Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 142 papers

Antiviral Efficacy of Ribavirin and Favipiravir against Hantaan Virus.

  • Jennifer Mayor‎ et al.
  • Microorganisms‎
  • 2021‎

Ecological changes, population movements and increasing urbanization promote the expansion of hantaviruses, placing humans at high risk of virus transmission and consequent diseases. The currently limited therapeutic options make the development of antiviral strategies an urgent need. Ribavirin is the only antiviral used currently to treat hemorrhagic fever with renal syndrome (HFRS) caused by Hantaan virus (HTNV), even though severe side effects are associated with this drug. We therefore investigated the antiviral activity of favipiravir, a new antiviral agent against RNA viruses. Both ribavirin and favipiravir demonstrated similar potent antiviral activity on HTNV infection. When combined, the efficacy of ribavirin is enhanced through the addition of low dose favipiravir, highlighting the possibility to provide better treatment than is currently available.


Simultaneous rapid detection of Hantaan virus and Seoul virus using RT-LAMP in rats.

  • Xin Sui‎ et al.
  • PeerJ‎
  • 2019‎

Hemorrhagic fever with renal syndrome is in most cases caused by the Hantaan virus (HTNV) and Seoul virus (SEOV). To develop and apply reverse transcription loop-mediated isothermal amplification (RT-LAMP) to detect HTNV and SEOV simultaneously, which was faster, more cost effective, and easier to perform as the target gene amplified rapidly. In this article an assay based on LAMP is demonstrated, which only employs such apparatus as a water bath or a heat block.


Interferon-stimulated genes response in endothelial cells following Hantaan virus infection.

  • In Wook Kim‎ et al.
  • Journal of Korean medical science‎
  • 2007‎

The regulation mechanism of interferon (IFN) and IFN-stimulated genes is a very complex procedure and is dependent on cell types and virus species. We observed molecular changes related to anti-viral responses in endothelial cells during Hantaan virus (HTNV) infection. We found that there are two patterns of gene expression, the first pattern of gene expression being characterized by early induction and short action, as in that of type I IFNs,' and the other being characterized by delayed induction and long duration, as those of IRF-7, MxA, and TAP-1/2. Even though there are significant differences in their induction folds, we found that all of IFN-alpha/beta, IRF- 3/7, MxA, and TAP-1/2 mRNA expressions reached the peak when the viral replication was most active, which took place 3 days of post infection (d.p.i.). In addition, an interesting phenomenon was observed; only one gene was highly expressed in paired genes such as IFN-alpha/beta' (3/277-folds), IRF-3/7 (2.2/29.4-folds), and TAP- 1/2 (26.2/6.1-folds). Therefore, IFN-beta, IRF-7, and TAP-1 seem to be more important for the anti-viral response in HTNV infection. MxA was increased to 296-folds at 3 d.p.i. and kept continuing 207-folds until 7 d.p.i.. The above results indicate that IFN-beta works for an early anti-viral response, while IRF7, MxA, and TAP-1 work for prolonged anti-viral response in HTNV infection.


Genetic diversity and evolution of Hantaan virus in China and its neighbors.

  • Naizhe Li‎ et al.
  • PLoS neglected tropical diseases‎
  • 2020‎

Hantaan virus (HTNV; family Hantaviridae, order Bunyavirales) causes hemorrhagic fever with renal syndrome (HFRS), which has raised serious concerns in Eurasia, especially in China, Russia, and South Korea. Previous studies reported genetic diversity and phylogenetic features of HTNV in different parts of China, but the analyses from the holistic perspective are rare.


Comparative Immunoreactivity Analyses of Hantaan Virus Glycoprotein-Derived MHC-I Epitopes in Vaccination.

  • Baozeng Sun‎ et al.
  • Vaccines‎
  • 2022‎

MHC-I antigen processes and presentation trigger host-specific anti-viral cellular responses during infection, in which epitope-recognizing cytotoxic T lymphocytes eliminate infected cells and contribute to viral clearance through a cytolytic killing effect. In this study, Hantaan virus (HTNV) GP-derived 9-mer dominant epitopes were obtained with high affinity to major HLA-I and H-2 superfamilies. Further immunogenicity and conservation analyses selected 11 promising candidates, and molecule docking (MD) was then simulated with the corresponding MHC-I alleles. Two-way hierarchical clustering revealed the interactions between GP peptides and MHC-I haplotypes. Briefly, epitope hotspots sharing good affinity to a wide spectrum of MHC-I molecules highlighted the biomedical practice for vaccination, and haplotype clusters represented the similarities among individuals during T-cell response establishment. Cross-validation proved the patterns observed through both MD simulation and public data integration. Lastly, 148 HTNV variants yielded six types of major amino acid residue replacements involving four in nine hotspots, which minimally influenced the general potential of MHC-I superfamily presentation. Altogether, our work comprehensively evaluates the pan-MHC-I immunoreactivity of HTNV GP through a state-of-the-art workflow in light of comparative immunology, acknowledges present discoveries, and offers guidance for ongoing HTNV vaccine pursuit.


Expression of ICAM-1 on the Hantaan virus-infected human umbilical vein endothelial cells.

  • J S Song‎ et al.
  • The Korean journal of internal medicine‎
  • 1999‎

In HFRS, there is a varying degree of disseminated intravascular coagulation which was evident in the early phase of the illness. It is believed also that DIC would be the consequence, at least in part, of functional changes of endothelium resulting in kinin activation and clinical syndrome. This study investigated the role of adhesion molecule in the pathogenesis of Hantaan virus-related disease.


Structures of active Hantaan virus polymerase uncover the mechanisms of Hantaviridae genome replication.

  • Quentin Durieux Trouilleton‎ et al.
  • Nature communications‎
  • 2023‎

Hantaviruses are causing life-threatening zoonotic infections in humans. Their tripartite negative-stranded RNA genome is replicated by the multi-functional viral RNA-dependent RNA-polymerase. Here we describe the structure of the Hantaan virus polymerase core and establish conditions for in vitro replication activity. The apo structure adopts an inactive conformation that involves substantial folding rearrangement of polymerase motifs. Binding of the 5' viral RNA promoter triggers Hantaan virus polymerase reorganization and activation. It induces the recruitment of the 3' viral RNA towards the polymerase active site for prime-and-realign initiation. The elongation structure reveals the formation of a template/product duplex in the active site cavity concomitant with polymerase core widening and the opening of a 3' viral RNA secondary binding site. Altogether, these elements reveal the molecular specificities of Hantaviridae polymerase structure and uncover the mechanisms underlying replication. They provide a solid framework for future development of antivirals against this group of emerging pathogens.


An algal lectin griffithsin inhibits Hantaan virus infection in vitro and in vivo.

  • Yajing Zhao‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2022‎

Hantaan virus (HTNV) is the etiological pathogen of hemorrhagic fever with renal syndrome in East Asia. There are currently no effective therapeutics approved for HTNV and other hantavirus infections. We found that griffithsin (GRFT), an algae-derived lectin with broad-spectrum antiviral activity against various enveloped viruses, can inhibit the growth and spread of HTNV. In vitro experiments using recombinant vesicular stomatitis virus (rVSV) with HTNV glycoproteins as a model revealed that the GRFT inhibited the entry of rVSV-HTNV-G into host cells. In addition, we demonstrated that GRFT prevented authentic HTNV infection in vitro by binding to the viral N-glycans. In vivo experiments showed that GRFT partially protected the suckling mice from death induced by intracranial exposure to HTNV. These results demonstrated that GRFT can be a promising agent for inhibiting HTNV infection.


LncRNA NEAT1 Potentiates SREBP2 Activity to Promote Inflammatory Macrophage Activation and Limit Hantaan Virus Propagation.

  • Yongheng Yang‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

As the global prototypical zoonotic hantavirus, Hantaan virus (HTNV) is prevalent in Asia and is the leading causative agent of severe hemorrhagic fever with renal syndrome (HFRS), which has profound morbidity and mortality. Macrophages are crucial components of the host innate immune system and serve as the first line of defense against HTNV infection. Previous studies indicated that the viral replication efficiency in macrophages determines hantavirus pathogenicity, but it remains unknown which factor manipulates the macrophage activation pattern and the virus-host interaction process. Here, we performed the transcriptomic analysis of HTNV-infected mouse bone marrow-derived macrophages and identified the long noncoding RNA (lncRNA) nuclear enriched abundant transcript 1 (NEAT1), especially the isoform NEAT1-2, as one of the lncRNAs that is differentially expressed at the early phase. Based on coculture experiments, we revealed that silencing NEAT1-2 hinders inflammatory macrophage activation and facilitates HTNV propagation, while enhancing NEAT1-2 transcription effectively restrains viral replication. Furthermore, sterol response element binding factor-2 (SREBP2), which controls the cholesterol metabolism process, was found to stimulate macrophages by promoting the production of multiple inflammatory cytokines upon HTNV infection. NEAT1-2 could potentiate SREBP2 activity by upregulating Srebf1 expression and interacting with SREBP2, thus stimulating inflammatory macrophages and limiting HTNV propagation. More importantly, we demonstrated that the NEAT1-2 expression level in patient monocytes was negatively correlated with viral load and HFRS disease progression. Our results identified a function and mechanism of action for the lncRNA NEAT1 in heightening SREBP2-mediated macrophage activation to restrain hantaviral propagation and revealed the association of NEAT1 with HFRS severity.


Pathological Studies on Hantaan Virus-Infected Mice Simulating Severe Hemorrhagic Fever with Renal Syndrome.

  • Zhouoxing Wei‎ et al.
  • Viruses‎
  • 2022‎

Hantaan virus is the causative agent of hemorrhagic fever with renal syndrome (HFRS). The Hantaan virus strain, Korean hemorrhagic fever virus clone-5 (KHF5), causes weight loss and renal hemorrhage in laboratory mice. Clone-4 (KHF4), which has a single E417K amino acid change in its glycoprotein, is an avirulent variant. In this study, KHF4 and KHF5 were compared to evaluate pathological differences in mice in vitro and in vivo. The characteristics of the two glycoproteins were not significantly different in vitro. However, the virulent KHF5 strain targeted the lungs and caused pneumonia and edema in vivo. Both strains induced high infectivity levels in the liver and caused hepatitis; however, petechial hemorrhage and glycogen storage reduction were observed in KHF5-infected mice alone. Renal hemorrhage was observed using viral antigens in the tubular region of KHF5-infected mice. In addition, an increase in white blood cell levels and neutrophilia were found in KHF5-infected mice. Microarray analysis of liver cells showed that CD8+ T cell activation, acute-phase protein production, and neutrophil activation was induced by KHF5 infection. KHF5 infectivity was significantly increased in vivo and the histological and clinicopathological findings were similar to those in patients with HFRS.


Construction of a Hantaan Virus Phage Antibody Library and Screening for Potential Neutralizing Activity.

  • Zhuo Li‎ et al.
  • Viruses‎
  • 2023‎

China is one of the main epidemic areas for hemorrhagic fever with renal syndrome (HFRS). Currently, there is no human antibody specific to Hantaan virus (HTNV) for the emergency prevention and treatment of HFRS. To prepare human antibodies with neutralizing activity, we established an anti-HTNV phage antibody library using phage display technology by transforming peripheral blood mononuclear cells (PBMCs) of patients with HFRS into B lymphoblastoid cell lines (BLCLs) and extracting cDNA from BLCLs that secreted neutralizing antibodies. Based on the phage antibody library, we screened HTNV-specific Fab antibodies with neutralizing activities. Our study provides a potential way forward for the emergency prevention of HTNV and specific treatment of HFRS.


Construction and immunological characterization of CD40L or GM-CSF incorporated Hantaan virus like particle.

  • Qikang Ying‎ et al.
  • Oncotarget‎
  • 2016‎

Infection of Hantaan virus (HTNV) usually causes hemorrhagic fever with renal syndrome (HFRS). China has the worst epidemic incidence of HFRS as well as high fatality. Inactivated whole virus has been used for HFRS vaccination, however there are still problems such as safety concerns. CD40 ligand (CD40L) and granulocyte macrophage colony-stimulating factor (GM-CSF) are well-known immune stimulating molecules that can enhance antigen presenting, lymphocytes activation and maturation, incorporation of CD40L and GM-CSF to the surface of virus like particles (VLPs) can greatly improve the vaccination effect. We constructed eukaryotic vectors expressing HTNV M segment and S segment, as well as vectors expressing HTNV M segment with CD40L or GM-CSF, our results showed successful production of CD40L or GM-CSF incorporated HTNV VLPs. In vitro stimulation with CD40L or GM-CSF anchored HTNV VLP showed enhanced activation of macrophages and DCs. CD40L/GM-CSF incorporated VLP can induce higher level of HTNV specific antibody and neutralizing antibody in mice. Immunized mice splenocytes showed higher ability of secreting IFN-γ and IL-2, as well as enhancing CTL activity. These results suggest CD40L/GM-CSF incorporated VLP can serve as prospective vaccine candidate.


RNA-Seq Revealed a Circular RNA-microRNA-mRNA Regulatory Network in Hantaan Virus Infection.

  • Shuang Lu‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2020‎

Hantaan virus (HTNV), a Hantavirus serotype that is prevalent in Asia, causes hemorrhagic fever with renal syndrome (HFRS) with high mortality in human race. However, the pathogenesis of HTNV infection remains elusive. Circular RNAs (circRNAs), a new type of non-coding RNAs, play a crucial role in various pathogenic processes. Nevertheless, circRNA expression profiles and their effects on pathogenesis of HTNV infection are still completely unknown. In the present study, RNA sequencing was performed to analyze the circRNA, microRNA (miRNA), and mRNA expression profiles in HTNV-infected and mock-infected human umbilical vein endothelial cells (HUVECs). A total of 70 circRNAs, 66 miRNAs, and 788 mRNAs were differently expressed. Several differentially expressed RNAs were validated by RT-qPCR. Moreover, we verified that some differentially expressed RNAs, such as circ_0000479, miR-149-5p, miR-330-5p, miR-411-3p, RIG-I, CMPK2, PARP10, and GBP1, promoted or inhibited HTNV replication. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis demonstrated that the host genes of differentially expressed circRNAs were principally involved in the innate immune response, the type I interferon (IFN) signaling pathway, and the cytokine-mediated signaling pathway. Additionally, the circRNA-miRNA-mRNA regulatory network was integrally analyzed. The data showed that there were many circRNA-miRNA-mRNA interactions in HTNV infection. By dual-luciferase reporter assay, we confirmed that circ_0000479 indirectly regulated RIG-I expression by sponging miR-149-5p, hampering viral replication. This study for the first time presents a comprehensive overview of circRNAs induced by HTNV and reveals that a network of enriched circRNAs and circRNA-associated competitive endogenous RNAs (ceRNAs) is involved in the regulation of HTNV infection, thus offering new insight into the mechanisms underlying HTNV-host interaction.


Specific interference shRNA-expressing plasmids inhibit Hantaan virus infection in vitro and in vivo.

  • Yuan-yuan Liu‎ et al.
  • Acta pharmacologica Sinica‎
  • 2016‎

To investigate the antiviral effects of vectors expressing specific short hairpin RNAs (shRNAs) against Hantaan virus (HTNV) infection in vitro and in vivo.


Insight into the Hantaan virus RNA-dependent RNA polymerase inhibition using in-silico approaches.

  • Shah Faisal‎ et al.
  • Molecular diversity‎
  • 2022‎

The Hantaan virus (HTN) is a member of the hantaviridae family. It is a segmented type, negative-strand virus (sNSVs). It causes hemorrhagic fever with renal syndrome, which includes fever, vascular hemorrhage, and renal failure. This illness is one of the most serious hemorrhagic diseases in the world, and it is a major public health concern due to its high mortality rate. The Hantaan virus RNA-dependent RNA polymerase complex (RdRp) is involved in viral RNA transcription and replication for the survival and transmission of this virus. Therefore, it is a primary target for antiviral drug development. Interference with the endonucleolytic "cap-snatching" reaction by the HTN virus RdRp endonuclease domain is a particularly appealing approach for drug discovery against this virus. This RdRp endonuclease domain of the HTN virus has a metal-dependent catalytic activity. We targeted this metal-dependent enzymatic activity to identify inhibitors that can bind and disrupt this endonuclease enzyme activity using in-silico approaches i.e., molecular docking, molecular dynamics simulation, predicted absorption, distribution, metabolism, excretion, toxicity (ADMET) and drug-likeness studies. The docking studies showed that peramivir, and ingavirin compounds can effectively bind with the manganese ions and engage with other active site residues of this protein. Molecular simulations also showed stable binding of these ligands with the active site of HTN RdRp. Simulation analysis showed that they were in constant contact with the active site manganese ions and amino acid residues of the HTN virus endonuclease domain. This study will help in better understanding the HTN and related viruses.


Structural Basis for a Neutralizing Antibody Response Elicited by a Recombinant Hantaan Virus Gn Immunogen.

  • Ilona Rissanen‎ et al.
  • mBio‎
  • 2021‎

Hantaviruses are a group of emerging pathogens capable of causing severe disease upon zoonotic transmission to humans. The mature hantavirus surface presents higher-order tetrameric assemblies of two glycoproteins, Gn and Gc, which are responsible for negotiating host cell entry and constitute key therapeutic targets. Here, we demonstrate that recombinantly derived Gn from Hantaan virus (HTNV) elicits a neutralizing antibody response (serum dilution that inhibits 50% infection [ID50], 1:200 to 1:850) in an animal model. Using antigen-specific B cell sorting, we isolated monoclonal antibodies (mAbs) exhibiting neutralizing and non-neutralizing activity, termed mAb HTN-Gn1 and mAb nnHTN-Gn2, respectively. Crystallographic analysis reveals that these mAbs target spatially distinct epitopes at disparate sites of the N-terminal region of the HTNV Gn ectodomain. Epitope mapping onto a model of the higher order (Gn-Gc)4 spike supports the immune accessibility of the mAb HTN-Gn1 epitope, a hypothesis confirmed by electron cryo-tomography of the antibody with virus-like particles. These data define natively exposed regions of the hantaviral Gn that can be targeted in immunogen design. IMPORTANCE The spillover of pathogenic hantaviruses from rodent reservoirs into the human population poses a continued threat to human health. Here, we show that a recombinant form of the Hantaan virus (HTNV) surface-displayed glycoprotein, Gn, elicits a neutralizing antibody response in rabbits. We isolated a neutralizing (HTN-Gn1) and a non-neutralizing (nnHTN-Gn2) monoclonal antibody and provide the first molecular-level insights into how the Gn glycoprotein may be targeted by the antibody-mediated immune response. These findings may guide rational vaccine design approaches focused on targeting the hantavirus glycoprotein envelope.


Landscape elements and Hantaan virus-related hemorrhagic fever with renal syndrome, People's Republic of China.

  • Lei Yan‎ et al.
  • Emerging infectious diseases‎
  • 2007‎

Hemorrhagic fever with renal syndrome (HFRS) is an important public health problem in the People's Republic of China, accounting for 90% of human cases reported globally. In this study, a landscape epidemiologic approach, combined with geographic information system and remote sensing techniques, was applied to increase our understanding of HFRS due to Hantaan virus and its relationship with landscape elements in China. The landscape elements considered were elevation, normalized difference vegetation index (NDVI), precipitation, annual cumulative air temperature, land surface temperature, soil type, and land use. Multivariate logistic regression analysis showed that HFRS incidence was remarkably associated with elevation, NDVI, precipitation, annual cumulative air temperature, semihydromorphic soils, timber forests, and orchards. These findings have important applications for targeting HFRS interventions in mainland China.


Incorporation of GM-CSF or CD40L Enhances the Immunogenicity of Hantaan Virus-Like Particles.

  • Lin-Feng Cheng‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2016‎

A safe and effective Hantaan virus (HTNV) vaccine is highly desirable because HTNV causes an acute and often fatal disease (hemorrhagic fever with renal syndrome, HFRS). Since the immunity of the inactivated vaccine is weak and the safety is poor, HTNV virus-like particles (VLPs) offer an attractive and safe alternative. These particles lack the viral genome but are perceived by the immune system as virus particles. We hypothesized that adding immunostimulatory signals to VLPs would enhance their efficacy. To accomplish this enhancement, we generated chimeric HTNV VLPs containing glycosylphosphatidylinositol (GPI)-anchored granulocyte macrophage colony-stimulating factor (GM-CSF) or CD40 ligand (CD40L) and investigated their biological activity in vitro. The immunization of mice with chimeric HTNV VLPs containing GM-CSF or CD40L induced stronger humoral immune responses and cellular immune responses compared to the HTNV VLPs and Chinese commercial inactivated hantavirus vaccine. Chimeric HTNV VLPs containing GM-CSF or CD40L also protected mice from an HTNV challenge. Altogether, our results suggest that anchoring immunostimulatory molecules into HTNV VLPs can be a potential approach for the control and prevention of HFRS.


Production and characterization of a recombinant single-chain antibody against Hantaan virus envelop glycoprotein.

  • Jie Yang‎ et al.
  • Applied microbiology and biotechnology‎
  • 2010‎

Hantaan virus (HTNV) is the type of Hantavirus causing hemorrhagic fever with renal syndrome, for which no specific therapeutics are available so far. Cell type-specific internalizing antibodies can be used to deliver therapeutics intracellularly to target cell and thus, have potential application in anti-HTNV infection. To achieve intracellular delivery of therapeutics, it is necessary to obtain antibodies that demonstrate sufficient cell type-specific binding, internalizing, and desired cellular trafficking. Here, we describe the prokaryotic expression, affinity purification, and functional testing of a single-chain Fv antibody fragment (scFv) against HTNV envelop glycoprotein (GP), an HTNV-specific antigen normally located on the membranes of HTNV-infected cells. This HTNV GP-targeting antibody, scFv3G1, was produced in the cytoplasm of Escherichia coli cells as a soluble protein and was purified by immobilized metal affinity chromatography. The purified scFv possessed a high specific antigen-binding activity to HTNV GP and HTNV-infected Vero E6 cells and could be internalized into HTNV-infected cells probably through the clathrin-dependent endocytosis pathways similar to that observed with transferrin. Our results showed that the E. coli-produced scFv had potential applications in targeted and intracellular delivery of therapeutics against HTNV infections.


A recombinant pseudotyped lentivirus expressing the envelope glycoprotein of hantaan virus induced protective immunity in mice.

  • Lan Yu‎ et al.
  • Virology journal‎
  • 2013‎

Hantaviruses cause acute hemorrhagic fever with renal syndrome (HFRS). Currently, several types of inactivated HFRS vaccines are widely used, however the limited ability of these immunogen to elicit neutralizing antibodies restricts vaccine efficacy. Development of an effective vaccine to overcome this weakness is must.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: