Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 460 papers

An HIV-1/HIV-2 Chimeric Envelope Glycoprotein Generates Binding and Neutralising Antibodies against HIV-1 and HIV-2 Isolates.

  • Nuno Taveira‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The development of immunogens that elicit broadly reactive neutralising antibodies (bNAbs) is the highest priority for an HIV vaccine. We have shown that a prime-boost vaccination strategy with vaccinia virus expressing the envelope glycoprotein gp120 of HIV-2 and a polypeptide comprising the envelope regions C2, V3 and C3 elicits bNAbs against HIV-2. We hypothesised that a chimeric envelope gp120 containing the C2, V3 and C3 regions of HIV-2 and the remaining parts of HIV-1 would elicit a neutralising response against HIV-1 and HIV-2. This chimeric envelope was synthesised and expressed in vaccinia virus. Balb/c mice primed with the recombinant vaccinia virus and boosted with an HIV-2 C2V3C3 polypeptide or monomeric gp120 from a CRF01_AG HIV-1 isolate produced antibodies that neutralised >60% (serum dilution 1:40) of a primary HIV-2 isolate. Four out of nine mice also produced antibodies that neutralised at least one HIV-1 isolate. Neutralising epitope specificity was assessed using a panel of HIV-1 TRO.11 pseudoviruses with key neutralising epitopes disrupted by alanine substitution (N160A in V2; N278A in the CD4 binding site region; N332A in the high mannose patch). The neutralisation of the mutant pseudoviruses was reduced or abolished in one mouse, suggesting that neutralising antibodies target the three major neutralising epitopes in the HIV-1 envelope gp120. These results provide proof of concept for chimeric HIV-1/HIV-2 envelope glycoproteins as vaccine immunogens that can direct the antibody response against neutralising epitopes in the HIV-1 and HIV-2 surface glycoproteins.


Epidemiology and transmission of HIV-2. Why there is no HIV-2 pandemic.

  • K M De Cock‎ et al.
  • JAMA‎
  • 1993‎

Although human immunodeficiency virus type 1 (HIV-1) and HIV-2 share modes of transmission, their epidemiologic characteristics differ and international spread of HIV-2 has been very limited. Recently, the prevalence of infection with HIV-1 but not HIV-2 has increased rapidly in different West African countries, where HIV-2 was probably present earlier. Among 19,701 women of reproductive age tested in Abidjan, Ivory Coast, between 1988 and 1992, the prevalence of HIV-1 infection increased from 5.0% to 9.2%, while that of HIV-2 declined from 2.6% to 1.5%. Differences in viral load may be responsible: reported results of virus culture and polymerase chain reaction assays suggest that at high CD4+ T-lymphocyte counts viral load is lower in HIV-2-infected than in HIV-1-infected persons; the efficacy of heterosexual and perinatal transmission of HIV-2 is less efficient than that of HIV-1 at this stage. At low (< 0.20 x 10(9)/L [< 200/microL]) CD4+ T-lymphocyte counts, virus isolation is equally successful for both viruses, and the efficacy of heterosexual transmission is similar. Differences in HIV-1 and HIV-2 natural history are reflected in differences in viral load, that for HIV-2 being lower until immunodeficiency is severe. Differences in viral load throughout most of the natural history of infection appear to correlate with lower transmissibility of HIV-2 than HIV-1, and are the likeliest explanation for their markedly different global epidemiology.


Evaluation of Geenius HIV-1/2 Confirmatory Assay for the confirmatory and differential diagnosis of HIV-1/HIV-2 in Japan and reliability of the Geenius Reader in the diagnosis of HIV-2.

  • Shigeru Kusagawa‎ et al.
  • BMC infectious diseases‎
  • 2021‎

NEW LAV BLOT I and II (LAV I and LAV II), they were only option for human immunodeficiency virus (HIV) confirmatory test, following HIV screening test using HIV Ag/Ab combination test in Japan. We evaluated the performance of Geenius HIV-1/2 Confirmatory Assay (Geenius), both as a confirmatory test and for differentiation between HIV-1 and HIV-2, in comparison with LAV I and LAV II.


HIV-2 integrase polymorphisms and longitudinal genotypic analysis of HIV-2 infected patients failing a raltegravir-containing regimen.

  • Joana Cavaco-Silva‎ et al.
  • PloS one‎
  • 2014‎

To characterize the HIV-2 integrase gene polymorphisms and the pathways to resistance of HIV-2 patients failing a raltegravir-containing regimen, we studied 63 integrase strand transfer inhibitors (INSTI)-naïve patients, and 10 heavily pretreated patients exhibiting virological failure while receiving a salvage raltegravir-containing regimen. All patients were infected by HIV-2 group A. 61.4% of the integrase residues were conserved, including the catalytic motif residues. No INSTI-major resistance mutations were detected in the virus population from naïve patients, but two amino acids that are secondary resistance mutations to INSTIs in HIV-1 were observed. The 10 raltegravir-experienced patients exhibited resistance mutations via three main genetic pathways: N155H, Q148R, and eventually E92Q - T97A. The 155 pathway was preferentially used (7/10 patients). Other mutations associated to raltegravir resistance in HIV-1 were also observed in our HIV-2 population (V151I and D232N), along with several novel mutations previously unreported. Data retrieved from this study should help build a more robust HIV-2-specific algorithm for the genotypic interpretation of raltegravir resistance, and contribute to improve the clinical monitoring of HIV-2-infected patients.


Fidelity of classwide-resistant HIV-2 reverse transcriptase and differential contribution of K65R to the accuracy of HIV-1 and HIV-2 reverse transcriptases.

  • Mar Álvarez‎ et al.
  • Scientific reports‎
  • 2017‎

Nucleoside reverse transcriptase (RT) inhibitors constitute the backbone of current therapies against human immunodeficiency virus type 1 and type 2 (HIV-1 and HIV-2, respectively). However, mutational pathways leading to the development of nucleoside analogue resistance are different in both types of HIV. In HIV-2, resistance to all approved nucleoside analogues is conferred by the combination of RT substitutions K65R, Q151M and M184V. Nucleotide incorporation kinetic analyses of mutant and wild-type (WT) HIV-2 RTs show that the triple-mutant has decreased catalytic efficiency due to the presence of M184V. Although similar effects were previously reported for equivalent mutations in HIV-1 RT, the HIV-2 enzymes were catalytically less efficient. Interestingly, in highly divergent HIV-1 RTs, K65R confers several-fold increased accuracy of DNA synthesis. We have determined the intrinsic fidelity of DNA synthesis of WT HIV-2 RT and mutants K65R and K65R/Q151M/M184V. Our results show that those changes in HIV-2 RT have a relatively small impact on nucleotide selectivity. Furthermore, we found that there were less than two-fold differences in error rates obtained with forward mutation assays using mutant and WT HIV-2 RTs. A different conformation of the β3-β4 hairpin loop in HIV-1 and HIV-2 RTs could probably explain the differential effects of K65R.


HIV-1 Vpu and HIV-2 Env counteract BST-2/tetherin by sequestration in a perinuclear compartment.

  • Heiko Hauser‎ et al.
  • Retrovirology‎
  • 2010‎

In the absence of the Vpu protein, newly formed HIV-1 particles can remain attached to the surface of human cells due to the action of an interferon-inducible cellular restriction factor, BST-2/tetherin. Tetherin also restricts the release of other enveloped viral particles and is counteracted by a several viral anti-tetherin factors including the HIV-2 Env, SIV Nef and KSHV K5 proteins.


Convergent Evolution of HLA-C Downmodulation in HIV-1 and HIV-2.

  • Kristina Hopfensperger‎ et al.
  • mBio‎
  • 2020‎

HLA-C-mediated antigen presentation induces the killing of human immunodeficiency virus (HIV)-infected CD4+ T cells by cytotoxic T lymphocytes (CTLs). To evade killing, many HIV-1 group M strains decrease HLA-C surface levels using their accessory protein Vpu. However, some HIV-1 group M isolates lack this activity, possibly to prevent the activation of natural killer (NK) cells. Analyzing diverse primate lentiviruses, we found that Vpu-mediated HLA-C downregulation is not limited to pandemic group M but is also found in HIV-1 groups O and P as well as several simian immunodeficiency viruses (SIVs). We show that Vpu targets HLA-C primarily at the protein level, independently of its ability to suppress NF-κB-driven gene expression, and that in some viral lineages, HLA-C downregulation may come at the cost of efficient counteraction of the restriction factor tetherin. Remarkably, HIV-2, which does not carry a vpu gene, uses its accessory protein Vif to decrease HLA-C surface expression. This Vif activity requires intact binding sites for the Cullin5/Elongin ubiquitin ligase complex but is separable from its ability to counteract APOBEC3G. Similar to HIV-1 Vpu, the degree of HIV-2 Vif-mediated HLA-C downregulation varies considerably among different virus isolates. In agreement with opposing selection pressures in vivo, we show that the reduction of HLA-C surface levels by HIV-2 Vif is accompanied by increased NK cell-mediated killing. In summary, our results highlight the complex role of HLA-C in lentiviral infections and demonstrate that HIV-1 and HIV-2 have evolved at least two independent mechanisms to decrease HLA-C levels on infected cells.IMPORTANCE Genome-wide association studies suggest that HLA-C expression is a major determinant of viral load set points and CD4+ T cell counts in HIV-infected individuals. On the one hand, efficient HLA-C expression enables the killing of infected cells by cytotoxic T lymphocytes (CTLs). On the other hand, HLA-C sends inhibitory signals to natural killer (NK) cells and enhances the infectivity of newly produced HIV particles. HIV-1 group M viruses modulate HLA-C expression using the accessory protein Vpu, possibly to balance CTL- and NK cell-mediated immune responses. Here, we show that the second human immunodeficiency virus, HIV-2, can use its accessory protein Vif to evade HLA-C-mediated restriction. Furthermore, our mutational analyses provide insights into the underlying molecular mechanisms. In summary, our results reveal how the two human AIDS viruses modulate HLA-C, a key component of the antiviral immune response.


Kinetic studies of HIV-1 and HIV-2 envelope glycoprotein-mediated fusion.

  • Stephen A Gallo‎ et al.
  • Retrovirology‎
  • 2006‎

HIV envelope glycoprotein (Env)-mediated fusion is driven by the concerted coalescence of the HIV gp41 N-helical and C-helical regions, which results in the formation of 6 helix bundles. Kinetics of HIV Env-mediated fusion is an important determinant of sensitivity to entry inhibitors and antibodies. However, the parameters that govern the HIV Env fusion cascade have yet to be fully elucidated. We address this issue by comparing the kinetics HIV-1IIIB Env with those mediated by HIV-2 from two strains with different affinities for CD4 and CXCR4.


Multisite evaluation of four anti-HIV-1/HIV-2 enzyme immunoassays. Australian HIV Test Evaluation Group.

  • C Silvester‎ et al.
  • Journal of acquired immune deficiency syndromes and human retrovirology : official publication of the International Retrovirology Association‎
  • 1995‎

The performance of four enzyme immunoassays, manufactured by Abbott, Diagnostics Pasteur, Genetic Systems, and Organon Teknika, for the combined detection of anti-human immunodeficiency virus type 1 (HIV-1) and anti-HIV-2, was examined in a multisite evaluation. The collaborative efforts of 7 Australian Red Cross Blood Transfusion and 12 Australian Public Health Laboratories minimized potential biases in data by providing large numbers of anti-HIV-1-negative and -positive samples. Sensitivity was estimated using samples that were positive for anti-HIV-1 from individuals known to be infected and seroconversion samples. Sensitivity estimates in the four assays were 99.71, 99.94, 99.49, and 99.68%, respectively. Specificity was measured using fresh, sequential blood donations and samples with previous false-positive reactions in other assays. Specificity estimates from blood donations were 99.92, 99.46, 99.67, and 99.85%, respectively. The data were analyzed further using the delta statistic, which distinguishes the performance of assays of similar sensitivity and specificity by providing a measure of how well results in a population of positive or negative samples are removed from the assay's cutoff value.


Early Diagnosis of HIV-1 and HIV-2 Using Cobas HIV-1/HIV-2 Qualitative Test: A Novel Qualitative Nucleic Acid Amplification Test for Plasma, Serum, and Dried Blood Spot Specimens.

  • Lucia Hans‎ et al.
  • Journal of acquired immune deficiency syndromes (1999)‎
  • 2021‎

Nucleic acid amplification tests (NATs) minimize the time from HIV infection to diagnosis, reducing transmission during acute HIV. NATs are especially useful for diagnosing HIV in children younger than 18 months and discriminating between HIV-1 and HIV-2.


The HIV-2 OGH double reporter virus shows that HIV-2 is less cytotoxic and less sensitive to reactivation from latency than HIV-1 in cell culture.

  • Anne Bruggemans‎ et al.
  • Journal of virus eradication‎
  • 2023‎

A better understanding of HIV-1 latency is a research priority in HIV cure research. Conversely, little is known about the latency characteristics of HIV-2, the closely related human lentivirus. Though both viruses cause AIDS, HIV-2 infection progresses more slowly with significantly lower viral loads, even when corrected for CD4+ T cell counts. Hence a direct comparison of latency characteristics between HIV-1 and HIV-2 could provide important clues towards a functional cure. Transduction of SupT1 cells with single-round HIV-1 and HIV-2 viruses with an enhanced green fluorescent protein (eGFP) reporter showed higher levels of eGFP expression for HIV-2 than HIV-1, while HIV-1 expression appeared more cytotoxic. To compare HIV-1 and HIV-2 gene expression, latency and reactivation in more detail, we have generated HIV-2 OGH, a replication deficient, near full- length, double reporter virus that discriminates latently and productively infected cells in cell culture. This construct is based on HIV-1 OGH, and to our knowledge, first of its kind for HIV-2. Using this construct we have observed a higher eGFP expression for HIV-2, but higher losses of HIV-1 transduced cells in SupT1 and Jurkat cells and a reduced sensitivity of HIV-2 for reactivation with TNF-α. In addition, we have analysed HIV-2 integration sites and their epigenetic environment. HIV-1 and HIV-2 share a preference for actively transcribed genes in gene-dense regions and favor active chromatin marks while disfavoring methylation markers associated with heterochromatin. In conclusion the HIV-2 OGH construct provides an interesting tool for studying HIV-2 expression, latency and reactivation. As simian immunodeficiency virus (SIV) and HIV-2 have been proposed to model a functional HIV cure, a better understanding of the mechanisms governing HIV-2 and SIV latency will be important to move forward. Further research is needed to investigate if HIV-2 uses similar mechanisms as HIV-1 to achieve its integration site selectivity.


Limited HIV-2 reservoirs in central-memory CD4 T-cells associated to CXCR6 co-receptor expression in attenuated HIV-2 infection.

  • Assia Samri‎ et al.
  • PLoS pathogens‎
  • 2019‎

The low pathogenicity and replicative potential of HIV-2 are still poorly understood. We investigated whether HIV-2 reservoirs might follow the peculiar distribution reported in models of attenuated HIV-1/SIV infections, i.e. limited infection of central-memory CD4 T lymphocytes (TCM). Antiretroviral-naive HIV-2 infected individuals from the ANRS-CO5 (12 non-progressors, 2 progressors) were prospectively included. Peripheral blood mononuclear cells (PBMCs) were sorted into monocytes and resting CD4 T-cell subsets (naive [TN], central- [TCM], transitional- [TTM] and effector-memory [TEM]). Reactivation of HIV-2 was tested in 30-day cultures of CD8-depleted PBMCs. HIV-2 DNA was quantified by real-time PCR. Cell surface markers, co-receptors and restriction factors were analyzed by flow-cytometry and multiplex transcriptomic study. HIV-2 DNA was undetectable in monocytes from all individuals and was quantifiable in TTM from 4 individuals (median: 2.25 log10 copies/106 cells [IQR: 1.99-2.94]) but in TCM from only 1 individual (1.75 log10 copies/106 cells). HIV-2 DNA levels in PBMCs (median: 1.94 log10 copies/106 PBMC [IQR = 1.53-2.13]) positively correlated with those in TTM (r = 0.66, p = 0.01) but not TCM. HIV-2 reactivation was observed in the cells from only 3 individuals. The CCR5 co-receptor was distributed similarly in cell populations from individuals and donors. TCM had a lower expression of CXCR6 transcripts (p = 0.002) than TTM confirmed by FACS analysis, and a higher expression of TRIM5 transcripts (p = 0.004). Thus the low HIV-2 reservoirs differ from HIV-1 reservoirs by the lack of monocytic infection and a limited infection of TCM associated to a lower expression of a potential alternative HIV-2 co-receptor, CXCR6 and a higher expression of a restriction factor, TRIM5. These findings shed new light on the low pathogenicity of HIV-2 infection suggesting mechanisms close to those reported in other models of attenuated HIV/SIV infection models.


HIV-2 inhibits HIV-1 gene expression via two independent mechanisms during cellular co-infection.

  • Vincent Yapo‎ et al.
  • Journal of virology‎
  • 2023‎

Twenty-five years after the first report that HIV-2 infection can reduce HIV-1-associated pathogenesis in dual-infected patients, the mechanisms are still not well understood. We explored these mechanisms in cell culture and showed first that these viruses can co-infect individual cells. Under specific conditions, HIV-2 inhibits HIV-1 through two distinct mechanisms, a broad-spectrum interferon response and an HIV-1-specific inhibition conferred by the HIV-2 TAR. The former could play a prominent role in dually infected individuals, whereas the latter targets HIV-1 promoter activity through competition for HIV-1 Tat binding when the same target cell is dually infected. That mechanism suppresses HIV-1 transcription by stalling RNA polymerase II complexes at the promoter through a minimal inhibitory region within the HIV-2 TAR. This work delineates the sequence of appearance and the modus operandi of each mechanism.


HIV-2 infection in Israel: a new epidemic?

  • M Burke‎ et al.
  • Israel journal of medical sciences‎
  • 1994‎

AIDS may be caused by two different retroviruses, HIV-1 and HIV-2. Hitherto only HIV-1 has been reported in Israel. We recently discovered HIV-2 as a solitary pathogen in the blood of two foreign workers from West Africa. In view of the relative ease of travel to Israel, it is essential to perform screening for both HIV viruses in all subjects with an enhanced risk, including visitors from countries with a high incidence of HIV-1 or HIV-2 infection and their contacts.


Adaptation of HIV-1/HIV-2 Chimeras with Defects in Genome Packaging and Viral Replication.

  • Jonathan M O Rawson‎ et al.
  • mBio‎
  • 2022‎

Frequent recombination is a hallmark of retrovirus replication. In rare cases, recombination occurs between distantly related retroviruses, generating novel viruses that may significantly impact viral evolution and public health. These recombinants may initially have substantial replication defects due to impaired interactions between proteins and/or nucleic acids from the two parental viruses. However, given the high mutation rates of retroviruses, these recombinants may be able to evolve improved compatibility of these viral elements. To test this hypothesis, we examined the adaptation of chimeras between two distantly related human pathogens: HIV-1 and HIV-2. We constructed HIV-1-based chimeras containing the HIV-2 nucleocapsid (NC) domain of Gag or the two zinc fingers of HIV-2 NC, which are critical for specific recognition of viral RNA. These chimeras exhibited significant defects in RNA genome packaging and replication kinetics in T cells. However, in some experiments, the chimeric viruses replicated with faster kinetics when repassaged, indicating that viral adaptation had occurred. Sequence analysis revealed the acquisition of a single amino acid substitution, S18L, in the first zinc finger of HIV-2 NC. This substitution, which represents a switch from a conserved HIV-2 residue to a conserved HIV-1 residue at this position, partially rescued RNA packaging and replication kinetics. Further analysis revealed that the combination of two substitutions in HIV-2 NC, W10F and S18L, almost completely restored RNA packaging and replication kinetics. Our study demonstrates that chimeras of distantly related retroviruses can adapt and significantly enhance their replication by acquiring a single substitution. IMPORTANCE Novel retroviruses can emerge from recombination between distantly related retroviruses. Most notably, HIV-1 originated from zoonotic transmission of a novel recombinant (SIVcpz) into humans. Newly generated recombinants may initially have significant replication defects due to impaired interactions between viral proteins and/or nucleic acids, such as between cis- and trans-acting elements from the two parental viruses. However, provided that the recombinants retain some ability to replicate, they may be able to adapt and repair the defective interactions. Here, we used HIV-1 and HIV-2 Gag chimeras as a model system for studying the adaptation of recombinant viruses. We found that only two substitutions in the HIV-2 NC domain, W10F and S18L, were required to almost fully restore RNA genome packaging and replication kinetics. These results illustrate the extremely flexible nature of retroviruses and highlight the possible emergence of novel recombinants in the future that could pose a significant threat to public health.


Metabolic profiling during HIV-1 and HIV-2 infection of primary human monocyte-derived macrophages.

  • Joseph A Hollenbaugh‎ et al.
  • Virology‎
  • 2016‎

We evaluated cellular metabolism profiles of HIV-1 and HIV-2 infected primary human monocyte-derived macrophages (MDMs). First, HIV-2 GL-AN displays faster production kinetics and greater amounts of virus as compared to HIV-1s: YU-2, 89.6 and JR-CSF. Second, quantitative LC-MS/MS metabolomics analysis demonstrates very similar metabolic profiles in glycolysis and TCA cycle metabolic intermediates between HIV-1 and HIV-2 infected macrophages, with a few notable exceptions. The most striking metabolic change in MDMs infected with HIV-2 relative to HIV-1-infected MDMs was the increased levels of quinolinate, a metabolite in the tryptophan catabolism pathway that has been linked to HIV/AIDS pathogenesis. Third, both HIV-1 and HIV-2 infected MDMs showed elevated levels of ribose-5-phosphate, a key metabolic component in nucleotide biosynthesis. Finally, HIV-2 infected MDMs display increased dNTP concentrations as predicted by Vpx-mediated SAMHD1 degradation. Collectively, these data show differential metabolic changes during HIV-1 and HIV-2 infection of macrophages.


Intra-Patient Evolution of HIV-2 Molecular Properties.

  • Angelica A Palm‎ et al.
  • Viruses‎
  • 2022‎

Limited data are available on the pathogenesis of HIV-2, and the evolution of Env molecular properties during disease progression is not fully elucidated. We investigated the intra-patient evolution of molecular properties of HIV-2 Env regions (V1-C3) during the asymptomatic, treatment-naïve phase of the infection in 16 study participants, stratified into faster or slower progressors. Most notably, the rate of change in the number of potential N-linked glycosylation sites (PNGS) within the Env (V1-C3) regions differed between progressor groups. With declining CD4+ T-cell levels, slower progressors showed, on average, a decrease in the number of PNGSs, while faster progressors showed no significant change. Furthermore, diversity increased significantly with time in faster progressors, whereas no such change was observed in slower progressors. No differences were identified between the progressor groups in the evolution of length or charge of the analyzed Env regions. Predicted virus CXCR4 use was rare and did not emerge as a dominating viral population during the studied disease course (median 7.9 years, interquartile range [IQR]: 5.2-14.0) in either progressor groups. Further work building on our observations may explain molecular hallmarks of HIV-2 disease progression and differences in pathogenesis between HIV-1 and HIV-2.


Drug resistance mutations and viral load in human immunodeficiency virus type 2 and dual HIV-1/HIV-2 infected patients in Ghana.

  • Christopher Z Abana‎ et al.
  • Medicine‎
  • 2019‎

Antiretroviral therapy (ART) and drug resistance studies worldwide have focused almost exclusively on human immunodeficiency virus type 1 (HIV-1). As a result, there is limited information on ART and drug resistance in HIV-2 patients. In Ghana, the HIV epidemic is characterized by the domination of HIV-1, with cocirculating HIV-2. We, therefore, sought to determine viral load and drug resistance mutations in HIV-2 patients to inform the clinical management of such individuals in Ghana.We used purposive sampling to collect blood from 16 consented patients, confirmed as HIV-2 or HIV-1/2 dual infections by serology. A 2-step real-time RT-PCR assay was used to determine plasma HIV-2 RNA viral loads. For drug resistance testing, nucleic acids were extracted from plasma and peripheral blood mononuclear cells. The reverse transcriptase and protease genes of HIV-2 were amplified, sequenced and analyzed for drug resistance mutations and HIV-2 group.HIV-2 viral load was detected in 9 of 16 patients. Six of these had quantifiable viral loads (range: 2.62-5.45 log IU/mL) while 3 had viral loads below the limit of quantification. Sequences were generated from 7 out of 16 samples. Five of these were classified as HIV-2 group B and 2 as HIV-2 group A. HIV-2 drug resistance mutations (M184V, K65R, Y115F) were identified in 1 patient.This study is the first to report HIV-2 viral load and drug resistance mutations in HIV-2 strains from Ghana. The results indicate the need for continuous monitoring of drug resistance among HIV-2- infected patients to improve their clinical management.


Macrophage-Derived Factors with the Potential to Contribute to Pathogenicity of HIV-1 and HIV-2: Role of CCL-2/MCP-1.

  • Chunling Gao‎ et al.
  • Viruses‎
  • 2023‎

Human immunodeficiency virus type 2 (HIV-2) is known to be less pathogenic than HIV-1. However, the mechanism(s) underlying the decreased HIV-2 pathogenicity is not fully understood. Herein, we report that β-chemokine CCL2 expression was increased in HIV-1-infected human monocyte-derived macrophages (MDM) but decreased in HIV-2-infected MDM when compared to uninfected MDM. Inhibition of CCL2 expression following HIV-2 infection occurred at both protein and mRNA levels. By microarray analysis, quantitative PCR, and Western blotting, we identified that Signal Transducer and Activator of Transcription 1 (STAT1), a critical transcription factor for inducing CCL2 gene expression, was also reduced in HIV-2-infected MDM. Blockade of STAT1 in HIV-infected MDM using a STAT1 inhibitor significantly reduced the production of CCL2. In contrast, transduction of STAT1-expressing pseudo-retrovirus restored CCL2 production in HIV-2-infected MDM. These findings support the concept that CCL2 inhibition in HIV-2-infected MDM is meditated by reduction of STAT1. Furthermore, we showed that STAT1 reduction in HIV-2-infected MDM was regulated by the CUL2/RBX1 ubiquitin E3 ligase complex-dependent proteasome pathway. Knockdown of CUL2 or RBX1 restored the expression of STAT1 and CCL2 in HIV-2-infected MDM. Taken together, our findings suggest that differential regulation of the STAT1-CCL2 axis may be one of the mechanisms underlying the different pathogenicity observed for HIV-1 and HIV-2.


Analysis of Host Gene Expression Profile in HIV-1 and HIV-2 Infected T-Cells.

  • Krishnakumar Devadas‎ et al.
  • PloS one‎
  • 2016‎

HIV replication is closely regulated by a complex pathway of host factors, many of them being determinants of cell tropism and host susceptibility to HIV infection. These host factors are known to exert a positive or negative influence on the replication of the two major types of HIV, HIV-1 and HIV-2, thereby modulating virus infectivity, host response to infection and ultimately disease progression profiles characteristic of these two types. Understanding the differential regulation of host cellular factors in response to HIV-1 and HIV-2 infections will help us to understand the apparent differences in rates of disease progression and pathogenesis. This knowledge would aid in the discovery of new biomarkers that may serve as novel targets for therapy and diagnosis. The objective of this study was to determine the differential expression of host genes in response to HIV-1/HIV-2 infection. To achieve this, we analyzed the effects of HIV-1 (MN) and HIV-2 (ROD) infection on the expression of host factors in PBMC at the RNA level using the Agilent Whole Human Genome Oligo Microarray. Differentially expressed genes were identified and their biological functions determined. Host gene expression profiles were significantly changed. Gene expression profiling analysis identified a subset of differentially expressed genes in HIV-1 and HIV-2 infected cells. Genes involved in cellular metabolism, apoptosis, immune cell proliferation and activation, cytokines, chemokines, and transcription factors were differentially expressed in HIV-1 infected cells. Relatively few genes were differentially expressed in cells infected with HIV-2.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: