Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 235 papers

Estrogen-mediated hemangioma-derived stem cells through estrogen receptor-α for infantile hemangioma.

  • Ling Zhang‎ et al.
  • Cancer management and research‎
  • 2017‎

Infantile hemangiomas (IHs) are the most common benign vascular tumor of infancy. They occur more frequently in female infants. The cause of hemangioma is currently unknown; however, current studies suggested the importance of estrogen (E2) signaling in hemangioma proliferation.


KIAA1429 promotes infantile hemangioma regression by facilitating the stemness of hemangioma endothelial cells.

  • Luying Wang‎ et al.
  • Cancer science‎
  • 2023‎

Infantile hemangiomas are common vascular tumors with a specific natural history. The proliferation and regression mechanism of infantile hemangiomas may be related to the multilineage differentiation ability of hemangioma stem cells, but the specific mechanism is not well elucidated. KIAA1429 is an N6 -methyladenosine methylation-related protein that can also exert its role in a methylation-independent manner. This study aims to explore the function of KIAA1429 in infantile hemangiomas. qRT-PCR, western blotting, and immunostaining were performed to verify the expression of KIAA1429. The endothelial and fibroblast-like phenotypes of hemangioma endothelial cells were detected after KIAA1429 knockdown and overexpression. The stemness properties of hemangioma endothelial cells and the underlying mechanism of KIAA1429 in hemangiomas were also investigated. Nude mouse models of infantile hemangiomas were conducted to ascertain the effects of KIAA1429 in vivo. The results showed that KIAA1429 was highly expressed in infantile hemangiomas, particularly in involuting hemangiomas. In vitro experiments confirmed that KIAA1429 inhibited the endothelial phenotype, enhanced the differentiation ability, and promoted the fibroblast-like phenotype of hemangioma endothelial cells by inducing endothelial cell transition to facultative stem cells. However, the effect of KIAA1429 on the potential target was shown to be independent of N6 -methyladenosine methylation modification. Mouse models further revealed that KIAA1429 could inhibit the proliferation and promote the regression of hemangiomas. In conclusion, this study found that KIAA1429 played an important role in the regression of infantile hemangiomas by enhancing the stemness of hemangioma endothelial cells and could be a potential treatment target for infantile hemangiomas.


Role of pigment epithelium-derived factor in the involution of hemangioma: autocrine growth inhibition of hemangioma-derived endothelial cells.

  • Kyung-Jin Kim‎ et al.
  • Biochemical and biophysical research communications‎
  • 2014‎

Hemangioma is a benign tumor derived from abnormal blood vessel growth. Unlike other vascular tumor counterparts, a hemangioma is known to proliferate during its early stage but it is followed by a stage of involution where regression of the tumor occurs. The critical onset leading to the involution of hemangioma is currently not well understood. This study focused on the molecular identities of the involution of hemangioma. We demonstrated that a soluble factor released from the involuting phase of hemangioma-derived endothelial cells (HemECs) and identified pigment epithelium-derived factor (PEDF) as an anti-angiogenic factor that was associated with the growth inhibition of the involuting HemECs. The growth inhibition of the involuting HemECs was reversed by suppression of PEDF in the involuting HemECs. Furthermore, we found that PEDF was more up-regulated in the involuting phase of hemangioma tissues than in the proliferating or the involuted. Taken together, we propose that PEDF accelerates the involution of hemangioma by growth inhibition of HemECs in an autocrine manner. The regulatory mechanism of PEDF expression could be a potential therapeutic target to treat hemangiomas.


Intracranial Virotherapy for a Canine Hemangioma.

  • Pablo Delgado-Bonet‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Intracranial hemangiomas are rare neoplastic lesions in dogs that usually appear with life-threatening symptoms. The treatment of choice is tumor resection; however, complete resection is rarely achieved. The patient's prognosis therefore usually worsens due to tumor progression, and adjuvant treatments are required to control the disease. Oncolytic viruses are an innovative approach that lyses the tumor cells and induces immune responses. Here, we report the intratumoral inoculation of ICOCAV15 (an oncolytic adenovirus) in a canine intracranial hemangioma, as adjuvant treatment for incomplete tumor resection. The canine patient showed no side effects, and the tumor volume decreased over the 12 months after the treatment, as measured by magnetic resonance imaging using volumetric criteria. When progressive disease was detected at month 18, a new dose of ICOCAV15 was administered. The patient died 31.9 months after the first inoculation of the oncolytic adenovirus. Furthermore, tumor-infiltrated immune cells increased in number after the viral administrations, suggesting tumor microenvironment activation. The increased number of infiltrated immune cells, the long survival time and the absence of side effects suggest that ICOCAV15 could be a safe and effective treatment and should be further explored as a novel therapy for canine hemangiomas.


Identification of serum regression signs in infantile hemangioma.

  • Daniela D'Arcangelo‎ et al.
  • PloS one‎
  • 2014‎

Vessel proliferation underlies a number of serious pathological conditions. Infantile Hemangioma (IH) is a low-aggressive vascular tumor, interesting as an in vivo model of spontaneous tumor regression. Identifying mechanisms underlying IH spontaneous regression may then help to elucidate vessel-growth control, strongly deregulated in other serious conditions such as sarcoma, melanoma, diabetic retinopathy. The present study was aimed at identifying early regression indicators within hematological parameters. Thirty-four blood samples were collected from IH diagnosed babies (20-months median age), spontaneously regressing with age. Nineteen serum standard blood-tests were carried out using diagnostic reagents; in addition, serum-expression of 27 cytokine/chemokines was measured. Samples were divided in three age-groups, namely ≤ 12, 13 to 24 and >24 months-age, respectively. Red-cells count, Hemoglobin, Hematocrit, Neutrophils, Lymphocytes, MCP-1 and MIP-1beta were significantly different in the three age-groups, according to one-way ANOVA analysis. The same parameters showed a significant Pearson-correlation with age, supporting the direct link of age with IH-regression. ROC analysis showed that red-cells count, Hemoglobin, Hematocrit, MCP-1 and MIP-1beta levels significantly discriminate IH in the proliferating-phase from IH in the regressing-phase. Such data indicate for the first time that standard hematological tests and cytokine serum-expression values may effectively discriminate proliferating- from regressing-IH, unrevealing early regression signs, and demonstrate that standard blood-tests may have novel unsuspected diagnostic/prognostic relevance in altered vessel-growth conditions.


Management of adult laryngeal hemangioma with CO2 laser.

  • Hamoud Alshaya‎ et al.
  • Saudi medical journal‎
  • 2021‎

No abstract available


Outcomes of surgery for giant hepatic hemangioma.

  • Qing-Song Xie‎ et al.
  • BMC surgery‎
  • 2021‎

The surgical indications for liver hemangioma remain unclear.


Expression of Cathepsins B, D, and G in Infantile Hemangioma.

  • Tinte Itinteang‎ et al.
  • Frontiers in surgery‎
  • 2015‎

The role of the renin-angiotensin system (RAS) in the biology of infantile hemangioma (IH) represents an emerging paradigm, particularly the involvement of renin, angiotensin converting enzyme, and angiotensin II. This study investigated the expression of cathepsins B, D, and G, enzymes that may modulate the RAS, in IH.


Propranolol inhibits stemness of hemangioma through Jagged1.

  • Xiaorong Ma‎ et al.
  • Annals of translational medicine‎
  • 2021‎

Propranolol is used clinically to treat infantile hemangioma (IH), although the exact mechanism that underlies its effectiveness is not fully understood. The Jagged1/Notch signaling pathway is downstream of the β2-adrenergic receptor (β2-AR). Propranolol is a non-selective β2-AR blocker that was shown to inhibit demethylation adrenaline-induced Jagged1 expression. A previous study has shown that propranolol dose-dependently inhibits the growth of IH. However, the effects of propranolol on stemness of IH are not known and are thus addressed in the current study.


Novel GATA6-FOXO1 fusions in a subset of epithelioid hemangioma.

  • Cristina R Antonescu‎ et al.
  • Modern pathology : an official journal of the United States and Canadian Academy of Pathology, Inc‎
  • 2021‎

The genetic hallmark of epithelioid hemangioma (EH) is the presence of recurrent gene fusions involving FOS and FOSB transcription factors, which occur in one-third of the cases. Certain clinical, pathologic, and genotypic correlations have been described, with FOS-related fusions being more often detected in skeletal and cellular variants of EH, while FOSB gene rearrangements are more commonly associated with atypical histologic features and penile location. These fusions are infrequently detected in the cutaneous or head and neck EH. Overall, two-thirds of EH lack these canonical fusions and remain difficult to classify, especially when associated with atypical features and/or clinical presentations. Triggered by an index case of an intravascular soft tissue EH with a novel GATA6-FOXO1 gene fusion by targeted RNA sequencing (Archer® FusionPlex® Sarcoma Panel), we have investigated 27 additional EH cases negative for FOS and FOSB gene rearrangements for this novel abnormality to determine its recurrent potential, and its association with clinical and pathologic features. Four additional EH cases were found to display GATA6-FOXO1 fusions (18%). There were three females and two males, with a mean age of 32 years old. Three lesions occurred in the head and neck (dura, nasopharyngeal, and cheek), one in the back and one in the leg. Two of these lesions were cutaneous and one was intravascular in the subcutis of the leg. Microscopically, the tumors showed a variegated morphology, with alternating vasoformative and solid components, extravasated red blood cells and mild to moderate cytologic atypia. None showed brisk mitotic activity or necrosis. Tumors were negative for FOS and FOSB by immunohistochemistry. In conclusion, we report a new GATA6-FOXO1 fusion in a subset of EH, with a predilection for skin, and head and neck location. The relationship of this novel molecular subset with the more common FOS/FOSB fusion-positive EH remains to be determined.


Treatments for infantile Hemangioma: A systematic review and network meta-analysis.

  • Qiang Fei‎ et al.
  • EClinicalMedicine‎
  • 2020‎

Infantile hemangioma (IH) is common in children, which may bring about cosmetically disfiguring, functional impairment, and exhibiting complications. There had been various therapies and we aimed to assess the efficacy and adverse effects of different therapies through network meta-analysis.


Intrinsic regulation of hemangioma involution by platelet-derived growth factor.

  • E E Roach‎ et al.
  • Cell death & disease‎
  • 2012‎

Infantile hemangioma is a vascular tumor that exhibits a unique natural cycle of rapid growth followed by involution. Previously, we have shown that hemangiomas arise from CD133+ stem cells that differentiate into endothelial cells when implanted in immunodeficient mice. The same clonally expanded stem cells also produced adipocytes, thus recapitulating the involuting phase of hemangioma. In the present study, we have elucidated the intrinsic mechanisms of adipocyte differentiation using hemangioma-derived stem cells (hemSCs). We found that platelet-derived growth factor (PDGF) is elevated during the proliferating phase and may inhibit adipocyte differentiation. hemSCs expressed high levels of PDGF-B and showed sustained tyrosine phosphorylation of PDGF receptors under basal (unstimulated) conditions. Inhibition of PDGF receptor signaling caused enhanced adipogenesis in hemSCs. Furthermore, exposure of hemSCs to exogenous PDGF-BB reduced the fat content and the expression of adipocyte-specific transcription factors. We also show that these autogenous inhibitory effects are mediated by PDGF receptor-β signaling. In summary, this study identifies PDGF signaling as an intrinsic negative regulator of hemangioma involution and highlights the therapeutic potential of disrupting PDGF signaling for the treatment of hemangiomas.


Management of Capillary Hemangioma of the Sphenoid Sinus.

  • Irina-Gabriela Ionita‎ et al.
  • Medicina (Kaunas, Lithuania)‎
  • 2023‎

Background and objectives: Capillary hemangiomas are rare, benign vascular tumors that mainly affect the skin and soft tissue, with scarce appearance within the nasal cavities and paranasal sinuses. Materials and methods: We present a case report of capillary hemangioma of the sphenoid sinus and a review of the literature in the last ten years. Results: Clinical and endoscopic examination of the nose, radiologic assessment and particular histologic features contribute to the correct diagnosis of capillary hemangioma of the nose and paranasal sinuses. Conclusions: Transnasal endoscopic resection of capillary hemangioma located in the nose and paranasal sinuses is a valuable treatment method with good outcomes.


Intraosseous cavernous hemangioma: a rare presentation in maxilla.

  • Burak Kaya‎ et al.
  • Eplasty‎
  • 2014‎

Hemangiomas are benign vascular lesions mostly arising from soft tissues. However, intraosseous hemangioma is a rare entity, comprising only 1% of benign bone tumors. We describe here the presentation, diagnosis, and treatment of a 42-year-old woman with a painless hard swelling-diagnosed to be intraosseous hemangioma via orbital magnetic resonance imaging-localized on the left infraorbital margin.


De novo MYH9 mutation in congenital scalp hemangioma.

  • Elena I Fomchenko‎ et al.
  • Cold Spring Harbor molecular case studies‎
  • 2018‎

Congenital hemangiomas are tumor-like vascular malformations with poorly understood pathogenesis. We report the case of a neonate with a massive congenital scalp hemangioma that required urgent neurosurgical removal on the second day of life because of concern for high-flow arteriovenous shunting. Exome sequencing identified a rare damaging de novo germline mutation in MYH9 (c.5308C>T, p.[Arg1770Cys]), encoding the MYH9 nonmuscle myosin IIA. MYH9 has a probability of loss-of-function intolerance (pLI) score of >0.99 and is highly intolerant to missense variation (z score = 5.59). The p.(Arg1770Cys) mutation substitutes an evolutionarily conserved amino acid in the protein's critical myosin tail domain and is predicted to be highly deleterious by SIFT, PolyPhen-2, MetaSVM, and CADD. MYH9 is a known regulator of cytokinesis, VEGF-regulated angiogenesis, and p53-dependent tumorigenesis. These findings reveal a novel association of germline de novo MYH9 mutation with congenital hemangioma.


The significance of p40 expression in sclerosing hemangioma of lung.

  • Jian Wu‎ et al.
  • Scientific reports‎
  • 2014‎

To explore the histogenesis of cuboidal and polygonal tumor cells in the sclerosing hemangioma of lung (SHL), eighteen cases of SHL were retrospectively studied. SPB, p40, TTF-1,EMA,CKpan, vimentin,SMA, CgA,Syn and CD34 were immunohistochemically labeled by the EnVisionmethod. It was found that the four main types of structure in SHL were solid,papillary, hemorrhagic and sclerotic patterns. The tumor cells were composed mainly of two types of cells: cuboidal tumor cells and polygonal tumor cells. The immunohistochemistry showed that p40 was expressed only in cuboidal tumor cells. TTF-1 and EMA were expressed in both polygonal cells and cuboidal cells. SPB was also expressed in cuboidal tumor cells; vimentin was expressed in all polygonal tumor cells and some cuboidal cells. The findings suggest that the p40-positive cuboidal tumor cells may be pluripotent original respiratory epithelial cells, with multi-directional differentiation capacity.


GNAQ Q209R Mutations Are Highly Specific for Circumscribed Choroidal Hemangioma.

  • Claudia Helga Dorothee Le Guin‎ et al.
  • Cancers‎
  • 2019‎

Several tumors, including uveal melanoma, show somatic mutations of GNAQ/GNA11. Circumscribed choroidal hemangioma is a benign tumor that becomes symptomatic in adulthood. In some patients, morphologic examination of biopsies is required for differential diagnosis between amelanotic choroidal melanoma and circumscribed choroidal hemangioma. Here, we report the results of GNAQ/GNA11 mutation analysis in samples from circumscribed choroidal hemangioma. Deep amplicon sequencing (Illumina MiSeq, San Diego, CA, USA) of positions R183 and Q209 of GNAQ and GNA11 in tissue samples from 33 patients with histologically diagnosed circumscribed choroidal hemangioma. All patients underwent biopsy or enucleation at our clinic between 2008 and 2018. To enable detection of variant alleles at low fractions, read depth exceeded 15,000-fold. DNA for genetic analysis was prepared from either snap-frozen (n = 22) or FFPE (n = 11) tissue samples. Samples from 28/33 patients (85%) showed a somatic missense mutation of GNAQ (c.626 A > G) predicted to result in p.Q209R. Variant allele fraction was variable (range 2.3% to 28%). Variants of GNAQ resulting in p.Q209 are characteristic for circumscribed choroidal hemangiomas. It appears that the GNAQ mutation spectrum in this tumor is narrow, possibly restricted to p.Q209R. Moreover, the spectrum is distinct from that of uveal melanoma, in which alterations resulting in p.Q209R are very rare.


Suppressed NFAT-dependent VEGFR1 expression and constitutive VEGFR2 signaling in infantile hemangioma.

  • Masatoshi Jinnin‎ et al.
  • Nature medicine‎
  • 2008‎

Infantile hemangiomas are localized and rapidly growing regions of disorganized angiogenesis. We show that expression of vascular endothelial growth factor receptor-1 (VEGFR1) in hemangioma endothelial cells (hemECs) and hemangioma tissue is markedly reduced compared to controls. Low VEGFR1 expression in hemECs results in VEGF-dependent activation of VEGFR2 and downstream signaling pathways. In hemECs, transcription of the gene encoding VEGFR1 (FLT1) is dependent on nuclear factor of activated T cells (NFAT). Low VEGFR1 expression in hemECs is caused by reduced activity of a pathway involving beta1 integrin, the integrin-like receptor tumor endothelial marker-8 (TEM8), VEGFR2 and NFAT. In a subset of individuals with hemangioma, we found missense mutations in the genes encoding VEGFR2 (KDR) and TEM8 (ANTXR1). These mutations result in increased interactions among VEGFR2, TEM8 and beta1 integrin proteins and in inhibition of integrin activity. Normalization of the constitutive VEGFR2 signaling in hemECs with soluble VEGFR1 or antibodies that neutralize VEGF or stimulate beta1 integrin suggests that local administration of these or similar agents may be effective in hemangioma treatment.


Somatic Activating Mutations in GNAQ and GNA11 Are Associated with Congenital Hemangioma.

  • Ugur M Ayturk‎ et al.
  • American journal of human genetics‎
  • 2016‎

Congenital hemangioma is a rare vascular tumor that forms in utero. Postnatally, the tumor either involutes quickly (i.e., rapidly involuting congenital hemangioma [RICH]) or partially regresses and stabilizes (i.e., non-involuting congenital hemangioma [NICH]). We hypothesized that congenital hemangiomas arise due to somatic mutation and performed massively parallel mRNA sequencing on affected tissue from eight participants. We identified mutually exclusive, mosaic missense mutations that alter glutamine at amino acid 209 (Glu209) in GNAQ or GNA11 in all tested samples, at variant allele frequencies (VAF) ranging from 3% to 33%. We verified the presence of the mutations in genomic DNA using a combination of molecular inversion probe sequencing (MIP-seq) and digital droplet PCR (ddPCR). The Glu209 GNAQ and GNA11 missense variants we identified are common in uveal melanoma and have been shown to constitutively activate MAPK and/or YAP signaling. When we screened additional archival formalin-fixed paraffin-embedded (FFPE) congenital cutaneous and hepatic hemangiomas, 4/8 had GNAQ or GNA11 Glu209 variants. The same GNAQ or GNA11 mutation is found in both NICH and RICH, so other factors must account for these tumors' different postnatal behaviors.


Circular RNA profile of infantile hemangioma by microarray analysis.

  • Cong Fu‎ et al.
  • PloS one‎
  • 2017‎

Circular RNAs (circRNAs) are a recently identified class of noncoding RNAs that participate in several physiological processes. However, the expression of circRNAs in infantile hemangioma (IH) remains unknown.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: