastic cells and a severe desmoplastic reaction. The neuroendocrine carcinoma of the extrahepatic bile duct, the hemangiosarcomas, and the leiomyosarcoma had morphologic features characteristic of these neoplasms. Two of the 16 (13%) bile duct adenomas had anaplastic and precancerous changes. Residual benign components were seen in 10/15 (67%) of the biliary adenocarcinomas, 4/9 (44%) of the intrahepatic bile duct adenocarcinomas, and all of the extrahepatic bile duct adenocarcinomas and gall bladder adenocarcinomas. Results of immunohistochemical studies of the biliary neoplasms were similar to those described in studies of biliary neoplasms in human beings. Results of this study revealed that the frequency of different types of hepatic neoplasms in cats varied from that seen in dogs and human beings, but the morphologic features were comparable.


Biliary Obstruction Promotes Multilineage Differentiation of Hepatic Stem Cells.

  • Mladen I Yovchev‎ et al.
  • Hepatology communications‎
  • 2019‎

Because of their high regenerative potential, stem cells are an ideal resource for development of therapies that replace injured tissue mass and restore function in patients with end-stage liver diseases. Using a rat model of bile duct ligation (BDL) and biliary fibrosis, we investigated cell engraftment, liver repopulation, and ectopic tissue formation after intrasplenic transplantation of epithelial stem/progenitor cells. Fetal liver cells were infused into the spleens of Fisher 344 rats with progressing biliary fibrosis induced by common BDL or rats without BDL. Cell delivery was well tolerated. After migration to the liver, donor-derived stem/progenitor cells engrafted, differentiated into hepatocytes and cholangiocytes, and formed large cell clusters at 2 months in BDL rats but not controls. Substantial numbers of donor cells were also detected at the splenic injection site where they generated hepatic and nonhepatic tissue. Transplanted cells differentiated into phenotypes other than hepato/cholangiocytic cells only in rats that underwent BDL. Quantitative reverse-transcription polymerase chain reaction analyses demonstrated marked up-regulation of tissue-specific genes of nonhepatic endodermal lineages (e.g., caudal type homeobox 2 [Cdx2], pancreatic and duodenal homeobox 1 [Pdx1], keratin 13 [CK-13]), confirmed by immunohistochemistry. Conclusion: BDL and its induced fibrosis promote liver repopulation by ectopically transplanted fetal liver-derived cells. These cell fractions contain multipotent stem cells that colonize the spleen of BDL rats and differentiate into multiple gastrointestinal tissues, including liver, pancreas, intestine, and esophagus. The splenic microenvironment, therefore, represents an ideal niche to assess the differentiation of these stem cells, while BDL provides a stimulus that induces their differentiation.


Histochemical and Immunohistochemical Characterizations of Hepatic Trematodiasis in Odontocetes.

  • Shotaro Nakagun‎ et al.
  • Frontiers in veterinary science‎
  • 2020‎

Hepatic trematodiasis is a common condition in a number of free-ranging cetacean species, which occasionally result in severe hepatic and/or pancreatic lesions. However, even the basic pathological information of this disease is unknown for the majority of affected species. The current study describes and compares the histomorphology and immune reaction induced by hepatic trematodes of the family Brachycladiidae in the liver of the harbor porpoise (Phocoena phocoena, n = 8), Dall's porpoise (Phocoenoides dalli, n = 8), and Hubbs' beaked whale (Mesoplodon carlhubbsi, n = 2). Immunohistochemistry for eight antibodies (CK19, CD3, Foxp3, CD20, Iba1, CD68, CD163, and CD204) was conducted to analyze the pathology of these parasitic infections. In all three odontocete species, the changes observed in the trematode-affected biliary epithelium were comparable with marked hyperplasia and goblet cell metaplasia, as well as lymphoplasmacytic and eosinophilic inflammation. Additionally, regions of the Glisson's sheath were diffusely and severely fibrotic in all examined species, regardless of the physical presence of trematodes. Differences among the three species included the presence of characteristic lymphoid follicles formed in the fibrotic bile duct walls of only the two porpoise species. In the Hubbs' beaked whale, the degree of lymphoplasmacytic cholangitis was more severe, and ductular reaction was generally more prominent. In terms of the overall macrophage population among the three species, CD163- and CD204-positive cells (M2 macrophages) outnumbered Iba1- and CD68-positive cells (M1 macrophages), indicating a chronic infection stage in all analyzed individuals. Species-specific differences among the infiltrating macrophages included numbers of CD68-positive cells being significantly more abundant in the harbor porpoises, whereas CD163-positive cells were significantly more numerous in the Dall's porpoises. The numbers of CD204-positive macrophages were higher in the Hubbs' beaked whales compared to those in the porpoises. Trematode species of the harbor and Dall's porpoises were Campula oblonga, while they were Oschmarinella macrorchis in the Hubbs' beaked whales. This study concludes that interspecies differences in the tissue reactions to hepatic trematode infections are present among odontocete species and that the immune reaction varies depending on the species. This information aids in furthering our understanding of the pathogenesis of hepatic trematodiasis in cetaceans.


Molecular Profiling Reveals a Common Metabolic Signature of Tissue Fibrosis.

  • Ji Zhang‎ et al.
  • Cell reports. Medicine‎
  • 2020‎

Fibrosis, or the accumulation of extracellular matrix, is a common feature of many chronic diseases. To interrogate core molecular pathways underlying fibrosis, we cross-examine human primary cells from various tissues treated with TGF-β, as well as kidney and liver fibrosis models. Transcriptome analyses reveal that genes involved in fatty acid oxidation are significantly perturbed. Furthermore, mitochondrial dysfunction and acylcarnitine accumulation are found in fibrotic tissues. Substantial downregulation of the PGC1α gene is evident in both in vitro and in vivo fibrosis models, suggesting a common node of metabolic signature for tissue fibrosis. In order to identify suppressors of fibrosis, we carry out a compound library phenotypic screen and identify AMPK and PPAR as highly enriched targets. We further show that pharmacological treatment of MK-8722 (AMPK activator) and MK-4074 (ACC inhibitor) reduce fibrosis in vivo. Altogether, our work demonstrate that metabolic defect is integral to TGF-β signaling and fibrosis.


Experimental hepatic encephalopathy causes early but sustained glial transcriptional changes.

  • Wouter Claeys‎ et al.
  • Journal of neuroinflammation‎
  • 2023‎

Hepatic encephalopathy (HE) is a common complication of liver cirrhosis, associated with high morbidity and mortality, for which no brain-targeted therapies exist at present. The interplay between hyperammonemia and inflammation is thought to drive HE development. As such, astrocytes, the most important ammonia-metabolizing cells in the brain, and microglia, the main immunomodulatory cells in the brain, have been heavily implicated in HE development. As insight into cellular perturbations driving brain pathology remains largely elusive, we aimed to investigate cell-type specific transcriptomic changes in the HE brain. In the recently established mouse bile duct ligation (BDL) model of HE, we performed RNA-Seq of sorted astrocytes and microglia at 14 and 28 days after induction. This revealed a marked transcriptional response in both cell types which was most pronounced in microglia. In both cell types, pathways related to inflammation and hypoxia, mechanisms commonly implicated in HE, were enriched. Additionally, astrocytes exhibited increased corticoid receptor and oxidative stress signaling, whereas microglial transcriptome changes were linked to immune cell attraction. Accordingly, both monocytes and neutrophils accumulated in the BDL mouse brain. Time-dependent changes were limited in both cell types, suggesting early establishment of a pathological phenotype. While HE is often considered a unique form of encephalopathy, astrocytic and microglial transcriptomes showed significant overlap with previously established gene expression signatures in other neuroinflammatory diseases like septic encephalopathy and stroke, suggesting common pathophysiological mechanisms. Our dataset identifies key molecular mechanisms involved in preclinical HE and provides a valuable resource for development of novel glial-directed therapeutic strategies.


Intestinal microbiota drives cholestasis-induced specific hepatic gene expression patterns.

  • Oriol Juanola‎ et al.
  • Gut microbes‎
  • 2021‎

Intestinal microbiota regulates multiple host metabolic and immunological processes. Consequently, any difference in its qualitative and quantitative composition is susceptible to exert significant effects, in particular along the gut-liver axis. Indeed, recent findings suggest that such changes modulate the severity and the evolution of a wide spectrum of hepatobiliary disorders. However, the mechanisms linking intestinal microbiota and the pathogenesis of liver disease remain largely unknown. In this work, we investigated how a distinct composition of the intestinal microbiota, in comparison with germ-free conditions, may lead to different outcomes in an experimental model of acute cholestasis. Acute cholestasis was induced in germ-free (GF) and altered Schaedler's flora (ASF) colonized mice by common bile duct ligation (BDL). Studies were performed 5 days after BDL and hepatic histology, gene expression, inflammation, lipids metabolism, and mitochondrial functioning were evaluated in normal and cholestatic mice. Differences in plasma concentration of bile acids (BA) were evaluated by UHPLC-HRMS. The absence of intestinal microbiota was associated with significant aggravation of hepatic bile infarcts after BDL. At baseline, we found the absence of gut microbiota induced altered expression of genes involved in the metabolism of fatty and amino acids. In contrast, acute cholestasis induced altered expression of genes associated with extracellular matrix, cell cycle, autophagy, activation of MAPK, inflammation, metabolism of lipids, and mitochondrial functioning pathways. Ductular reactions, cell proliferation, deposition of collagen 1 and autophagy were increased in the presence of microbiota after BDL whereas GF mice were more susceptible to hepatic inflammation as evidenced by increased gene expression levels of osteopontin, interleukin (IL)-1β and activation of the ERK/MAPK pathway as compared to ASF colonized mice. Additonally, we found that the presence of microbiota provided partial protection to the mitochondrial functioning and impairment in the fatty acid metabolism after BDL. The concentration of the majority of BA markedly increased after BDL in both groups without remarkable differences according to the hygiene status of the mice. In conclusion, acute cholestasis induced more severe liver injury in GF mice compared to mice with limited intestinal bacterial colonization. This protective effect was associated with different hepatic gene expression profiles mostly related to tissue repair, metabolic and immune functions. Our findings suggest that microbial-induced differences may impact the course of cholestasis and modulate liver injury, offering a background for novel therapies based on the modulation of the intestinal microbiota.


Anatomic variations of the intra-hepatic biliary tree in the Caribbean: A systematic review.

  • Shamir O Cawich‎ et al.
  • World journal of gastrointestinal endoscopy‎
  • 2021‎

In the classic descriptions of the human liver, the common hepatic duct forms at the confluence of left and right hepatic ducts. Many authors have documented variations in the intra-hepatic ductal system, but to the best of our knowledge there has been no report on bile duct variations in Caribbean populations.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: