Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 105 papers

The kidneys in paroxysmal nocturnal hemoglobinuria.

  • D A Clark‎ et al.
  • Blood‎
  • 1981‎

Long-term study of 21 PNH patients revealed an unexpectedly high incidence of functional and anatomic renal abnormalities. Most patients demonstrated varying degrees of hematuria and proteinuria distinct from hemoglobinuria. Evaluation of renal function revealed hyposthenuria, abnormal tubular function, and declining creatinine clearance. Radiologically these patients had enlarged kidneys, cortical infarcts, cortical thinning, and papillary necrosis which were confirmed by autopsy studies. Hypertension developed in eight patients. Urinary tract infection was uncommon. The renal findings bear striking similarity to those of sickle cell anemia. Contrary to the usual opinion, out studies clearly showed evidence of widespread renal pathology in PNH most likely due to repeated microvascular thrombosis similar to the venous thrombosis involving other organs in this disorder.


Comparison of High Sensitivity and Conventional Flow Cytometry for Diagnosing Overt Paroxysmal Nocturnal Hemoglobinuria and Detecting Minor Paroxysmal Nocturnal Hemoglobinuria Clones.

  • Sang Hyuk Park‎ et al.
  • Annals of laboratory medicine‎
  • 2019‎

High sensitivity flow cytometry (HS-FCM) was recently developed for diagnosing paroxysmal nocturnal hemoglobinuria (PNH). We compared its performance with conventional flow cytometry (C-FCM) for diagnosing overt PNH and detecting minor (0.1-1%) PNH clones in aplastic anemia (AA)/low-grade myelodysplastic syndrome (MDS) patients.


Defective glycosyl phosphatidylinositol anchor synthesis and paroxysmal nocturnal hemoglobinuria.

  • T Kinoshita‎ et al.
  • Advances in immunology‎
  • 1995‎

No abstract available


CR1 gene polymorphisms in Chinese patients with paroxysmal nocturnal hemoglobinuria.

  • Zhangbiao Long‎ et al.
  • Gene‎
  • 2018‎

Patients with paroxysmal nocturnal hemoglobinuria (PNH) who have minor allele of the complement receptor 1 (CR1) gene, displayed more sub-optimal responder to eculizumab compared with major allele. To investigate polymorphism of the CR1 gene in Chinese patients with PNH and its correlation with clinical features and the potential impact on eculizumab efficiency, we genotyped CR1 rs2274567, rs3811381 and the intron 27 Hind III restriction fragment length polymorphism in 95patients with PNH and 96 controls. The results indicated that the genotypes of CR1 rs2274567, rs3811381 and the intron 27 Hind III in PNH patients and controls both consist with Hardy-Weinberg equilibrium. The minor allele frequency (MAF) of rs2274567 and rs3811381 in PNH patients and normal controls were lower compared with data from the dbSNP database. Further analysis showed that the MAF of Chinese patients was significantly lower than that of Caucasians (P < 0.0001, P = 0.0006 and P < 0.0001, respectively). The minor allele of CR1 rs2274567, rs3811381 and the intron 27 Hind III was associated with decreased of hemoglobin level (P = 0.007, P = 0.022,and P = 0.022, respectively) in our patients. However, there was no significantly difference found in other clinical parameters. In conclusion, the results demonstrated the minor alleles of CR1 polymorphisms were lower in Chinese patients than in Caucasians, with a decrease in hemoglobin level. These findings may indicate less sub-optimal responders to eculizumab in Chinese patients.


Case Report: Paroxysmal nocturnal hemoglobinuria in a woman heterozygous for G6PD A-.

  • Nieves Perdigones‎ et al.
  • F1000Research‎
  • 2014‎

We describe a case of paroxysmal nocturnal hemoglobinuria (PNH) in a woman who is heterozygous for the glucose-6-phosphate dehydrogenase A-   ( G6PDA-) allele. PNH is associated with one or more clones of cells that lack complement inhibition due to loss of function somatic mutations in the PIGA gene.  PIGA encodes the enzyme phosphatidylinositol glycan anchor biosynthesis, class A, which catalyses the first step of glycosylphosphatidylinisotol ( GPI)  anchor synthesis. Two GPI anchored red cell surface antigens regulate complement lysis. G6PD catalyses the first step of the pentose phosphate pathway and enzyme variants, frequent in some populations have been selected because they confer resistance to malaria, are associated with hemolysis in the presence of oxidizing agents including several drugs. The patient had suffered a hemolytic attack after taking co-trimoxazole, a drug that precipitates hemolysis in G6PD deficient individuals. Since both G6PD and PIGA are X-linked we hypothesized that the PIGA mutation was on the X-chromosome carrying the G6PDA- allele. Investigations showed that in fact the PIGA mutation was on the X-chromosome carrying the normal G6PD B allele. We speculate that complement activation on G6PD A- red cells exposed to Bactrim might have triggered complement activation inducing the lysis of G6PD B PNH Type II red blood cells or that the patient may have had a PNH clone expressing G6PDA- at the time of the hemolytic episode.


Long noncoding RNA FAM157C contributes to clonal proliferation in paroxysmal nocturnal hemoglobinuria.

  • Honglei Wang‎ et al.
  • Annals of hematology‎
  • 2023‎

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare clonal disease of hematopoietic stem cells (HSCs). Long noncoding RNAs (lncRNAs) perform a wide range of biological functions, including the regulation of gene expression, cell differentiation, and proliferation, but their role in PNH remains unclear.CD59- and CD59+ granulocytes and monocytes from 35 PNH patients were sorted. High-throughput sequencing was analyzed in 5 PNH patients, and differentially expressed lncRNAs and mRNAs were identified. The mRNAs with fragments per kilobase of exon model per million mapped fragments (FPKM) > 10 in at least 3 patients were selected, and experiments were performed to identify their upstream regulatory lncRNAs. The expression of selected mRNAs and lncRNAs was verified by qRT‒PCR, and the correlation of these expression patterns with clinical data from other 30 PNH patients was analyzed. Then, the functions of the lncRNAs were studied in the PIGA-KO-THP-1 cell line.Transcription analysis revealed 742 upregulated and 1376 downregulated lncRNAs and 3276 upregulated and 213 downregulated mRNAs. After deep screening, 8 highly expressed mRNAs that were related to the NF-κB pathway were analyzed to determine coexpression patterns. LINC01002, FAM157C, CTD-2530H12.2, XLOC-064331 and XLOC-106677 were correlated with the 8 mRNAs. After measuring the expression of these molecules in 30 PNH patients by qRT‒PCR, lncRNA FAM157C was verified to be upregulated in the PNH clone, and its expression levels were positively correlated with the LDH levels and CD59- granulated and monocyte cell ratios. After knockdown of the FAM157C gene in the PIGA-KO-THP-1 cell line, we found that the cells were arrested in the G0/G1 phase and S phase, the apoptosis rate increased, and the cell proliferation decreased.LncRNA FAM157C was proven to promote PNH clone proliferation, and this is the first study to explore the role of lncRNAs in PNH.


Laboratory studies for paroxysmal nocturnal hemoglobinuria, with emphasis on flow cytometry.

  • Margarida Lima‎
  • Practical laboratory medicine‎
  • 2020‎

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare acquired clonal hematopoietic stem cell disorder caused by somatic mutations in the PIG-A gene, leading to the production of blood cells with absent or decreased expression of glycosylphosphatidylinositol-anchored proteins, including CD55 and CD59. Clinically, PNH is classified into three variants: classic (hemolytic), in the setting of another specified bone marrow disorder (such as aplastic anemia or myelodysplastic syndrome) and subclinical (asymptomatic). PNH testing is recommended for patients with intravascular hemolysis, acquired bone marrow failure syndromes and thrombosis with unusual features. Despite the availability of consensus guidelines for PNH diagnosis and monitoring, there are still discrepancies on how PNH tests are carried out, and these technical variations may lead to an incorrect diagnosis. Herein, we provide a brief historical overview of PNH, focusing on the laboratory tests available and on the current recommendations for PNH diagnosis and monitoring based in flow cytometry.


Biomimetic proteolipid vesicles for reverting GPI deficiency in paroxysmal nocturnal hemoglobinuria.

  • Valentina Giudice‎ et al.
  • iScience‎
  • 2024‎

Nano-vesicular carriers are promising tissue-specific drug delivery platforms. Here, biomimetic proteolipid vesicles (BPLVs) were used for delivery of glycosylphosphatidylinositol (GPI)-anchored proteins to GPI deficient paroxysmal nocturnal hemoglobinuria (PNH) cells. BPLVs were assembled as single unilamellar monodispersed (polydispersity index, 0.1) negatively charged (ζ-potential, -28.6 ± 5.6 mV) system using microfluidic technique equipped with Y-shaped chip. GPI-anchored and not-GPI proteins on BPLV surface were detected by flow cytometry. Peripheral blood mononuclear cells (PBMCs) from healthy and PNH subjects were treated with BPLVs (final concentration, 0.5 mg/mL), and cells displayed an excellent protein uptake, documented by flow cytometry immunophenotyping and confocal microscopy. BPLV-treated cells stressed with complement components showed an increased resistance to complement-mediated lysis, both healthy and PNH PBMCs. In conclusion, BPLVs could be effective nanocarriers for protein transfer to targeted cells to revert protein deficiency, like in PNH disease. However, further in vivo studies are required to validate our preclinical in vitro results.


Clinical and epidemiological features of paroxysmal cold hemoglobinuria: a systematic review.

  • Jeremy W Jacobs‎ et al.
  • Blood advances‎
  • 2023‎

Paroxysmal cold hemoglobinuria (PCH) is a rare autoimmune hemolytic anemia often overlooked as a potential etiology of hemolysis and is challenging to diagnose because of the complicated testing methods required. We performed a systematic review of all reported cases to better assess the clinical, immunohematologic, and therapeutic characteristics of PCH. We systematically analyzed PubMed, Medline, and EMBASE to identify all cases of PCH confirmed by Donath-Landsteiner (DL) testing. Three authors independently screened articles for inclusion, and systematically extracted epidemiologic, clinical, laboratory, treatment, and outcomes data. Discrepancies were adjudicated by a fourth author. We identified 230 cases, with median presentation hemoglobin of 6.5 g/dL and nadir of 5.5 g/dL. The most common direct antiglobulin test (DAT) result was the presence of complement and absence of immunoglobulin G (IgG) bound to red blood cells, although other findings were observed in one-third of cases. DL antibody class and specificity were reported for 71 patients, of which 83.1% were IgG anti-P. The use of corticosteroids is common, although we found no significant difference in the length of hospitalization for patients with and without steroid therapy. Recent reports have highlighted the use of complement inhibitors. Among patients with follow-up, 99% (213 of 216) were alive at the time of reporting. To our knowledge, this represents the largest compilation of PCH cases to date. We discovered that contemporary PCH most commonly occurs in children with a preceding viral infection, corticosteroid use is frequent (but potentially ineffective), and DAT results are more disparate than traditionally reported.


Pegcetacoplan controls hemolysis in complement inhibitor-naive patients with paroxysmal nocturnal hemoglobinuria.

  • Raymond Siu Ming Wong‎ et al.
  • Blood advances‎
  • 2023‎

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare disease characterized by complement-mediated hemolysis. Pegcetacoplan is the first C3-targeted therapy approved for adults with PNH (United States), adults with PNH with inadequate response or intolerance to a C5 inhibitor (Australia), and adults with anemia despite C5-targeted therapy for ≥3 months (European Union). PRINCE was a phase 3, randomized, multicenter, open-label, controlled study to evaluate the efficacy and safety of pegcetacoplan vs control (supportive care only; eg, blood transfusions, corticosteroids, and supplements) in complement inhibitor-naive patients with PNH. Eligible adults receiving supportive care only for PNH were randomly assigned and stratified based on their number of transfusions (<4 or ≥4) 12 months before screening. Patients received pegcetacoplan 1080 mg subcutaneously twice weekly or continued supportive care (control) for 26 weeks. Coprimary end points were hemoglobin stabilization (avoidance of >1-g/dL decrease in hemoglobin levels without transfusions) from baseline through week 26 and lactate dehydrogenase (LDH) change at week 26. Overall, 53 patients received pegcetacoplan (n = 35) or control (n = 18). Pegcetacoplan was superior to control for hemoglobin stabilization (pegcetacoplan, 85.7%; control, 0; difference, 73.1%; 95% confidence interval [CI], 57.2-89.0; P < .0001) and change from baseline in LDH (least square mean change: pegcetacoplan, -1870.5 U/L; control, -400.1 U/L; difference, -1470.4 U/L; 95% CI, -2113.4 to -827.3; P < .0001). Pegcetacoplan was well tolerated. No pegcetacoplan-related adverse events were serious, and no new safety signals were observed. Pegcetacoplan rapidly and significantly stabilized hemoglobin and reduced LDH in complement inhibitor-naive patients and had a favorable safety profile. This trial was registered at www.clinicaltrials.gov as NCT04085601.


Ravulizumab: a novel C5 inhibitor for the treatment of paroxysmal nocturnal hemoglobinuria.

  • Robert M Stern‎ et al.
  • Therapeutic advances in hematology‎
  • 2019‎

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare stem cell disorder characterized by hemolytic anemia, bone marrow failure, and thrombosis. Until recently, the complement inhibitor, eculizumab, was the only United States Food and Drug Administration (US FDA)-approved therapy for the treatment of PNH. Although effective, eculizumab requires a frequent dosing schedule that can be burdensome for some patients and increases the risk of breakthrough intravascular hemolysis. Ravulizumab, an eculizumab-like monoclonal antibody engineered to have a longer half-life, is intended to provide the same benefits as eculizumab but with a more convenient and effective dosing schedule. In two recently published phase III non-inferiority trials, ravulizumab was found to be non-inferior to eculizumab both in efficacy and safety for the treatment of patients with PNH. Based on these results, ravulizumab was approved by the US FDA on 21 December 2018 and is currently under regulatory review in both the European Union and Japan.


Biochemical phenotyping of paroxysmal nocturnal hemoglobinuria reveals solute carriers and β-oxidation deficiencies.

  • Patricia Eiko Yamakawa‎ et al.
  • PloS one‎
  • 2023‎

Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal disease of hematopoietic cells with a variable clinical spectrum characterized by intravascular hemolysis, high risk of thrombosis, and cytopenias. To understand the biochemical shifts underlying PNH, this study aimed to search for the dysfunctional pathways involved in PNH physiopathology by comparing the systemic metabolic profiles of affected patients to healthy controls and the metabolomic profiles before and after the administration of eculizumab in PNH patients undergoing treatment.


A novel patient-reported outcome instrument assessing the symptoms of paroxysmal nocturnal hemoglobinuria, the PNH-SQ.

  • R Paola Daly‎ et al.
  • Journal of patient-reported outcomes‎
  • 2021‎

Patient-reported outcome measures (PROs) used to measure symptoms of patients with paroxysmal nocturnal hemoglobinuria (PNH) in trials do not measure PNH symptoms comprehensively and do not assess daily fluctuations in symptoms. Following a literature review and consultation with a PNH expert, we drafted the PNH Symptom Questionnaire (PNH-SQ) and a patient-centric conceptual model of PNH symptoms and impacts. We then interviewed 15 patients with PNH to assess comprehensiveness of symptom capture from the patient perspective and to cognitively debrief the PNH-SQ. Patient interview data were also used to finalize the PNH conceptual model.


Differential miRNA expression profile and proteome in plasma exosomes from patients with paroxysmal nocturnal hemoglobinuria.

  • Raúl Teruel-Montoya‎ et al.
  • Scientific reports‎
  • 2019‎

Paroxysmal Nocturnal Hemoglobinuria (PNH) is a clonal disease of blood cells caused by the lack of glycosyl phosphatidyl inositol anchored proteins bound to the cell membrane. In consequence, erythrocytes lead to intravascular hemolysis upon complement activation, which promotes high risk of thrombosis, intravascular hemolytic anemia, and bone marrow failure in patients. The mechanisms of thrombosis in PNH are still poorly understood. Treatment with eculizumab reduces intravascular hemolysis and thrombotic risk, but not in all cases. Exosomes are extracellular vesicles released by cells and whose secretion is closely related to the inflammatory status. They participate in cell communication by activating signaling pathways and transferring genetic material and proteins to host cells. In consequence, exosomes may serve as surrogate biomarkers for the prognosis and/or diagnosis of a disease. Isolation of exosomes was carried out from healthy controls and from three groups of PNH patients, i.e. i) with no eculizumab treatment; ii) under treatment with eculizumab that have not suffered thrombosis; and iii) under treatment with eculizumab but that have suffered thrombosis. The miRNAome and proteome was analyzed using plasma focus miRNAs PCR panel and LC-MS analysis respectively. We found differential expression of miRNAs miR-148b-3p, miR-423-3p, miR29b-3p, miR15b-5p, let-7e-5p, miR126-3p, miR-125b-5p and miR-376c-3p as well as hemoglobin, haptoglobin, protein S and C4-binding protein in healthy controls vs PNH patients. Our results warrant further research and provide new information on the content of exosomes that could play a role in the hypercoagulable state in this disease.


Anti-Complement Treatment in Paroxysmal Nocturnal Hemoglobinuria: Where we Stand and Where we are Going.

  • Antonio M Risitano‎
  • Translational medicine @ UniSa‎
  • 2014‎

Paroxysmal nocturnal hemoglobinuria (PNH) is a clonal, non-malignant, hematological disorder characterized by the expansion of hematopoietic stem cells and progeny mature blood cells which are deficient in some surface proteins, including the two complement regulators CD55 and CD59. PNH is the paradigm of diseases implying complement dysregulation as main pathogenic mechanism; in fact, PNH erythrocytes are uncapable to modulate on their surface physiologic complement activation, which eventually leads to the typical clinical hallmark of PNH - the chronic complement-mediated intravascular anemia. Indeed, due to the lack of CD55 complement is continuously activated on erythrocyte surface, which subsequently enables the terminal lytic complement because of the lack of CD59, finally resulting in erythrocyte lysis. The availability of eculizumab as the first complement inhibitor for clinical use renewed the interest for this rare hematological disease. Indeed, in the last decad the anti-C5 monoclonal antibody has proven effective for the treatment of PNH, resulting in a sustained control of complement-mediated intravascular hemolysis, with a remarkable clinical benefit. Anti-complement treatment allowed transfusion independence in at least half of PNH patients receiving eculizumab, with adequate control of all hemolysis-associated symptoms even in almost all remaining patients. In addition, the risk of thromboembolic events - an other clinical hallmark of PNH, which significantly affects prognosis and survival - seems substantially reduced on eculizumab treatment, apparently resulting in improved survival. Even with all these remarkable effects, eculizumab treatment does not result in hemoglobin normalization, and most patients remain anemic. It has been demonstrated that this is due to persistent activation of the early phases of complement activation (upstream the C5), leading to complement-mediated extravascular hemolysis. Ongoing researches are focusing on possible strategies to improve current anti-complement therapies, aiming to develop second-generation complement therapeutics. Here we review PNH and its complement-mediated pathophysiology, summarizing available data on anti-complement treatment; we'll also discuss recent pathogenic insights which drive the development of novel strategies of complement inhibition.


High sensitivity 8-color flow cytometry assay for paroxysmal nocturnal hemoglobinuria granulocyte and monocyte detections.

  • Ray Chun-Fai Chan‎ et al.
  • Biomedical reports‎
  • 2018‎

Flow cytometry is the gold standard in diagnosis of paroxysmal nocturnal hemoglobinuria (PNH) by detecting the absence of glycol-phosphatidyl inositol (GPI)-linked protein expression on granulocyte and monocyte surfaces. However, the current assays are not optimized and require improvement, particularly in reducing background fluorescence and optimizing sensitivity and specificity. With more fluorochromes available and with advances in instrument engineering, rare populations may be identified with high sensitivity. The present study assessed an 8-color combination of comprehensive GPI-linked markers, namely fluorescein-labeled proaerolysin (FLAER), cluster of differentiation 157 (CD157), CD24 and CD14, and the lineage markers for granulocyte (CD15) and monocyte (CD64) cells to detect PNH clones. Additionally, to optimize the PNH flow assay, a 'dump' channel was used, comprised of CD5 and CD19, to exclude non-specific binding in order to reduce background. This method aimed to improve sensitivity and reduce the background to create an optimized PNH flow cocktail. The results demonstrated that the current 4-color PNH combination identifies a CD55- and FLAER+ population that is not PNH clones. By contrast, the 8-color panel delineated PNH clones from both monocyte and granulocytes by using granulocyte antigen (CD15) and monocyte antigen (CD64) as a gating strategy. The sensitivity was 0.01% for granulocytes and 0.05% for monocytes with an acquisition of 100,000 monocyte and granulocyte events. The background on a normal whole blood sample was 0.00076% on monocytes and 0.00277% on granulocytes. Thus, overall, the 8-color PNH assay exhibited high levels of specificity and sensitivity. The 8-color combination facilitated the improvement and enhancement of sensitivity in PNH clone identification, and may provide a useful tool for pathologists in PNH diagnosis and for monitoring patients at risk of developing classical/hemolytic PNH, to enable treatment to be delivered promptly.


Inhibition of C3 with pegcetacoplan results in normalization of hemolysis markers in paroxysmal nocturnal hemoglobinuria.

  • Raymond S M Wong‎ et al.
  • Annals of hematology‎
  • 2022‎

Paroxysmal nocturnal hemoglobinuria (PNH) is a rare, acquired hematologic disorder characterized by complement-mediated hemolysis. C5 inhibitors (eculizumab/ravulizumab) control intravascular hemolysis but do not prevent residual extravascular hemolysis. The newly approved complement inhibitor, pegcetacoplan, inhibits C3, upstream of C5, and has the potential to improve control of complement-mediated hemolysis. The PADDOCK and PALOMINO clinical trials assessed the safety and efficacy of pegcetacoplan in complement inhibitor-naïve adults (≥ 18 years) diagnosed with PNH. Patients in PADDOCK (phase 1b open-label, pilot trial) received daily subcutaneous pegcetacoplan (cohort 1: 180 mg up to day 28 [n = 3]; cohort 2: 270-360 mg up to day 365 [n = 20]). PALOMINO (phase 2a, open-label trial) used the same dosing protocol as PADDOCK cohort 2 (n = 4). Primary endpoints in both trials were mean change from baseline in hemoglobin, lactate dehydrogenase, haptoglobin, and the number and severity of treatment-emergent adverse events. Mean baseline hemoglobin levels were below the lower limit of normal in both trials (PADDOCK: 8.38 g/dL; PALOMINO: 7.73 g/dL; normal range: 11.90-18.00 g/dL), increased to within normal range by day 85, and were sustained through day 365 (PADDOCK: 12.14 g/dL; PALOMINO: 13.00 g/dL). In PADDOCK, 3 serious adverse events (SAE) led to study drug discontinuation, 1 of which was deemed likely related to pegcetacoplan and 1 SAE, not deemed related to study drug, led to death. No SAE led to discontinuation/death in PALOMINO. Pegcetacoplan was generally well tolerated and improved hematological parameters by controlling hemolysis, while also improving other clinical PNH indicators in both trials. These trials were registered at www.clinicaltrials.gov (NCT02588833 and NCT03593200).


Clonal Cell Proliferation in Paroxysmal Nocturnal Hemoglobinuria: Evaluation of PIGA Mutations and T-cell Receptor Clonality.

  • Joonhong Park‎ et al.
  • Annals of laboratory medicine‎
  • 2019‎

Paroxysmal nocturnal hemoglobinuria (PNH) is an acquired pluripotent hematopoietic stem cell disorder associated with an increase in the number of glycosyl-phosphatidyl inositol (GPI)-deficient blood cells. We investigated PNH clonal proliferation in the three cell lineages-granulocytes, T lymphocytes, and red blood cells (RBCs)-by analyzing PIGA gene mutations and T-cell receptor (TCR) clonality.


Polymorphism of the ABO gene associate with thrombosis risk in patients with paroxysmal nocturnal hemoglobinuria.

  • Zhangbiao Long‎ et al.
  • Oncotarget‎
  • 2017‎

Thrombosis is one of the most common causes of mortality in Paroxysmal nocturnal hemoglobinuria (PNH), but the predisposing factors for thrombosis are yet to be defined. In this study, we outline the clinical characters and the susceptible genes which lead to thrombotic formation in 104 patients with PNH. The results displayed that the genotypes with minor alleles of rs495828 or rs2519093 in the ABO gene were associated with high risk to thrombus formation (OR 5.95, 95% CI 1.90-18.65 and OR 6.3, 95% CI 2.01-19.79, respectively). Further, the TT haplotype was associated with a significant increased risk of thrombosis (OR=3.25, 95%CI 1.42-7.39). Multivariate regression analysis showed larger PNH clone and genotypes with rs495828/rs2519093 minor allele as independent risk factors for thrombosis in PNH. Some patients who came back for follow-up were tested for the plasma levels of vWF and factor VIII. Patients carrying the rs495828/rs2519093 minor allele had a significant higher level of vWF and factor VIII compared with those carrying the major allele. Therefore, we found for the first time that the rs495828/rs2519093 polymorphism represent an independent prognostic factor in PNH patients for thrombus formation, probably by increasing the vWF and factor VIII.


No evidence for hypogammaglobulinemia in patients with paroxysmal nocturnal hemoglobinuria (PNH) chronically treated with ravulizumab.

  • Ferras Alashkar‎ et al.
  • PloS one‎
  • 2020‎

Ravulizumab (ALXN1210) is a long-lasting recycling IgG monoclonal antibody with an increased affinity for the neonatal Fc receptor (FcRn). The FcRn is essential for regulating IgG homeostasis. Saturation of the FcRn pathway is seen under high IgG doses as they compete with endogenous IgG to bind the FcRn by their Fc regions, resulting in enhanced IgG clearance.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: