Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,008 papers

HIV-1 Integrase Inhibitors That Are Active against Drug-Resistant Integrase Mutants.

  • Steven J Smith‎ et al.
  • Antimicrobial agents and chemotherapy‎
  • 2020‎

The currently recommended first-line therapy for HIV-1-infected patients is an integrase (IN) strand transfer inhibitor (INSTI), either dolutegravir (DTG) or bictegravir (BIC), in combination with two nucleoside reverse transcriptase inhibitors (NRTIs). Both DTG and BIC potently inhibit most INSTI-resistant IN mutants selected by the INSTIs raltegravir (RAL) and elvitegravir (EVG). BIC has not been reported to select for resistance in treatment-naive patients, and DTG has selected for a small number of resistant viruses in treatment-naive patients. However, some patients who had viruses with substitutions selected by RAL and EVG responded poorly when switched to DTG-based therapies, and there are mutants that cause a considerable decrease in the potencies of DTG and BIC in in vitro assays. The new INSTI cabotegravir (CAB), which is in late-stage clinical trials, has been shown to select for novel resistant mutants in vitro Thus, it is important to develop new and improved INSTIs that are effective against all the known resistant mutants. This led us to test our best inhibitors, in parallel with DTG, BIC, and CAB, in a single-round infection assay against a panel of the new CAB-resistant mutants. Of the INSTIs we tested, BIC and our compound 4d had the broadest efficacy. Both were superior to DTG, as evidenced by the data obtained with the IN mutant T66I/L74M/E138K/S147G/Q148R/S230N, which was selected by CAB using an EVG-resistant lab strain. These results support the preclinical development of compound 4d and provide information that can be used in the design of additional INSTIs that will be effective against a broad spectrum of resistant mutants.


HIV-2 integrase variation in integrase inhibitor-naïve adults in Senegal, West Africa.

  • Geoffrey S Gottlieb‎ et al.
  • PloS one‎
  • 2011‎

Antiretroviral therapy for HIV-2 infection is hampered by intrinsic resistance to many of the drugs used to treat HIV-1. Limited studies suggest that the integrase inhibitors (INIs) raltegravir and elvitegravir have potent activity against HIV-2 in culture and in infected patients. There is a paucity of data on genotypic variation in HIV-2 integrase that might confer intrinsic or transmitted INI resistance.


Relationship between HIV integrase polymorphisms and integrase inhibitor susceptibility: An in silico analysis.

  • Hotma Martogi Lorensi Hutapea‎ et al.
  • Heliyon‎
  • 2018‎

Integrase (IN) plays an essential role in HIV-1 replication, by mediating integration of the viral genome into the host cell genome. IN is a potential target of antiretroviral (ARV) therapeutic drugs such as ALLINI, Raltegravir (RAL), and Elvitegravir (EVG). The effect of IN polymorphisms on its structure and binding affinity to the integrase inhibitors (INIs) is not well understood. The goal of this study was to examine the effect of IN polymorphisms on its tertiary structure and binding affinities to INIs using computational approaches. HIV genomes were isolated from patient blood and the IN gene was sequenced to identify polymorphisms. Protein structures were derived using FoldX and the binding affinity of IN for ALLINI, RAL, and EVG was evaluated using a molecular docking method. The binding affinities of ALLINI and EVG for wild-type IN were lower as compared to an IN variant; in contrast, the binding affinity of RAL for the IN variant was lower as compared to wild-type IN. These results suggested that IN variant interacts with ALLINI and EVG more efficiently as compared to the wildtype, which may not cause resistent to the drugs. In vitro and in vivo studies should be done to validate the findings of this study.


HIV-1 integrase tetramers are the antiviral target of pyridine-based allosteric integrase inhibitors.

  • Pratibha C Koneru‎ et al.
  • eLife‎
  • 2019‎

Allosteric HIV-1 integrase (IN) inhibitors (ALLINIs) are a promising new class of antiretroviral agents that disrupt proper viral maturation by inducing hyper-multimerization of IN. Here we show that lead pyridine-based ALLINI KF116 exhibits striking selectivity for IN tetramers versus lower order protein oligomers. IN structural features that are essential for its functional tetramerization and HIV-1 replication are also critically important for KF116 mediated higher-order IN multimerization. Live cell imaging of single viral particles revealed that KF116 treatment during virion production compromises the tight association of IN with capsid cores during subsequent infection of target cells. We have synthesized the highly active (-)-KF116 enantiomer, which displayed EC50 of ~7 nM against wild type HIV-1 and ~10 fold higher, sub-nM activity against a clinically relevant dolutegravir resistant mutant virus suggesting potential clinical benefits for complementing dolutegravir therapy with pyridine-based ALLINIs.


HIV-1 integrase strand transfer inhibitors stabilize an integrase-single blunt-ended DNA complex.

  • Sibes Bera‎ et al.
  • Journal of molecular biology‎
  • 2011‎

Integration of human immunodeficiency virus cDNA ends by integrase (IN) into host chromosomes involves a concerted integration mechanism. IN juxtaposes two DNA blunt ends to form the synaptic complex, which is the intermediate in the concerted integration pathway. The synaptic complex is inactivated by strand transfer inhibitors (STI) with IC(50) values of ∼20 nM for inhibition of concerted integration. We detected a new nucleoprotein complex on a native agarose gel that was produced in the presence of >200 nM STI, termed the IN-single DNA (ISD) complex. Two IN dimers appear to bind in a parallel fashion at the DNA terminus, producing an ∼32-bp DNase I protective footprint. In the presence of raltegravir (RAL), MK-2048, and L-841,411, IN incorporated ∼20-25% of the input blunt-ended DNA substrate into the stabilized ISD complex. Seven other STI also produced the ISD complex (≤5% of input DNA). The formation of the ISD complex was not dependent on 3'OH processing, and the DNA was predominantly blunt ended in the complex. The RAL-resistant IN mutant N155H weakly forms the ISD complex in the presence of RAL at ∼25% level of wild-type IN. In contrast, MK-2048 and L-841,411 produced ∼3-fold to 5-fold more ISD than RAL with N155H IN, which is susceptible to these two inhibitors. The results suggest that STI are slow-binding inhibitors and that the potency to form and stabilize the ISD complex is not always related to inhibition of concerted integration. Rather, the apparent binding and dissociation properties of each STI influenced the production of the ISD complex.


Integrase-RNA interactions underscore the critical role of integrase in HIV-1 virion morphogenesis.

  • Jennifer L Elliott‎ et al.
  • eLife‎
  • 2020‎

A large number of human immunodeficiency virus 1 (HIV-1) integrase (IN) alterations, referred to as class II substitutions, exhibit pleiotropic effects during virus replication. However, the underlying mechanism for the class II phenotype is not known. Here we demonstrate that all tested class II IN substitutions compromised IN-RNA binding in virions by one of the three distinct mechanisms: (i) markedly reducing IN levels thus precluding the formation of IN complexes with viral RNA; (ii) adversely affecting functional IN multimerization and consequently impairing IN binding to viral RNA; and (iii) directly compromising IN-RNA interactions without substantially affecting IN levels or functional IN multimerization. Inhibition of IN-RNA interactions resulted in the mislocalization of viral ribonucleoprotein complexes outside the capsid lattice, which led to premature degradation of the viral genome and IN in target cells. Collectively, our studies uncover causal mechanisms for the class II phenotype and highlight an essential role of IN-RNA interactions for accurate virion maturation.


Dynamic Oligomerization of Integrase Orchestrates HIV Nuclear Entry.

  • Doortje Borrenberghs‎ et al.
  • Scientific reports‎
  • 2016‎

Nuclear entry is a selective, dynamic process granting the HIV-1 pre-integration complex (PIC) access to the chromatin. Classical analysis of nuclear entry of heterogeneous viral particles only yields averaged information. We now have employed single-virus fluorescence methods to follow the fate of single viral pre-integration complexes (PICs) during infection by visualizing HIV-1 integrase (IN). Nuclear entry is associated with a reduction in the number of IN molecules in the complexes while the interaction with LEDGF/p75 enhances IN oligomerization in the nucleus. Addition of LEDGINs, small molecule inhibitors of the IN-LEDGF/p75 interaction, during virus production, prematurely stabilizes a higher-order IN multimeric state, resulting in stable IN multimers resistant to a reduction in IN content and defective for nuclear entry. This suggests that a stringent size restriction determines nuclear pore entry. Taken together, this work demonstrates the power of single-virus imaging providing crucial insights in HIV replication and enabling mechanism-of-action studies.


Structural Biology of HIV Integrase Strand Transfer Inhibitors.

  • Ilona K Jóźwik‎ et al.
  • Trends in pharmacological sciences‎
  • 2020‎

Integrase (IN) strand transfer inhibitors (INSTIs) are recent compounds in the antiretroviral arsenal used against HIV. INSTIs work by blocking retroviral integration; an essential step in the viral lifecycle that is catalyzed by the virally encoded IN protein within a nucleoprotein assembly called an intasome. Recent structures of lentiviral intasomes from simian immunodeficiency virus (SIV) and HIV have clarified the INSTI binding modes within the intasome active sites and helped elucidate an important mechanism of viral resistance. The structures provide an accurate depiction of interactions of intasomes and INSTIs to be leveraged for structure-based drug design. Here, we review these recent structural findings and contrast with earlier studies on prototype foamy virus intasomes. We also present and discuss examples of the latest chemical compounds that show promising inhibitory potential as INSTI candidates.


Drug resistant integrase mutants cause aberrant HIV integrations.

  • Janani Varadarajan‎ et al.
  • Retrovirology‎
  • 2016‎

HIV-1 integrase is the target for three FDA-approved drugs, raltegravir, elvitegravir, and dolutegravir. All three drugs bind at the active site of integrase and block the strand transfer step of integration. We previously showed that sub-optimal doses of the anti-HIV drug raltegravir can cause aberrant HIV integrations that are accompanied by a variety of deletions, duplications, insertions and inversions of the adjacent host sequences.


HIV-1 Integrase Inhibitors with Modifications That Affect Their Potencies against Drug Resistant Integrase Mutants.

  • Steven J Smith‎ et al.
  • ACS infectious diseases‎
  • 2021‎

Integrase strand transfer inhibitors (INSTIs) block the integration step of the retroviral lifecycle and are first-line drugs used for the treatment of HIV-1/AIDS. INSTIs have a polycyclic core with heteroatom triads, chelate the metal ions at the active site, and have a halobenzyl group that interacts with viral DNA attached to the core by a flexible linker. The most broadly effective INSTIs inhibit both wild-type (WT) integrase (IN) and a variety of well-known mutants. However, because there are mutations that reduce the potency of all of the available INSTIs, new and better compounds are needed. Models based on recent structures of HIV-1 and red-capped mangabey SIV INs suggest modifications in the INSTI structures that could enhance interactions with the 3'-terminal adenosine of the viral DNA, which could improve performance against INSTI resistant mutants. We designed and tested a series of INSTIs having modifications to their naphthyridine scaffold. One of the new compounds retained good potency against an expanded panel of HIV-1 IN mutants that we tested. Our results suggest the possibility of designing inhibitors that combine the best features of the existing compounds, which could provide additional efficacy against known HIV-1 IN mutants.


Mutations Located outside the Integrase Gene Can Confer Resistance to HIV-1 Integrase Strand Transfer Inhibitors.

  • Isabelle Malet‎ et al.
  • mBio‎
  • 2017‎

Resistance to the integrase strand transfer inhibitors raltegravir and elvitegravir is often due to well-identified mutations in the integrase gene. However, the situation is less clear for patients who fail dolutegravir treatment. Furthermore, most in vitro experiments to select resistance to dolutegravir have resulted in few mutations of the integrase gene. We performed an in vitro dolutegravir resistance selection experiment by using a breakthrough method. First, MT4 cells were infected with human immunodeficiency virus type 1 (HIV-1) Lai. After integration into the host cell genome, cells were washed to remove unbound virus and 500 nM dolutegravir was added to the cell medium. This high concentration of the drug was maintained throughout selection. At day 80, we detected a virus highly resistant to dolutegravir, raltegravir, and elvitegravir that remained susceptible to zidovudine. Sequencing of the virus showed no mutations in the integrase gene but highlighted the emergence of five mutations, all located in the nef region, of which four were clustered in the 3' polypurine tract (PPT). Mutations selected in vitro by dolutegravir, located outside the integrase gene, can confer a high level of resistance to all integrase inhibitors. Thus, HIV-1 can use an alternative mechanism to develop resistance to integrase inhibitors by selecting mutations in the 3' PPT region. Further studies are required to determine to what extent these mutations may explain virological failure during integrase inhibitor therapy.IMPORTANCE Integrase strand transfer inhibitors (INSTIs) are increasingly used both as first-line drugs and in rescue therapy because of their low toxicity and high efficacy in both treatment-naive and treatment-experienced patients. Until now, resistance mutations selected by INSTI exposure have either been described in patients or selected in vitro and involve the integrase gene. Most mutations selected by raltegravir, elvitegravir, or dolutegravir exposure are located inside the catalytic site of the integrase gene, but mutations outside the catalytic site of the integrase gene have also been selected with dolutegravir. Following in vitro selection with dolutegravir, we report, for the first time, a virus with selected mutations outside the HIV-1 integrase gene that confer resistance to all integrase inhibitors currently used to treat patients, such as raltegravir, elvitegravir, and dolutegravir. Our observation may explain why some viruses responsible for virological failure in patients treated with dolutegravir did not show mutations in the integrase gene.


High prevalence of integrase mutation L74I in West African HIV-1 subtypes prior to integrase inhibitor treatment.

  • Kate El Bouzidi‎ et al.
  • The Journal of antimicrobial chemotherapy‎
  • 2020‎

HIV-1 integrase inhibitors are recommended as first-line therapy by WHO, though efficacy and resistance data for non-B subtypes are limited. Two recent trials have identified the integrase L74I mutation to be associated with integrase inhibitor treatment failure in HIV-1 non-B subtypes. We sought to define the prevalence of integrase resistance mutations, including L74I, in West Africa.


Integrase Strand Transfer Inhibitors Are Effective Anti-HIV Drugs.

  • Steven J Smith‎ et al.
  • Viruses‎
  • 2021‎

Integrase strand transfer inhibitors (INSTIs) are currently recommended for the first line treatment of human immunodeficiency virus type one (HIV-1) infection. The first-generation INSTIs are effective but can select for resistant viruses. Recent advances have led to several potent second-generation INSTIs that are effective against both wild-type (WT) HIV-1 integrase and many of the first-generation INSTI-resistant mutants. The emergence of resistance to these new second-generation INSTIs has been minimal, which has resulted in alternative treatment strategies for HIV-1 patients. Moreover, because of their high antiviral potencies and, in some cases, their bioavailability profiles, INSTIs will probably have prominent roles in pre-exposure prophylaxis (PrEP). Herein, we review the current state of the clinically relevant INSTIs and discuss the future outlook for this class of antiretrovirals.


Structural Basis for Inhibitor-Induced Aggregation of HIV Integrase.

  • Kushol Gupta‎ et al.
  • PLoS biology‎
  • 2016‎

The allosteric inhibitors of integrase (termed ALLINIs) interfere with HIV replication by binding to the viral-encoded integrase (IN) protein. Surprisingly, ALLINIs interfere not with DNA integration but with viral particle assembly late during HIV replication. To investigate the ALLINI inhibitory mechanism, we crystallized full-length HIV-1 IN bound to the ALLINI GSK1264 and determined the structure of the complex at 4.4 Å resolution. The structure shows GSK1264 buried between the IN C-terminal domain (CTD) and the catalytic core domain. In the crystal lattice, the interacting domains are contributed by two different dimers so that IN forms an open polymer mediated by inhibitor-bridged contacts; the N-terminal domains do not participate and are structurally disordered. Engineered amino acid substitutions at the inhibitor interface blocked ALLINI-induced multimerization. HIV escape mutants with reduced sensitivity to ALLINIs commonly altered amino acids at or near the inhibitor-bound interface, and these substitutions also diminished IN multimerization. We propose that ALLINIs inhibit particle assembly by stimulating inappropriate polymerization of IN via interactions between the catalytic core domain and the CTD and that understanding the interface involved offers new routes to inhibitor optimization.


Structure-Guided Optimization of HIV Integrase Strand Transfer Inhibitors.

  • Xue Zhi Zhao‎ et al.
  • Journal of medicinal chemistry‎
  • 2017‎

Integrase mutations can reduce the effectiveness of the first-generation FDA-approved integrase strand transfer inhibitors (INSTIs), raltegravir (RAL) and elvitegravir (EVG). The second-generation agent, dolutegravir (DTG), has enjoyed considerable clinical success; however, resistance-causing mutations that diminish the efficacy of DTG have appeared. Our current findings support and extend the substrate envelope concept that broadly effective INSTIs can be designed by filling the envelope defined by the DNA substrates. Previously, we explored 1-hydroxy-2-oxo-1,2-dihydro-1,8-naphthyridine-3-carboxamides as an INSTI scaffold, making a limited set of derivatives, and concluded that broadly effective INSTIs can be developed using this scaffold. Herein, we report an extended investigation of 6-substituents as well the first examples of 7-substituted analogues of this scaffold. While 7-substituents are not well-tolerated, we have identified novel substituents at the 6-position that are highly effective, with the best compound (6p) retaining better efficacy against a broad panel of known INSTI resistant mutants than any analogues we have previously described.


Comparison of Newly Assembled Full Length HIV-1 Integrase With Prototype Foamy Virus Integrase: Structure-Function Prospective.

  • Mohammad Reza Dayer‎
  • Jundishapur journal of microbiology‎
  • 2016‎

Drug design against human immunodeficiency virus type 1 (HIV-1) integrase through its mechanistic study is of great interest in the area in biological research. The main obstacle in this area is the absence of the full-length crystal structure for HIV-1 integrase to be used as a model. A complete structure, similar to HIV-1 of a prototype foamy virus integrase in complex with DNA, including all conservative residues, is available and has been extensively used in recent investigations.


Discovery of small-molecule HIV-1 fusion and integrase inhibitors oleuropein and hydroxytyrosol: part II. integrase inhibition.

  • Sylvia Lee-Huang‎ et al.
  • Biochemical and biophysical research communications‎
  • 2007‎

We report molecular modeling and functional confirmation of Ole and HT binding to HIV-1 integrase. Docking simulations identified two binding regions for Ole within the integrase active site. Region I encompasses the conserved D64-D116-E152 motif, while region II involves the flexible loop region formed by amino acid residues 140-149. HT, on the other hand, binds to region II. Both Ole and HT exhibit favorable interactions with important amino acid residues through strong H-bonding and van der Waals contacts, predicting integrase inhibition. To test and confirm modeling predictions, we examined the effect of Ole and HT on HIV-1 integrase activities including 3'-processing, strand transfer, and disintegration. Ole and HT exhibit dose-dependent inhibition on all three activities, with EC(50)s in the nanomolar range. These studies demonstrate that molecular modeling of target-ligand interaction coupled with structural-activity analysis should facilitate the design and identification of innovative integrase inhibitors and other therapeutics.


Engineered hyperactive integrase for concerted HIV-1 DNA integration.

  • Min Li‎ et al.
  • PloS one‎
  • 2014‎

The DNA cutting and joining reactions of HIV-1 integration are catalyzed by integrase (IN), a viral protein that functions as a tetramer bridging the two viral DNA ends (intasome). Two major obstacles for biochemical and structural studies of HIV-1 intasomes are 1) the low efficiency of assembly with oligonucleotide DNA substrates, and 2) the non-specific aggregation of both intasomes and free IN in the reaction mixture. By fusing IN with a small non-specific DNA binding protein, Sulfolobus solfataricus chromosomal protein Sso7d (PDB: 1BNZ), we have engineered a highly soluble and hyperactive IN. Unlike wild-type IN, it efficiently catalyzes intasome assembly and concerted integration with oligonucleotide DNA substrates. The fusion IN protein also functions to integrate viral reverse transcripts during HIV-infection. The hyperactive HIV-1 IN may assist in facilitating future biochemical and structural studies of HIV-1 intasomes. Understanding the mechanistic basis of the Sso7d-IN fusion protein could provide insight into the factors that have hindered biophysical studies of wild-type HIV-1 IN and intasomes.


Multi-Substituted Quinolines as HIV-1 Integrase Allosteric Inhibitors.

  • Long Phi Dinh‎ et al.
  • Viruses‎
  • 2022‎

Allosteric HIV-1 integrase (IN) inhibitors, or ALLINIs, are a new class of antiviral agents that bind at the dimer interface of the IN, away from the enzymatic catalytic site and block viral replication by triggering an aberrant multimerization of the viral enzyme. To further our understanding of the important binding features of multi-substituted quinoline-based ALLINIs, we have examined the IN multimerization and antiviral properties of substitution patterns at the 6 or 8 position. We found that the binding properties of these ALLINIs are negatively impacted by the presence of bulky substitutions at these positions. In addition, we have observed that the addition of bromine at either the 6 (6-bromo) or 8 (8-bromo) position conferred better antiviral properties. Finally, we found a significant loss of potency with the 6-bromo when tested with the ALLINI-resistant IN A128T mutant virus, while the 8-bromo analog retained full effectiveness.


HIV-1 integrase inhibitor resistance and its clinical implications.

  • Jose-Luis Blanco‎ et al.
  • The Journal of infectious diseases‎
  • 2011‎

With the approval in 2007 of the first integrase inhibitor (INI), raltegravir, clinicians became better able to suppress virus replication in patients infected with human immunodeficiency virus type 1 (HIV-1) who were harboring many of the most highly drug-resistant viruses. Raltegravir also provided clinicians with additional options for first-line therapy and for the simplification of regimens in patients with stable virological suppression. Two additional INIs in advanced clinical development-elvitegravir and S/GSK1349572-may prove equally versatile. However, the INIs have a relatively low genetic barrier to resistance in that 1 or 2 mutations are capable of causing marked reductions in susceptibility to raltegravir and elvitegravir, the most well-studied INIs. This perspective reviews the genetic mechanisms of INI resistance and their implications for initial INI therapy, the treatment of antiretroviral-experienced patients, and regimen simplification.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: