Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 10 papers out of 10 papers

Binding of [3H]PD 128907, a putatively selective ligand for the D3 dopamine receptor, in rat brain: a receptor binding and quantitative autoradiographic study.

  • G N Bancroft‎ et al.
  • Neuropsychopharmacology : official publication of the American College of Neuropsychopharmacology‎
  • 1998‎

[3H]PD 128907 has been proposed as a selective ligand for the D3 dopamine receptor. This study characterizes the binding of this radioligand in rat brain using in vitro radioligand binding and autoradiographic methods. In radioligand binding studies, [3H]PD 128907 exhibited 0.3 nmol/L affinity for a single, low density site in ventral striatal membranes. The pharmacological profile for [3H]PD 128907 was similar to that of [3H](+)-7-OH-DPAT with the rank order of potency for dopamine agonists being PD 128907 approximately 7-OH-DPAT approximately quinpirole > or = dopamine; for antagonists, spiperone > (+)-butaclamol approximately domperidone > or = haloperidol > SCH 23390. Guanyl nucleotides had no effect on the binding of either ligand. These observations indicate labeling of a dopaminergic site with characteristics consistent with the D3 receptor. In autoradiographic studies, highest densities of [3H]PD 128907-labeled sites were observed in islands of Calleja followed by the nucleus accumbens, nucleus of the horizontal limb of the diagonal band, the molecular layer of cerebellar lobule X, and the ventral caudate/putamen.


Regulation of G protein-mediated adenylyl cyclase in striatum and cortex of opiate-dependent and opiate withdrawing mice.

  • G B Kaplan‎ et al.
  • Brain research‎
  • 1998‎

Previous research has demonstrated that acute and chronic opiate treatment alters receptor- and postreceptor-mediated adenylyl cyclase activity. This study examined the regulation of G protein- and forskolin-mediated adenylyl cyclase activity in mouse striatum and cortex after short- and long-term opiate exposure. To directly measure adenylyl cyclase enzymatic activity, assays were done in the presence of catalytic site activator forskolin. To measure G protein-mediated adenylyl cyclase activity, assays were performed in the presence of non-hydrolyzable guanosine 5'-triphosphate (GTP) analogue, 5'-guanylyl-imidodiphosphate. Short-term in vitro morphine exposure produced reductions in forskolin-stimulated adenylyl cyclase activity in striatal and cortical tissues. Long-term morphine treatment in mice was performed via morphine- or placebo-pellet implantation for 72 h; this treatment has been shown to produce opiate dependence and withdrawal. In both opiate-dependent and opiate withdrawing mice (1 h post-naloxone induction), there were significant increases in G protein-mediated adenylyl cyclase activity in the striatum (vs. controls). In opiate-dependent mice, there was an decrease in G protein-mediated adenylyl cyclase activity in cortex. In opiate-dependent mice, there were no changes in forskolin-stimulated adenylyl cyclase in the striatum or cortex. Increases in striatal G protein-mediated adenylyl cyclase could represent a compensatory adaptation that opposes the persistent inhibition of adenylyl cyclase by chronic opiate treatment contributing to the expression of opiate dependence and withdrawal.


Differential regulation of the cloned kappa and mu opioid receptors.

  • M Tallent‎ et al.
  • Neuroscience‎
  • 1998‎

To directly compare the regulation of the cloned kappa and mu opioid receptor, we expressed them in the same cells, the mouse anterior pituitary cell line AtT-20. The coupling of an endogenous somatostatin receptor to adenylyl cyclase and an inward rectifier K+ current has been well characterized in these cells, enabling us to do parallel studies comparing the regulation of both the kappa and the mu receptor to this somatostatin receptor. We show that the kappa receptor readily uncoupled from the K+ current and from adenylyl cyclase after a 1 h pretreatment with agonist, as indicated by the loss in the ability of the agonist to induce a functional response. The desensitization of the kappa receptor was homologous, as the ability of somatostatin to mediate inhibition of adenylyl cyclase or potentiation of the K+ current was not altered by kappa receptor desensitization. The mu receptor uncoupled from the K+ current but not adenylyl cyclase after a 1 h pretreatment with agonist. Somatostatin was no longer able to potentiate the K+ current after mu receptor desensitization, thus this desensitization was heterologous. Interestingly, pretreatment with a somatostatin agonist caused uncoupling of the mu receptor but not the kappa receptor from the K+ current. These results show that in the same cell line, after a 1 h pretreatment with agonist, the kappa receptor displays homologous regulation, whereas the mu receptor undergoes only a heterologous form of desensitization. mu receptor desensitization may lead to the alterations of diverse downstream events, whereas kappa receptor regulation apparently occurs at the level of the receptor itself. Broad alterations of non-opioid systems by the mu receptor could be relevant to the addictive properties of mu agonists. Comparison of kappa and mu receptor regulation may help define the properties of the mu receptor which are important in the development of addiction, tolerance, and withdrawal to opioid drugs. These are the first studies to directly compare the coupling of the kappa and mu receptors to two different effectors in the same mammalian expression system.


Structure-based mechanism for activation of the AAA+ GTPase McrB by the endonuclease McrC.

  • Neha Nirwan‎ et al.
  • Nature communications‎
  • 2019‎

The AAA+ GTPase McrB powers DNA cleavage by the endonuclease McrC. The GTPase itself is activated by McrC. The architecture of the GTPase and nuclease complex, and the mechanism of their activation remained unknown. Here, we report a 3.6 Å structure of a GTPase-active and DNA-binding deficient construct of McrBC. Two hexameric rings of McrB are bridged by McrC dimer. McrC interacts asymmetrically with McrB protomers and inserts a stalk into the pore of the ring, reminiscent of the γ subunit complexed to α3β3 of F1-ATPase. Activation of the GTPase involves conformational changes of residues essential for hydrolysis. Three consecutive nucleotide-binding pockets are occupied by the GTP analogue 5'-guanylyl imidodiphosphate and the next three by GDP, which is suggestive of sequential GTP hydrolysis.


Functional mapping of human dynamin-1-like GTPase domain based on x-ray structure analyses.

  • Julia Wenger‎ et al.
  • PloS one‎
  • 2013‎

Human dynamin-1-like protein (DNM1L) is a GTP-driven molecular machine that segregates mitochondria and peroxisomes. To obtain insights into its catalytic mechanism, we determined crystal structures of a construct comprising the GTPase domain and the bundle signaling element (BSE) in the nucleotide-free and GTP-analogue-bound states. The GTPase domain of DNM1L is structurally related to that of dynamin and binds the nucleotide 5'-Guanylyl-imidodiphosphate (GMP-PNP) via five highly conserved motifs, whereas the BSE folds into a pocket at the opposite side. Based on these structures, the GTPase center was systematically mapped by alanine mutagenesis and kinetic measurements. Thus, residues essential for the GTPase reaction were characterized, among them Lys38, Ser39 and Ser40 in the phosphate binding loop, Thr59 from switch I, Asp146 and Gly149 from switch II, Lys216 and Asp218 in the G4 element, as well as Asn246 in the G5 element. Also, mutated Glu81 and Glu82 in the unique 16-residue insertion of DNM1L influence the activity significantly. Mutations of Gln34, Ser35, and Asp190 in the predicted assembly interface interfered with dimerization of the GTPase domain induced by a transition state analogue and led to a loss of the lipid-stimulated GTPase activity. Our data point to related catalytic mechanisms of DNM1L and dynamin involving dimerization of their GTPase domains.


Ribosomal Initiation Complex Assembly within the Wild-Strain of Coxsackievirus B3 and Live-Attenuated Sabin3-like IRESes during the Initiation of Translation.

  • Amira Souii‎ et al.
  • International journal of molecular sciences‎
  • 2013‎

Coxsackievirus B3 (CVB3) is an enterovirus of the family of Picornaviridae. The Group B coxsackieviruses include six serotypes (B1 to B6) that cause a variety of human diseases, including myocarditis, meningitis, and diabetes. Among the group B, the B3 strain is mostly studied for its cardiovirulence and its ability to cause acute and persistent infections. Translation initiation of CVB3 RNA has been shown to be mediated by a highly ordered structure of the 5'-untranslated region (5'UTR), which harbors an internal ribosome entry site (IRES). Translation initiation is a complex process in which initiator tRNA, 40S and 60S ribosomal subunits are assembled by eukaryotic initiation factors (eIFs) into an 80S ribosome at the initiation codon of the mRNA. We have previously addressed the question of whether the attenuating mutations of domain V of the poliovirus IRES were specific for a given genomic context or whether they could be transposed and extrapolated to a genomic related virus, i.e., CVB3 wild-type strain. In this context, we have described that Sabin3-like mutation (U473→C) introduced in CVB3 genome led to a defective mutant with a serious reduction in translation efficiency. In this study, we analyzed the efficiency of formation of ribosomal initiation complexes 48S and 80S through 10%-30% and 10%-50% sucrose gradients using rabbit reticulocyte lysates (RRLs) and stage-specific translation inhibitors: 5'-Guanylyl-imidodiphosphate (GMP-PNP) and Cycloheximide (CHX), respectively. We demonstrated that the interaction of 48S and 80S ribosomal complexes within the mutant CVB3 RNA was abolished compared with the wild-type RNA by ribosome assembly analysis. Taken together, it is possible that the mutant RNA was unable to interact with some trans-acting factors critical for enhanced IRES function.


Possible regulation of epidermal growth factor-receptor tyrosine autophosphorylation by calcium and G proteins in chemically permeabilized rat UMR106 cells.

  • T Kawase‎ et al.
  • Archives of oral biology‎
  • 1999‎

A model using chemically permeabilized cells was developed to examine mechanisms that regulate protein tyrosine phosphorylation in osteoblastic cells. Using either permeabilized UMR106 osteoblastic or A431 (reference) cells, epidermal growth factor (EGF)-induced cellular tyrosine phosphorylation, and whether there are previously unrecognized interactions between this transduction pathway and Ca2+- or G protein-dependent signalling pathways, were investigated. Both permeabilized cell types, when maintained in non-supplemented cytoplasmic substitution solution (basic CSS), responded to EGF (1-100 ng/ml) with dose-dependent increases in tyrosine phosphorylation. A complex and time-dependent pattern of phosphotyrosine-containing proteins resulted, but the profile of tyrosine phosphorylated proteins was appreciably less complex than in intact cells. Supplementation of basic CSS with MgATP restored the normal complexity of the profiles for EGF-induced tyrosine phosphorylation proteins in both permeabilized cell lines and produced a more sustained accumulation of phosphoprotein products in A431 cells. Adding Ca2+ (< or = 10(-6) M), with or without exogenous MgATP, dose-dependently attenuated EGF-induced tyrosine phosphorylation of EGF receptors (EGFR) and other substrates in UMR106 cells, but was less effective in A431 cells. In both cell types, genistein, an inhibitor of tyrosine kinases, was more effective in attenuating EGF-induced receptor tyrosine phosphorylation in permeabilized cells. Similarly, orthovanadate, an inhibitor of protein tyrosine phosphatases, stimulated the accumulation of phosphoprotein products more effectively in permeabilized cells. Thus, the permeabilization preserves many features of intact cells while facilitating manipulation of intracellular conditions. NaF reproducibly produced a significant vanadate-like action in permeabilized cells that was somewhat stronger than its effect on intact cells. In contrast, the well-known inhibition of tyrosine phosphorylation by phorbol 12-myristate 13-acetate (PMA) was less effective in permeabilized cells than in intact cells; these actions of PMA were Ca2+-dependent. In addition, guanylyl-imidodiphosphate (Gpp(NH)p) attenuated tyrosine phosphorylation in UMR106 cells, and this effect was specifically blocked by guanosine 5'-O-(2-thiodiphosphate) (GDPbetas). These results strongly suggest that there is crosstalk between EGFR-activated tyrosine phosphorylation/dephosphorylation pathways and both Ca2+- and G protein-mediated pathways in UMR106 cells, revealing a previously unrecognized modulation of EGF signalling in osteoblast-like cells that contrasts with the simpler regulatory mechanisms found in A431 cells.


Puromycin reactivity does not accurately localize translation at the subcellular level.

  • Syed Usman Enam‎ et al.
  • eLife‎
  • 2020‎

Puromycin is a tyrosyl-tRNA mimic that blocks translation by labeling and releasing elongating polypeptide chains from translating ribosomes. Puromycin has been used in molecular biology research for decades as a translation inhibitor. The development of puromycin antibodies and derivatized puromycin analogs has enabled the quantification of active translation in bulk and single-cell assays. More recently, in vivo puromycylation assays have become popular tools for localizing translating ribosomes in cells. These assays often use elongation inhibitors to purportedly inhibit the release of puromycin-labeled nascent peptides from ribosomes. Using in vitro and in vivo experiments in various eukaryotic systems, we demonstrate that, even in the presence of elongation inhibitors, puromycylated peptides are released and diffuse away from ribosomes. Puromycylation assays reveal subcellular sites, such as nuclei, where puromycylated peptides accumulate post-release and which do not necessarily coincide with sites of active translation. Our findings urge caution when interpreting puromycylation assays in vivo.


Direct binding of polymeric GBP1 to LPS disrupts bacterial cell envelope functions.

  • Miriam Kutsch‎ et al.
  • The EMBO journal‎
  • 2020‎

In the outer membrane of gram-negative bacteria, O-antigen segments of lipopolysaccharide (LPS) form a chemomechanical barrier, whereas lipid A moieties anchor LPS molecules. Upon infection, human guanylate binding protein-1 (hGBP1) colocalizes with intracellular gram-negative bacterial pathogens, facilitates bacterial killing, promotes activation of the lipid A sensor caspase-4, and blocks actin-driven dissemination of the enteric pathogen Shigella. The underlying molecular mechanism for hGBP1's diverse antimicrobial functions is unknown. Here, we demonstrate that hGBP1 binds directly to LPS and induces "detergent-like" LPS clustering through protein polymerization. Binding of polymerizing hGBP1 to the bacterial surface disrupts the O-antigen barrier, thereby unmasking lipid A, eliciting caspase-4 recruitment, enhancing antibacterial activity of polymyxin B, and blocking the function of the Shigella outer membrane actin motility factor IcsA. These findings characterize hGBP1 as an LPS-binding surfactant that destabilizes the rigidity of the outer membrane to exert pleiotropic effects on the functionality of gram-negative bacterial cell envelopes.


Acetylation of Cytidine in mRNA Promotes Translation Efficiency.

  • Daniel Arango‎ et al.
  • Cell‎
  • 2018‎

Generation of the "epitranscriptome" through post-transcriptional ribonucleoside modification embeds a layer of regulatory complexity into RNA structure and function. Here, we describe N4-acetylcytidine (ac4C) as an mRNA modification that is catalyzed by the acetyltransferase NAT10. Transcriptome-wide mapping of ac4C revealed discretely acetylated regions that were enriched within coding sequences. Ablation of NAT10 reduced ac4C detection at the mapped mRNA sites and was globally associated with target mRNA downregulation. Analysis of mRNA half-lives revealed a NAT10-dependent increase in stability in the cohort of acetylated mRNAs. mRNA acetylation was further demonstrated to enhance substrate translation in vitro and in vivo. Codon content analysis within ac4C peaks uncovered a biased representation of cytidine within wobble sites that was empirically determined to influence mRNA decoding efficiency. These findings expand the repertoire of mRNA modifications to include an acetylated residue and establish a role for ac4C in the regulation of mRNA translation.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: