Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 12,141 papers

Procaine Induces Epigenetic Changes in HCT116 Colon Cancer Cells.

  • Hussein Sabit‎ et al.
  • Genetics research international‎
  • 2016‎

Colon cancer is the third most commonly diagnosed cancer in the world, and it is the major cause of morbidity and mortality throughout the world. The present study aimed at treating colon cancer cell line (HCT116) with different chemotherapeutic drug/drug combinations (procaine, vorinostat "SAHA," sodium phenylbutyrate, erlotinib, and carboplatin). Two different final concentrations were applied: 3 μM and 5 μM. Trypan blue test was performed to assess the viability of the cell before and after being treated with the drugs. The data obtained showed that there was a significant decrease in the viability of cells after applying the chemotherapeutic drugs/drug combinations. Also, DNA fragmentation assay was carried out to study the effect of these drugs on the activation of apoptosis-mediated DNA degradation process. The results indicated that all the drugs/drug combinations had a severe effect on inducing DNA fragmentation. Global DNA methylation quantification was performed to identify the role of these drugs individually or in combination in hypo- or hypermethylating the CpG dinucleotide all over the genome of the HCT116 colon cancer cell line. Data obtained indicated that different combinations had different effects in reducing or increasing the level of methylation, which might indicate the effectiveness of combining drugs in treating colon cancer cells.


MicroRNA-195 desensitizes HCT116 human colon cancer cells to 5-fluorouracil.

  • Chongtae Kim‎ et al.
  • Cancer letters‎
  • 2018‎

Multidrug resistance is one major barrier to successful chemotherapy. Although several studies have attempted to overcome resistance of cancer cells to anti-cancer drugs, key determinants of resistance remain largely unknown. The objective of this study was to investigate whether microRNAs might play a role in the acquisition of resistance. Human colorectal cancer HCT-116 cell lines were transduced with a lentivirus library containing 578 precursor microRNAs (miRNAs) to establish cell lines resistant to 5-fluorouracil (5-FU). Specific miRNAs were identified from four different resistant clones and a miR-195-expressing resistant clone (HCT-116_lenti-miR-195) was further investigated. The HCT-116_lenti-miR-195 cells showed resistant phenotype. These cells grew faster after 5-FU treatment compared to control cells (HCT-116_lenti-control). Check point kinase 1 (CHK1) and G2 check point kinase WEE1 were found to be direct targets of miR-195. Downregulation of miR-195 sensitized HCT-116 cells after 5-FU treatment. Our results demonstrate that miR-195 can promote acquisition of drug resistance to 5-FU.


CTRP1 Knockout Attenuates Tumor Progression in A549 and HCT116 Cancer Cells.

  • Rackhyun Park‎ et al.
  • Cancers‎
  • 2022‎

C1q and TNF-related 1 (C1QTNF1/CTRP1) is an adiponectin-associated protein belonging to the C1q/TNF-related protein family. Recent studies have shown that the C1q and TNF-related protein (CTRP) family is involved in cancer progression; however, the specific role of CTRP1 in tumor progression has not yet been elucidated. To examine the role of CTRP1 in tumor progression, we generated CTRP1 knockout A549 and HCT116 cell lines, which reduced the expression levels of nuclear factor (NF)-κB-dependent and metastasis-promoting transcripts. We demonstrated that CTRP1 knockout inhibited the cell proliferation and invasion and tumor growth. Finally, database analysis showed that CTRP1 expression was upregulated in metastatic cancers and elevated levels of CTRP1 were associated with poor prognosis. These results suggest that CTRP1 expression contributes to NF-κB signaling and promotes tumor progression.


Entrainment of superoxide rhythm by menadione in HCT116 colon cancer cells.

  • Uma Kizhuveetil‎ et al.
  • Scientific reports‎
  • 2019‎

Reactive oxygen species (ROS) are primary effectors of cytotoxicity induced by many anti-cancer drugs. Rhythms in the pseudo-steady-state (PSS) levels of particular intracellular ROS in cancer cells and their relevance to drug effectiveness are unknown thus far. We report that the PSS levels of intracellular superoxide (SOX), an important ROS, exhibit an inherent rhythm in HCT116 colon cancer cells, which is entrained (reset) by the SOX inducer, menadione (MD). This reset was dependent on the expression of p53, and it doubled the sensitivity of the cells to MD. The period of oscillation was found to have a linear correlation with MD concentration, given by the equation, T, in h = 23.52 - 1.05 [MD concentration in µM]. Further, we developed a mathematical model to better understand the molecular mechanisms involved in rhythm reset. Biologically meaningful parameters were obtained through parameter estimation techniques; the model can predict experimental profiles of SOX, establish qualitative relations between interacting species in the system and serves as an important tool to understand the profiles of various species. The model was also able to successfully predict the rhythm reset in MD treated hepatoma cell line, HepG2.


M3, a natural lignan xyloside, exhibits potent anticancer activity in HCT116 cells.

  • Weidong Shen‎ et al.
  • Oncology letters‎
  • 2019‎

4-O-(2',3',4'-tri-O-methyl-β-D-xylopyranosyl) diphyllin (M3) is a cytotoxic compound that was first isolated from the aerial parts of Phyllanthus taxodiifolius. The current study demonstrated that M3, a lignan xyloside, exhibits anticancer effects in a number of cancer cell lines by MTT test, including HCT116 cells. An association was identified between M3 treatment and the reduced proliferation of cancer cells; the half maximal inhibitory concentration (IC50) value of M3 ranged from 0.08 to 1.12 µM. Furthermore, M3 was revealed to exhibit a stronger antiproliferative effect by Annexin-V-FLUOS test compared with VP-16, another natural lignan used in cancer treatment. Notably, the IC50 value of M3 with MTT test in HCT116 cells was 0.08 µM. In addition, it was revealed that M3 could induce apoptosis in HCT116 cells in a caspase-3-dependent manner at a lower concentration compared with VP-16. Further analysis identified that the antiproliferation effect of M3 was associated with the promotion of microtubule depolymerization by CytoDYNAMIX Screen 03 Tubulin Polymerization assay. In summary, the current study demonstrated that M3 could inhibit proliferation and induce apoptosis in HCT116 cells, which supports a potential therapeutic application of M3 in cancer treatment, particularly in colon cancer.


Secreted human adipose leptin decreases mitochondrial respiration in HCT116 colon cancer cells.

  • Einav Yehuda-Shnaidman‎ et al.
  • PloS one‎
  • 2013‎

Obesity is a key risk factor for the development of colon cancer; however, the endocrine/paracrine/metabolic networks mediating this connection are poorly understood. Here we hypothesize that obesity results in secreted products from adipose tissue that induce malignancy-related metabolic alterations in colon cancer cells. Human HCT116 colon cancer cells, were exposed to conditioned media from cultured human adipose tissue fragments of obese vs. non-obese subjects. Oxygen consumption rate (OCR, mostly mitochondrial respiration) and extracellular acidification rate (ECAR, mostly lactate production via glycolysis) were examined vis-à-vis cell viability and expression of related genes and proteins. Our results show that conditioned media from obese (vs. non-obese) subjects decreased basal (40%, p<0.05) and maximal (50%, p<0.05) OCR and gene expression of mitochondrial proteins and Bax without affecting cell viability or expression of glycolytic enzymes. Similar changes could be recapitulated by incubating cells with leptin, whereas, leptin-receptor specific antagonist inhibited the reduced OCR induced by conditioned media from obese subjects. We conclude that secreted products from the adipose tissue of obese subjects inhibit mitochondrial respiration and function in HCT116 colon cancer cells, an effect that is at least partly mediated by leptin. These results highlight a putative novel mechanism for obesity-associated risk of gastrointestinal malignancies, and suggest potential new therapeutic avenues.


Zerumbone reduces proliferation of HCT116 colon cancer cells by inhibition of TNF-alpha.

  • Salam Pradeep Singh‎ et al.
  • Scientific reports‎
  • 2018‎

Zerumbone is a known anti-cancer herbal compound. However, the actual protein target is not fully understood or known. This investigation focus on the association of zerumbone in HCT116 colon cancer cell proliferation and its link with TNF-alpha. The study shows that with the increasing concentration of zerumbone, there was a reduction of HCT116 cells proliferation based on the cell line study and hence higher TNF-alpha inhibition based on the TNF-alpha assay. The study also emphasizes on the computational aspect by investigating the molecular docking analysis of zerumbone against TNF-alpha. The docked complex was further validated using molecular dynamics simulation studies. The docking analysis observed that alpha-beta unsaturated carbonyl scaffold is an important moiety for the anti-cancer activity of zerumbone. Furthermore, the DFT analysis also confirms the reactivity nature of zerumbone based on the frontier molecular orbital analysis.


Faecalibacterium prausnitzii Ameliorates Colorectal Tumorigenesis and Suppresses Proliferation of HCT116 Colorectal Cancer Cells.

  • Ifeoma Julieth Dikeocha‎ et al.
  • Biomedicines‎
  • 2022‎

Faecalibacterium prausnitzii is one of the most abundant commensals of gut microbiota that is not commonly administered as a probiotic supplement. Being one of the gut's major butyrate-producing bacteria, its clinical significance and uses are on the rise and it has been shown to have anti-inflammatory and gut microbiota-modulating properties in the treatment of inflammatory bowel illness, Crohn's disease, and colorectal cancer. Colorectal cancer (CRC) is a silent killer disease that has become one of the leading causes of cancer-related death worldwide. This study aimed to evaluate the anti-tumorigenic and antiproliferative role of F. prausnitzii as well as to study its effects on the diversity of gut microbiota in rats. Findings showed that F. prausnitzii probiotic significantly reduced the colonic aberrant crypt foci frequency and formation in Azoxymethane (AOM)-induced CRC in rats. In addition, the administration of F. prausnitzii lowered the lipid peroxidation levels in the colon tissues. For in vitro 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) assay, the cell-free supernatant of F. prausnitzii suppressed the growth of HCT116 colorectal cancer cells in a time/dose-dependent manner. 16S rRNA gene sequencing using rat stool samples showed that the administration of F. prausnitzii modulated the gut microbiota of the rats and enhanced its diversity. Hence, these findings suggest that F. prausnitzii as a probiotic supplement can be used in CRC prevention and management; however, more studies are warranted to understand its cellular and molecular mechanisms of action.


RasGAP-derived peptide GAP159 enhances cisplatin-induced cytotoxicity and apoptosis in HCT116 cells.

  • Hao Zhang‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2014‎

To increase the efficacy of currently used anti-cancer genotoxins, one of the current efforts is to find agents that can sensitize cancer cells to genotoxins so that the efficacious doses of genotoxins can be lowered to reduce deleterious side-effects. In this study, we reported that a synthetic RasGAP-derived peptide GAP159 could enhance the effect of chemotherapeutic agent cisplatin (CDDP) in human colon carcinoma HCT116 cells. Our results showed that GAP159 significantly increased the CDDP-induced cytotoxicity and apoptosis in HCT116 cells. This synergistic effect was associated with the inhibitions of phospho-AKT, phospho-ERK and NF-κB. In mouse colon tumor CT26 animal models, GAP159 combined with CDDP significantly suppressed CT26 tumor growth, and GAP159 alone showed slight inhibitory effect. Our data suggests that co-treatment of GAP159 and chemotherapeutics will become a potential therapeutic strategy for colon cancers.


p21(WAF¹/C¹P¹) deficiency induces mitochondrial dysfunction in HCT116 colon cancer cells.

  • Ae Jeong Kim‎ et al.
  • Biochemical and biophysical research communications‎
  • 2013‎

p21(WAF1/CIP1) is a critical regulator of cell cycle progression. However, the role of p21 in mitochondrial function remains poorly understood. In this study, we examined the effect of p21 deficiency on mitochondrial function in HCT116 human colon cancer cells. We found that there was a significant increase in the mitochondrial mass of p21(-/-) HCT116 cells, as measured by 10-N-nonyl-acridine orange staining, as well as an increase in the mitochondrial DNA content. In contrast, p53(-/-) cells had a mitochondrial mass comparable to that of wild-type HCT116 cells. In addition, the expression levels of the mitochondrial biogenesis regulators PGC-1α and TFAM and AMPK activity were also elevated in p21(-/-) cells, indicating that p21 deficiency induces the rate of mitochondrial biogenesis through the AMPK-PGC-1α axis. However, the increase in mitochondrial biogenesis in p21(-/-) cells did not accompany an increase in the cellular steady-state level of ATP. Furthermore, p21(-/-) cells exhibited significant proliferation impairment in galactose medium, suggesting that p21 deficiency induces a defect in the mitochondrial respiratory chain in HCT116 cells. Taken together, our results suggest that the loss of p21 results in an aberrant increase in the mitochondrial mass and in mitochondrial dysfunction in HCT116 cells, indicating that p21 is required to maintain proper mitochondrial mass and respiratory function.


Food Additive Sodium Benzoate (NaB) Activates NFκB and Induces Apoptosis in HCT116 Cells.

  • Betul Yilmaz‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2018‎

NaB, the metabolite of cinnamon and sodium salt of benzoic acid is a commonly used food and beverage preservative. Various studies have investigated NaB for its effects on different cellular models. However, the effects of NaB on cancer cell viability signaling is substantially unknown. In this study, the effects of NaB on viability parameters and NFκB, one of the most important regulators in apoptosis, were examined in HCT116 colon cancer cells. Cell culture, light microscopy, spectrophotometry, flow cytometry, and western blot were used as methods to determine cell viability, caspase-3 activity, NFκB, Bcl-xl, Bim, and PARP proteins, respectively. NaB (6.25 mM-50 mM) treatment inhibited cell viability by inducing apoptosis, which was evident with increased Annexin V-PE staining and caspase-3 activity. NFκB activation accompanied the induction of apoptosis in NaB treated cells. Inhibition of NFκB with BAY 11-7082 did not show a pronounced effect on cell viability but induced a more apoptotic profile, which was confirmed by increased PARP fragmentation and caspase-3 activity. This effect was mostly evident at 50 mM concentration of NaB. Bcl-xl levels were not affected by NaB or BAY 11-7082/NaB treatment; whereas, total Bim increased with NaB treatment. Inhibition of NFκB activity further increased Bim levels. Overall, these results suggest that NaB induces apoptosis and activates NFκB in HCT116 colon cancer cells. Activation of NFκB emerges as target in an attempt to protect cells against apoptosis.


Coumarin polysulfides inhibit cell growth and induce apoptosis in HCT116 colon cancer cells.

  • Nathaniel Edward Bennett Saidu‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2012‎

Coumarins and coumarin derivatives as well as diallyl polysulfides are well known as anticancer drugs. In order to find new drugs with anticancer activities, we combined coumarins with polysulfides in the form of di-coumarin polysulfides. These novel compounds were tested in the HCT116 colorectal cancer cell line. It turned out that they reduced cell viability of cancer cells in a time and concentration dependent manner. Cells tested with these coumarin polysulfides accumulate in the G(2)/M phase of the cell cycle and finally they go into apoptosis. A decrease in bcl-2 level, and increase in the level of bax, cytochrome c release into the cytosol, cleavage of caspase 3/7and PARP suggested that coumarin polysulfides induced the intrinsic pathway of apoptosis. Comparison of these new coumarin compounds with the well known diallyl polysulfides revealed that the coumarin disulfides were more active than the corresponding diallyl disulfides. The activities of the coumarin tetrasulfides and the corresponding diallyl tetrasulfides are similar. The novel coumarin compounds regulated the phosphatase activity of the cell cycle regulating cdc25 family members, indicating that these phosphatases are implicated in the induction of cell cycle arrest and possibly in apoptosis induction as well. In addition, coumarin polysulfides also down-regulated the level of cdc25C, which also contributed to the arrest in the G(2)-phase of the cell cycle.


A new tellurium-containing amphiphilic molecule induces apoptosis in HCT116 colon cancer cells.

  • Peng Du‎ et al.
  • Biochimica et biophysica acta‎
  • 2014‎

Chalcogen-based redox modulators over the years have attracted considerable attention as anti-cancer agents. New selenium- and tellurium-containing compounds with a polar head group and aryl-groups of various lengths have recently been reported as biologically active in several organisms. In the present study, we used the most active of the tellurium compound DP41, and its selenium counterpart DP31 to investigate their effects on the human cancer cell line HCT116.


Peroxiredoxin-6 regulates p38-mediated epithelial-mesenchymal transition in HCT116 colon cancer cells.

  • Unbin Chae‎ et al.
  • Journal of biological research (Thessalonike, Greece)‎
  • 2021‎

Peroxiredoxins (Prxs) are antioxidant enzymes that protect cells from oxidative stress induced by several factors. They regulate several signaling pathways, such as metabolism, immune response, and intracellular reactive oxygen species (ROS) homeostasis. Epithelial-mesenchymal transition (EMT) is a transforming process that induces the loss of epithelial features of cancer cells and the gain of the mesenchymal phenotype. The EMT promotes metastasis and cancer cell progression mediated by several pathways, such as mitogen-activated protein kinases (MAPKs) and epigenetic regulators.


Microarray Analysis of Gene Expression Involved in Butyrate-Resistant Colorectal Carcinoma HCT116 Cells.

  • Chakkraphong Khonthun‎ et al.
  • Asian Pacific journal of cancer prevention : APJCP‎
  • 2020‎

Resistance to chemotherapeutic agents is usually found in cancer stem cells (CSCs) and cancer stem-like cells that are often regarded as the target for cancer monitoring. However, the different patterns of their transcriptomic profiling is still unclear.


Licochalcone C Inhibits the Growth of Human Colorectal Cancer HCT116 Cells Resistant to Oxaliplatin.

  • Seung-On Lee‎ et al.
  • Biomolecules & therapeutics‎
  • 2024‎

Licochalcone C (LCC; PubChem CID:9840805), a chalcone compound originating from the root of Glycyrrhiza inflata, has shown anticancer activity against skin cancer, esophageal squamous cell carcinoma, and oral squamous cell carcinoma. However, the therapeutic potential of LCC in treating colorectal cancer (CRC) and its underlying molecular mechanisms remain unclear. Chemotherapy for CRC is challenging because of the development of drug resistance. In this study, we examined the antiproliferative activity of LCC in human colorectal carcinoma HCT116 cells, oxaliplatin (Ox) sensitive and Ox-resistant HCT116 cells (HCT116-OxR). LCC significantly and selectively inhibited the growth of HCT116 and HCT116-OxR cells. An in vitro kinase assay showed that LCC inhibited the kinase activities of EGFR and AKT. Molecular docking simulations using AutoDock Vina indicated that LCC could be in ATP-binding pockets. Decreased phosphorylation of EGFR and AKT was observed in the LCC-treated cells. In addition, LCC induced cell cycle arrest by modulating the expression of cell cycle regulators p21, p27, cyclin B1, and cdc2. LCC treatment induced ROS generation in CRC cells, and the ROS induction was accompanied by the phosphorylation of JNK and p38 kinases. Moreover, LCC dysregulated mitochondrial membrane potential (MMP), and the disruption of MMP resulted in the release of cytochrome c into the cytoplasm and activation of caspases to execute apoptosis. Overall, LCC showed anticancer activity against both Ox-sensitive and Ox-resistant CRC cells by targeting EGFR and AKT, inducing ROS generation and disrupting MMP. Thus, LCC may be potential therapeutic agents for the treatment of Ox-resistant CRC cells.


Columbianadin Inhibits Cell Proliferation by Inducing Apoptosis and Necroptosis in HCT116 Colon Cancer Cells.

  • Ji In Kang‎ et al.
  • Biomolecules & therapeutics‎
  • 2016‎

Columbianadin (CBN), a natural coumarin from Angelica decursiva (Umbelliferae), is known to have various biological activities including anti-inflammatory and anti-cancer effects. In this study, the anti-proliferative mechanism of actions mediated by CBN was investigated in HCT-116 human colon cancer cells. CBN effectively suppressed the growth of colon cancer cells. Low concentration (up to 25 µM) of CBN induced apoptosis, and high concentration (50 µM) of CBN induced necroptosis. The induction of apoptosis by CBN was correlated with the modulation of caspase-9, caspase-3, Bax, Bcl-2, Bim and Bid, and the induction of necroptosis was related with RIP-3, and caspase-8. In addition, CBN induced the accumulation of ROS and imbalance in the intracellular antioxidant enzymes such as SOD-1, SOD-2, catalase and GPx-1. These findings demonstrate that CBN has the potential to be a candidate in the development of anti-cancer agent derived from natural products.


YM155, specific survivin inhibitor, can enhance artesunate-induced cytotoxicity in HCT116 colon cancer cells.

  • Eui Tae Kim‎ et al.
  • Korean journal of clinical oncology‎
  • 2020‎

A water-soluble variant of the artemisinin called artesunate, approved as an antimalarial agent, can induce cell death on various cancer cell types. We studied the mechanism of cell death of artesunate on HCT116 colorectal cancer cells.


Tetrandrine Inhibits Epithelial-Mesenchymal Transition in IL-6-Induced HCT116 Human Colorectal Cancer Cells.

  • Shih-Chang Tsai‎ et al.
  • OncoTargets and therapy‎
  • 2021‎

Patients with colorectal cancer (CRC) often develop distant metastases, which significantly reduces the 5-year survival rate. Epithelial-mesenchymal transition (EMT) is a crucial process for the invasion and metastasis of cancer cells. Tetrandrine has been reported to inhibit the viability and EMT of CRC cells; however, to the best of our knowledge, the molecular mechanism remains undetermined.


DZNep inhibits the proliferation of colon cancer HCT116 cells by inducing senescence and apoptosis.

  • Mingquan Sha‎ et al.
  • Acta pharmaceutica Sinica. B‎
  • 2015‎

EZH2 is over-expressed in human colon cancer and is closely associated with tumor proliferation, metastasis and poor prognosis. Targeting and inhibiting EZH2 may be an effective therapeutic strategy for colon cancer. 3-Deazaneplanocin A (DZNep), as an EZH2 inhibitor, can suppress cancer cell growth. However, the anti-cancer role of DZNep in colon cancer cells has been rarely studied. In this study, we demonstrate that DZNep can inhibit the growth and survival of colon cancer HCT116 cells by inducing cellular senescence and apoptosis. The study provides a novel view of anti-cancer mechanisms of DZNep in human colon cancer cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: