Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 495 papers

Where next with atypical hemolytic uremic syndrome?

  • T Sakari Jokiranta‎ et al.
  • Molecular immunology‎
  • 2007‎

Hemolytic uremic syndrome (HUS) is a systemic disease characterized by damage to endothelial cells, erythrocytes and kidney glomeruli. A "typical" form of HUS follows gastrointestinal infection with enterohemorrhagic E. coli (e.g. O157:H7). Atypical HUS (aHUS) is not associated with gastrointestinal infections but is sporadic or familial in nature. Approximately 50% of aHUS cases are associated with a mutation in one or more genes coding for proteins involved in regulation or activation of the alternative pathway of complement. The link between the disease and the mutations shows the important balance of the alternative pathway between activation and regulation on host cell surfaces. It also demonstrates the power of this pathway in destroying cellular targets in general. In this review we discuss the current knowledge on pathogenesis, classification, diagnostics and management of this disease. We indicate a comprehensive diagnostic approach for aHUS based on the latest knowledge on complement dysregulation to gain both immediate and future patient benefit by assisting in choosing more appropriate therapy for each patient. We also indicate directions in which therapy of aHUS might improve and indicate the need to re-think the terminology and categorisation of the HUS-like diseases so that any advantage in the understanding of complement regulatory problems can be applied to patients accurately.


Virulence factors for hemolytic uremic syndrome, Denmark.

  • Steen Ethelberg‎ et al.
  • Emerging infectious diseases‎
  • 2004‎

We present an analysis of strain and patient factors associated with the development of bloody diarrhea and hemolytic uremic syndrome (HUS) among Shiga toxin-producing Escherichia coli (STEC) patients registered in Denmark in a 6-year period. Of 343 STEC patients, bloody diarrhea developed in 36.4% and HUS in 6.1%. In a multivariate logistic regression model, risk factors for bloody diarrhea were the eae and stx2 genes, O groups O157 and O103, and increasing age. Risk factors for HUS were presence of the stx2 (odds ratio [OR] 18.9) and eae (OR undefined) genes, being a child, and having bloody diarrhea. O group O157, although associated with HUS in a univariate analysis (OR 4.0), was not associated in the multivariate analysis (OR 1.1). This finding indicates that, rather than the O group, the combined presence of the eae and stx2 genes is an important predictor of HUS.


Complement factor H and the hemolytic uremic syndrome.

  • John P Atkinson‎ et al.
  • The Journal of experimental medicine‎
  • 2007‎

Immune recognition is coupled to powerful proinflammatory effector pathways that must be tightly regulated. The ancient alternative pathway of complement activation is one such proinflammatory pathway. Genetic susceptibility factors have been identified in both regulators and activating components of the alternative pathway that are associated with thrombotic microangiopathies, glomerulonephritides, and chronic conditions featuring debris deposition. These observations indicate that excessive alternative pathway activation promotes thrombosis in the microvasculature and tissue damage during debris accumulation. Intriguingly, distinct genetic changes in factor H (FH), a key regulator of the alternative pathway, are associated with hemolytic uremic syndrome (HUS), membranoproliferative glomerulonephritis (dense deposit disease), or age-related macular degeneration (AMD). A mouse model of HUS designed to mirror human mutations in FH has now been developed, providing new understanding of the molecular pathogenesis of complement-related endothelial disorders.


Pregnancy-Associated Atypical Hemolytic Uremic Syndrome: A Systematic Review.

  • Megha Gupta‎ et al.
  • Obstetrics and gynecology‎
  • 2020‎

To evaluate disease presentation, diagnosis, treatment, and clinical outcomes in pregnancy-associated atypical hemolytic uremic syndrome (aHUS).


Lessons learned from hemolytic uremic syndrome registries: recommendations for implementation.

  • Mina Lazem‎ et al.
  • Orphanet journal of rare diseases‎
  • 2021‎

Hemolytic uremic syndrome (HUS) is a rare condition which diagnosed with the triad of thrombocytopenia, microangiopathic hemolytic anemia, and acute renal injury. There is a high requirement for research to discover treatments. HUS registries can be used as an important information infrastructure. In this study, we identified and compared the different features of HUS registries to present a guide for the development and implementation of HUS registries.


Critical appraisal of eculizumab for atypical hemolytic uremic syndrome.

  • Lilian M Pereira Palma‎ et al.
  • Journal of blood medicine‎
  • 2016‎

The biology of atypical hemolytic uremic syndrome has been shown to involve inability to limit activation of the alternative complement pathway, with subsequent damage to systemic endothelial beds and the vasculature, resulting in the prototypic findings of a thrombotic microangiopathy. Central to this process is the formation of the terminal membrane attack complex C5b-9. Recently, application of a monoclonal antibody that specifically binds to C5, eculizumab, became available to treat patients with atypical hemolytic uremic syndrome, replacing plasma exchange or infusion as primary therapy. This review focuses on the evidence, based on published clinical trials, case series, and case reports, on the efficacy and safety of this approach.


Recessive mutations in DGKE cause atypical hemolytic-uremic syndrome.

  • Mathieu Lemaire‎ et al.
  • Nature genetics‎
  • 2013‎

Pathologic thrombosis is a major cause of mortality. Hemolytic-uremic syndrome (HUS) features episodes of small-vessel thrombosis resulting in microangiopathic hemolytic anemia, thrombocytopenia and renal failure. Atypical HUS (aHUS) can result from genetic or autoimmune factors that lead to pathologic complement cascade activation. Using exome sequencing, we identified recessive mutations in DGKE (encoding diacylglycerol kinase ɛ) that co-segregated with aHUS in nine unrelated kindreds, defining a distinctive Mendelian disease. Affected individuals present with aHUS before age 1 year, have persistent hypertension, hematuria and proteinuria (sometimes in the nephrotic range), and develop chronic kidney disease with age. DGKE is found in endothelium, platelets and podocytes. Arachidonic acid-containing diacylglycerols (DAG) activate protein kinase C (PKC), which promotes thrombosis, and DGKE normally inactivates DAG signaling. We infer that loss of DGKE function results in a prothrombotic state. These findings identify a new mechanism of pathologic thrombosis and kidney failure and have immediate implications for treating individuals with aHUS.


Rational use of eculizumab in secondary atypical hemolytic uremic syndrome.

  • Lucía Cordero‎ et al.
  • Frontiers in immunology‎
  • 2023‎

Secondary atypical hemolytic uremic syndrome (secondary aHUS) is a heterogeneous group of thrombotic microangiopathies (TMA) associated with various underlying conditions. Unlike primary aHUS, there is still no hard evidence on the efficacy of complement blockade in secondary aHUS, since the two main series that investigated this subject showed discrepant results. Our work aims to reassess the efficacy of eculizumab in treating secondary aHUS.


Utilization Pattern for Eculizumab Among Children With Hemolytic Uremic Syndrome.

  • Saritha Ranabothu‎ et al.
  • Frontiers in pediatrics‎
  • 2021‎

Background: Hemolytic uremic syndrome (HUS) is a complex disease with multi-organ involvement. Eculizumab therapy is recommended for treatment of complement mediated hemolytic uremic syndrome (cHUS). However, there are few studies evaluating eculizumab therapy among children with HUS. The primary objectives of the study were to describe and identify factors associated with eculizumab therapy in children with HUS. Design/Methods: This large, retrospective, multi-center, cohort study used the Pediatric Health Information System (PHIS) database to identify the index HUS-related hospitalization among patients ≤18 years of age from September 23, 2011 (Food and Drug Administration approval date of eculizumab) through December 31, 2018. Multivariate analysis was used to identify independent factors associated with eculizumab therapy during or after the index hospitalization. Results: Among 1,885 children included in the study, eculizumab therapy was noted in 167 children with a median age of 3.99 years (SD ± 4.7 years). Eculizumab therapy was administered early (within the first 7 days of hospitalization) among 65% of children who received the drug. Mortality during the index hospitalization among children with eculizumab therapy was 4.2 vs. 3.0% without eculizumab therapy (p = 0.309). Clinical factors independently associated with eculizumab therapy were encephalopathy [odds ratio (OR) = 3.09; p ≤ 0.001], seizure disorder (OR = 2.37; p = 0.006), and cardiac involvement (OR = 6.36, p < 0.001). Conclusion(s): Only 8.9% of children received eculizumab therapy. Children who presented with neurological and cardiac involvement with severe disease were more likely to receive eculizumab therapy, and children who received therapy received it early during their index hospitalization. Further prospective studies are suggested to confirm these findings.


Cerebral microstructural changes in children suffering from hemolytic uremic syndrome.

  • Eva Bültmann‎ et al.
  • European journal of pediatrics‎
  • 2023‎

To evaluate microstructural cerebral changes in children suffering from typical hemolytic uremic syndrome (HUS) based on apparent diffusion coefficient (ADC) maps. For 12 pediatric HUS patients (0.8 - 14.6 years of age) conventional magnetic resonance imaging (cMRI) at 1.5 T was retrospectively analyzed. ADC values were measured in 35 different brain regions and compared with age-related, previously published ADC reference values from a healthy pediatric control group. The HUS cohort was divided into 2 subgroups depending on clinical outcome. Subgroup A showed poor neurological outcome whereas subgroup B demonstrated improvement without lasting neurological deficits. Qualitative analysis revealed lesions by diffusion-weighted imaging (DWI) with hypointense correlate on the ADC map in basal ganglia and/or thalami and corresponding T2 hyperintensities in the majority of patients in Subgroup A (80%). Those in Subgroup B did not show qualitative DWI alterations with ADC correlate even when T2 hyperintense lesions were detected in basal ganglia and/or thalami. Quantitative analysis demonstrated abnormal ADC values in all HUS patients with a trend to a greater number of affected regions in Subgroup A compared to Subgroup B (16 versus 11 median number of regions respectively, p = 0.56).   Conclusion: Using DWI qualitative and quantitative differences were found between HUS patients showing poor neurological outcome and those without neurological deficits at discharge. While ADC values indicated more extensive cerebral changes than conventional qualitative findings, both may provide early prognostic indicators for neurological outcome in pediatric HUS patients. What is Known: • In patients with STEC-HUS and neurological symptoms, MRI may show hyperintense signals on T2 and altered diffusivity mostly affecting basal ganglia, thalami and periventricular white matter. What is New: • In such patients, early MRI including quantitative ADC measurements over different brain regions may allow for detection of signal alterations possibly reflecting microstructural changes in such patients.


Epidemiology of Atypical Hemolytic Uremic Syndrome: A Systematic Literature Review.

  • Kevin Yan‎ et al.
  • Clinical epidemiology‎
  • 2020‎

Atypical hemolytic uremic syndrome (aHUS) is a rare but severe disorder that frequently has a genetic component and results from the overactivation of the alternative complement pathway. As research moves toward improved diagnosis and therapy of aHUS, it will be important to better understand its epidemiology. Our objective was to conduct a systematic literature review to assess the incidence and prevalence estimates of aHUS globally. A comprehensive literature search was conducted in Embase and MEDLINE. Additionally, practice guidelines, databases of national/international organizations, and regulatory agencies were searched. From 2960 publications identified via MEDLINE and Embase, 105 publications were eligible for full-text screening, and a total of eight full-text articles met eligibility criteria for inclusion. Regional epidemiologic estimates were obtained for Europe and Oceania. Country-specific data were available for France, Norway, Australia, and Italy. Four of the identified studies reported on the prevalence of aHUS, prevalence in the age group of 20 years or younger was ranging from 2.2 to 9.4 per million population, while the only study that reported prevalence in all ages showed a prevalence of 4.9 per million population. Six studies reported on the incidence of aHUS, annual incidence in the age group of 20 years or younger was ranging from 0.26 to 0.75 per million population, and for all ages, annual incidence was ranging from 0.23 to 1.9 per million population. To our knowledge, this is the first systematic review conducted to provide a comprehensive overview of global incidence and prevalence estimates of aHUS. In general, incidence estimates were similar across all the studies; however, prevalence data were found to be more variable. Study limitations were related to inconsistencies in the definitions of aHUS between studies and also a dearth of epidemiological studies assessing incidence and prevalence of aHUS outside of Europe.


Shiga toxin-mediated hemolytic uremic syndrome: time to change the diagnostic paradigm?

  • Martina Bielaszewska‎ et al.
  • PloS one‎
  • 2007‎

Hemolytic uremic syndrome (HUS) is caused by enterohemorrhagic Escherichia coli (EHEC) which possess genes encoding Shiga toxin (stx), the major virulence factor, and adhesin intimin (eae). However, the frequency of stx-negative/eae-positive E. coli in stools of HUS patients and the clinical significance of such strains are unknown.


Atypical hemolytic uremic syndrome in children: complement mutations and clinical characteristics.

  • Lianne M Geerdink‎ et al.
  • Pediatric nephrology (Berlin, Germany)‎
  • 2012‎

Mutations in complement factor H (CFH), factor I (CFI), factor B (CFB), thrombomodulin (THBD), C3 and membrane cofactor protein (MCP), and autoantibodies against factor H (αFH) with or without a homozygous deletion in CFH-related protein 1 and 3 (∆CFHR1/3) predispose development of atypical hemolytic uremic syndrome (aHUS).


Shiga Toxin-Associated Hemolytic Uremic Syndrome in Adults, France, 2009-2017.

  • Benoît Travert‎ et al.
  • Emerging infectious diseases‎
  • 2021‎

We conducted a retrospective study on hemolytic uremic syndrome caused by Shiga toxin-producing Escherichia coli (STEC) in 96 adults enrolled in the cohort of the National Reference Center for Thrombotic Microangiopathies network in France during 2009-2017. Most infections were caused by STEC strains not belonging to the O157 or O104 serogroups. Thirty (31.3%) patients had multiple risk factors for thrombotic microangiopathy. In total, 61 (63.5%) patients required dialysis, 50 (52.1%) had a serious neurologic complication, 34 (35.4%) required mechanical ventilation, and 19 (19.8%) died during hospitalization. We used multivariate analysis to determine that the greatest risk factors for death were underlying immunodeficiency (hazard ratio 3.54) and severe neurologic events (hazard ratio 3.40). According to multivariate analysis and propensity score-matching, eculizumab treatment was not associated with survival. We found that underlying conditions, especially immunodeficiency, are strongly associated with decreased survival in adults who have hemolytic uremic syndrome caused by STEC.


Anti-Factor H Antibodies in Egyptian Children with Hemolytic Uremic Syndrome.

  • Shereen Shawky‎ et al.
  • International journal of nephrology‎
  • 2021‎

Atypical hemolytic uremic syndrome (aHUS) is an important cause of acute kidney injury in children. It is primarily caused by dysregulation of the complement alternative pathway due to genetic mutations, mainly in complement factor H genes, or due to anti-factor H autoantibodies (anti-FH), leading to uncontrolled overactivation of the complement system. Early diagnosis and treatment of autoimmune HUS (AI-HUS) is essential and leads to a favorable outcome.


Streptococcus Pneumoniae-Associated Hemolytic Uremic Syndrome in the Era of Pneumococcal Vaccine.

  • Hemant S Agarwal‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Streptococcus pneumoniae-associated hemolytic uremic syndrome (Sp-HUS) is a serious complication of invasive pneumococcal disease that is associated with increased mortality in the acute phase and morbidity in the long term. Recently, Sp-HUS definition has undergone revision and cases are categorized as definite, probable, and possible, based on less invasive serological investigations that evaluate Thomsen-Friedenreich crypt antigen (T-antigen) activation. In comparison to the pre-vaccine era, Sp-HUS incidence seems to be decreasing after the introduction of 7-serotype valence and 13-serotype valence pneumococcal vaccines in 2000 and 2010, respectively. However, Sp-HUS cases continue to occur secondary to vaccine failure and emergence of non-vaccine/replacement serotypes. No single hypothesis elucidates the molecular basis for Sp-HUS occurrence, although pneumococcal neuraminidase production and formation of T-antigen antibody complexes on susceptible endothelial and red blood cells continues to remain the most acceptable explanation. Management of Sp-HUS patients remains supportive in nature and better outcomes are being reported secondary to earlier recognition, better diagnostic tools and improved medical care. Recently, the addition of eculizumab therapy in the management of Sp-HUS for control of dysregulated complement activity has demonstrated good outcomes, although randomized clinical trials are awaited. A sustained pneumococcal vaccination program and vigilance for replacement serotypes will be the key for persistent reduction in Sp-HUS cases worldwide.


Relevance of Bacteriophage 933W in the Development of Hemolytic Uremic Syndrome (HUS).

  • Manuel E Del Cogliano‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Hemolytic uremic syndrome (HUS), principally caused by shiga toxins (Stxs), is associated with Shiga toxin-producing Escherichia coli (STEC) infections. We previously reported Stx2 expression by host cells in vitro and in vivo. As the genes encoding the two Stx subunits are located in bacteriophage genomes, the aim of the current study was to evaluate the role of bacteriophage induction in HUS development in absence of an E. coli O157:H7 genomic background. Mice were inoculated with a non-pathogenic E. coli strain carrying the lysogenic bacteriophage 933W (C600Φ933W), and bacteriophage excision was induced by an antibiotic. The mice died 72 h after inoculation, having developed pathogenic damage typical of STEC infection. As well as renal and intestinal damage, markers of central nervous system (CNS) injury were observed, including aberrant immunolocalization of neuronal nuclei (NeuN) and increased expression of glial fibrillary acidic protein (GFAP). These results show that bacteriophage 933W without an E. coli O157:H7 background is capable of inducing the pathogenic damage associated with STEC infection. In addition, a novel mouse model was developed to evaluate therapeutic approaches focused on the bacteriophage as a new target.


Turkish pediatric atypical hemolytic uremic syndrome registry: initial analysis of 146 patients.

  • Nesrin Besbas‎ et al.
  • BMC nephrology‎
  • 2017‎

Atypical hemolytic uremic syndrome (aHUS) is a devastating disease with significant morbidity and mortality. Its genetic heterogeneity impacts its clinical presentation, progress, and outcome, and there is no consensus on its clinical management.


Defective C3d caused by C3 p.W1034R in inherited atypical hemolytic uremic syndrome.

  • Masafumi Tsuchida‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2023‎

Atypical hemolytic uremic syndrome (aHUS) is a rare form of thrombotic microangiopathy. Personal genome analyses have revealed numerous aHUS-causing variants, mainly complement-related genes. However, not all aHUS-causing variants have been functionally validated.


Clinical and genetic predictors of atypical hemolytic uremic syndrome phenotype and outcome.

  • Franz Schaefer‎ et al.
  • Kidney international‎
  • 2018‎

Atypical hemolytic uremic syndrome (aHUS) is a rare, genetic, life-threatening disease. The Global aHUS Registry collects real-world data on the natural history of the disease. Here we characterize end-stage renal disease (ESRD)-free survival, the rate of thrombotic microangiopathy, organ involvement and the genetic background of 851 patients in the registry, prior to eculizumab treatment. A sex-specific difference was apparent according to age at initial disease onset as the ratio of males to females was 1.3:1 for childhood presentation and 1:2 for adult presentation. Complement Factor I and Membrane Cofactor Protein mutations were more common in patients with initial presentation as adults and children, respectively. Initial presentation in childhood significantly predicted ESRD risk (adjusted hazard ratio 0.55 [95% confidence interval 0.41-0.73], whereas sex, race, family history of aHUS, and time from initial presentation to diagnosis, did not. Patients with a Complement Factor H mutation had reduced ESRD-free survival, whereas Membrane Cofactor Protein mutation was associated with longer ESRD-free survival. Additionally extrarenal organ manifestations occur in 19%-38% of patients within six months of initial disease presentation (dependent on organ). Thus, our real-world results provide novel insights regarding phenotypic variables and genotypes on the clinical manifestation and progression of aHUS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: