Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,920 papers

The Association of Growth Differentiation Factor-15 Gene Polymorphisms with Growth Differentiation Factor-15 Serum Levels and Risk of Ischemic Stroke.

  • Yang Xiang‎ et al.
  • Journal of stroke and cerebrovascular diseases : the official journal of National Stroke Association‎
  • 2017‎

Current evidence shows that growth differentiation factor-15 (GDF-15) plays an important role in the progression of ischemic stroke (IS). The aim of this study was to investigate the association between 3 single-nucleotide polymorphisms of the GDF-15 gene and IS susceptibility in the Chinese population.


Significance of growth differentiation factor 15 in chronic HCV patients.

  • Mohab H Halim‎ et al.
  • Journal, genetic engineering & biotechnology‎
  • 2017‎

Background and objective: Hepatitis C virus is the most common cause of chronic liver disease in Egypt. This work aims to assess the use of the simple and noninvasive biomarker Serum Growth differentiation Factor 15 (GDF-15), along with Alpha Fetoprotein (AFP) and Ferritin for the diagnosis of advanced liver disease in chronic hepatitis C patients. Subjects and methods: This study was conducted on 60 patients, who were recruited from the National Liver and Tropical Diseases Institute, Cairo, Egypt, who were suffering from early & advanced liver cirrhosis and chronic active hepatitis. Twenty cases of healthy subjects served as controls. Serum (GDF-15), (AFP), Ferritin and Hepatitis markers were measured by ELISA method. Measurement of different liver enzyme activity was done by the kinetic methods. Results: Data analysis revealed significant increase in serum levels of GDF15 in patients with Hepatocellular carcinoma (HCC) and Liver Cirrhosis (LC) compared to the healthy subjects. These results were parallel to those of serum levels of AFP, which also demonstrated significant increase in all patients groups as compared to normal control. A moderate increase in the GDF15 level was detected in the patients with chronic hepatitis C (CHC) compared to normal healthy subjects. Conclusion: This study demonstrated that GDF15 and AFP detection can help in the diagnosis and prediction of complications associated with CHC including liver cirrhosis and HCC. Also GDF15 can be used as a satisfactory serum marker of HCC and LC.


Dynamics of growth differentiation factor 15 in acute heart failure.

  • Patrícia Lourenço‎ et al.
  • ESC heart failure‎
  • 2021‎

Risk stratification in acute heart failure (HF) patients can help to decide therapies and time for discharge. The potential of growth differentiation factor 15 (GDF-15) in HF has been previously shown. We aimed to study the importance of GDF-15-level variations in acute HF patients.


Elevated Serum Growth Differentiation Factor 15 Levels in Hyperthyroid Patients.

  • Jiejie Zhao‎ et al.
  • Frontiers in endocrinology‎
  • 2018‎

Background: Recent studies have shown that growth differentiation factor 15 (GDF15), a member of the transforming growth factor-β (TGF-β)/bone morphogenetic protein (BMP) superfamily, plays an important role in appetite, type 2 diabetes, and cardiovascular diseases. Since thyroid hormone has pleiotropic effects on whole-body energy metabolism, we aimed to explore the effect of thyroid hormone on circulating GDF15 levels in humans and GDF15 genes expression in C57BL/6 mice. Methods: A total of 134 hyperthyroid patients and 105 healthy subjects were recruited. Of them, 43 hyperthyroid patients received thionamide treatment for 3 months until euthyroidism. Serum GDF15 levels were determined using the enzyme-linked immunosorbent assay (ELISA) method. To determine the source for the increased circulating GDF15, C57BL/6 mice were treated with T3, and GDF15 gene expressions in the liver, skeletal muscle, brown adipose tissue (BAT), inguinal white adipose tissue (iWAT), epididymal white adipose tissue (eWAT) were analyzed by quantitative real-time polymerase chain reaction (PCR). Results: Serum GDF15 levels were significantly elevated in hyperthyroid patients as compared with healthy subjects (326.06 ± 124.13 vs. 169.24 ± 82.96 pg/mL; P < 0.001). After thionamide treatment, GDF15 levels in hyperthyroid patients declined markedly from 293.27 ± 119.49 to 118.10 ± 71.83 pg/mL (P < 0.001). After adjustment for potential confounders, serum GDF15 levels were independently associated with hyperthyroidism. T3 treatment increased GDF15 expression in the brown adipose tissue of C57BL/6 mice. Conclusions: Serum GDF15 levels were elevated in patients with hyperthyroidism and declined after thionamide treatment. Thyroid hormone treatment upregulated GDF15 expression in mice. Therefore, our results present the clinical relevance of GDF15 in humans under the condition of hyperthyroidism.


Cadmium exposure and growth differentiation factor-15 (GDF-15) levels in non-smoking older adults.

  • Esther García-Esquinas‎ et al.
  • Environmental research‎
  • 2022‎

Cadmium (Cd) exposure is a risk factor for cardiovascular disease (CVD); however, understanding the effects of Cd at the cellular level remains incomplete. Since growth differentiation factor-15 (GDF-15) is a cytokine produced in many cell types in response to tissue injury and inflammation that may capture several pathways between Cd and CVD, this study examined the relationship between blood Cd levels and serum GDF-15 concentrations in community-dwelling older adults.


Growth-differentiation factor-15 and functional outcome after acute ischemic stroke.

  • Klaus Gröschel‎ et al.
  • Journal of neurology‎
  • 2012‎

Blood biomarkers may improve the performance in predicting early stroke outcome beyond well-established clinical factors. We investigated the value of growth-differentiation factor-15 (GDF-15) to predict functional outcome after 90 days in a prospectively collected patient cohort with symptoms of acute ischemic stroke. Two hundred eighty-one patients with symptoms of acute ischemic stroke were prospectively investigated. Serial blood samples for GDF-15 analysis were obtained after the admission of the patient, after 6 and 24 h. Primary outcome was the dichotomized modified ranking scale (MRS) 90 days after the initial clinical event. Within the final study population (264 patients, mean age 70.3 ± 12.7 years, 55.3% male), National Institutes of Health Stroke Scale (NIH-SS) [odds ratio (OR) 1.269, 95% confidence interval (CI) 1.141-1.412, p < 0.001] and initial GDF-15 levels (OR 1.029, 95% CI 1.007-1.053, p = 0.011) were independently associated with a MRS ≥ 2 after day 90 after multiple regression analysis. Growth-differentiation factor-15 levels increase with higher NIH-SS-tertiles (p = 0.005). Receiver-operator characteristic curves demonstrated a discriminatory accuracy to predict unfavourable stroke outcome of 0.629 (95% CI 0.558-0.699), 0.753 (95% CI 0.693-812) and 0.774 (95% CI 0.717-0.832) for GDF-15, NIH-SS and the combination of these variables. The additional use of GDF-15 to NIH-SS ameliorates the model with a net reclassification index of 0.044 (p = 0.541) and integrated discrimination improvement of 0.034 (p = 0.443). Growth-differentiation factor-15 as an acute stroke biomarker independently predicts unfavourable functional 90 day stroke outcome. Discriminatory value in addition to NIH-SS is only modestly distinct.


Growth differentiation factor 15 is a myomitokine governing systemic energy homeostasis.

  • Hyo Kyun Chung‎ et al.
  • The Journal of cell biology‎
  • 2017‎

Reduced mitochondrial electron transport chain activity promotes longevity and improves energy homeostasis via cell-autonomous and -non-autonomous factors in multiple model systems. This mitohormetic effect is thought to involve the mitochondrial unfolded protein response (UPRmt), an adaptive stress-response pathway activated by mitochondrial proteotoxic stress. Using mice with skeletal muscle-specific deficiency of Crif1 (muscle-specific knockout [MKO]), an integral protein of the large mitoribosomal subunit (39S), we identified growth differentiation factor 15 (GDF15) as a UPRmt-associated cell-non-autonomous myomitokine that regulates systemic energy homeostasis. MKO mice were protected against obesity and sensitized to insulin, an effect associated with elevated GDF15 secretion after UPRmt activation. In ob/ob mice, administration of recombinant GDF15 decreased body weight and improved insulin sensitivity, which was attributed to elevated oxidative metabolism and lipid mobilization in the liver, muscle, and adipose tissue. Thus, GDF15 is a potent mitohormetic signal that safeguards against the onset of obesity and insulin resistance.


Growth differentiation factor 15 and cardiovascular risk: individual patient meta-analysis.

  • Eri Toda Kato‎ et al.
  • European heart journal‎
  • 2023‎

Levels of growth differentiation factor 15 (GDF-15), a cytokine secreted in response to cellular stress and inflammation, have been associated with multiple types of cardiovascular (CV) events. However, its comparative prognostic performance across different presentations of atherosclerotic cardiovascular disease (ASCVD) remains unknown.


Growth and differentiation factor 15 regulates PD-L1 expression in glioblastoma.

  • Haiqin Peng‎ et al.
  • Cancer management and research‎
  • 2019‎

Background: Gliomablastoma multiforme (GBM) is the most fatal form of all brain cancers in human with no successful treatment available. Programmed death-ligand 1 (PD-L1) is a coinhibitory ligand predominantly expressed by tumor cells. Growth differentiation factors (GDFs) are a subfamily of proteins belonging to the transforming growth factor beta superfamily that have functions predominantly in tissue development and cancer. Purpose: To investigat the expression of GDFs in GBMs, and explored the potential regulatory role of GDFs on PD-L1 expression in GBMs. Methods: GEO2R program were analyzed for the mRNA expression data of GDFs in GSE4290 dataset. Analysis of TCGA GBM datasets were further determined the relationship between GDFs and PD-L1. Western blot Western blot was used to detect the expression of PD-L1 in GBM cell lines. Results: GDFs displayed differential patterns of expression with GDF15 and myostatin (MSTN) highly enriched in GBM tissues. We also identified GDF15 as a novel regulator that induces PD-L1 expression in GBM cells. Consistently, GDF15 expression correlated with PD-L1 in TCGA GBM dataset. Further, GDF15 enhanced PD-L1 expression via Smad2/3 pathway in GBM cell line U87, U251 and SHG44, which was inhibited by Smad2/3 inhibitor SIS3. Knockdown of GDF15 attenuated Smad2/3 signaling and reduced PD-L1 expression in A172 and GIC6 glioma cells. Conclusion: GDF15 might be a novel regulator of PD-L1 expression in GBMs; targeting GDF15/PD-L1 pathway might be a promising therapeutic approach for GBM patients.


Growth Differentiation Factor 15 Ameliorates Anti-Glomerular Basement Membrane Glomerulonephritis in Mice.

  • Foteini Moschovaki-Filippidou‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Growth differentiation factor 15 (GDF15) is a member of the transforming growth factor-β (TGF-β) cytokine family and an inflammation-associated protein. Here, we investigated the role of GDF15 in murine anti-glomerular basement membrane (GBM) glomerulonephritis. Glomerulonephritis induction in mice induced systemic expression of GDF15. Moreover, we demonstrate the protective effects for GDF15, as GDF15-deficient mice exhibited increased proteinuria with an aggravated crescent formation and mesangial expansion in anti-GBM nephritis. Herein, GDF15 was required for the regulation of T-cell chemotactic chemokines in the kidney. In addition, we found the upregulation of the CXCR3 receptor in activated T-cells in GDF15-deficient mice. These data indicate that CXCL10/CXCR3-dependent-signaling promotes the infiltration of T cells into the organ during acute inflammation controlled by GDF15. Together, these results reveal a novel mechanism limiting the migration of lymphocytes to the site of inflammation during glomerulonephritis.


Growth differentiation factor 15 facilitates lung fibrosis by activating macrophages and fibroblasts.

  • Yasuhiro Takenouchi‎ et al.
  • Experimental cell research‎
  • 2020‎

Lung fibrosis is a devastating disease characterized by fibroblast accumulation and extracellular matrix deposition in lungs. However, its molecular and cellular pathogenesis is not fully understood and the current therapeutic strategies are ineffective. Bleomycin-induced lung fibrosis is the most widely used experimental model for research aimed at in-depth analysis of lung fibrosis mechanisms. The present study aimed to analyse the effects of growth differentiation factor 15 (GDF15), which is associated with many diseases, in lung fibrosis. GDF15 mRNA expression was elevated in the lungs of bleomycin-treated mice, revealed by comprehensive gene analysis. Its protein levels were also increased in the lungs, bronchoalveolar lavage fluid, and plasma obtained from bleomycin-treated mice as compared to those in saline-treated mice. Bleomycin administration in mice resulted in a marked increase in senescence-associated β-galactosidase-positive and p16INK4a-positive lung structural cells including alveolar epithelial cells and macrophages. Immunohistochemical staining using anti-GDF15 antibody and increased mRNA expression of GDF15 in bleomycin-induced senescent A549 cells indicated that GDF15 is produced from alveolar epithelial cells undergoing bleomycin-induced cellular senescence. GDF15 was also implicated in the augmentation of interleukin-4/interleukin-13-induced mRNA expression of M2 markers including arginase 1 and chitinase-3-like protein and was also responsible for increased α-smooth muscle actin expression through the ALK5-Smad2/3 pathway in WI-38 lung fibroblasts. Therefore, GDF15 secreted from senescent alveolar epithelial cells might act as a profibrotic factor through activation of M2 macrophages and fibroblasts. This implies that GDF15 could be a potential therapeutic target and a predictor of lung fibrosis progression.


Growth differentiation factor 15: a prognostic marker for recurrence in colorectal cancer.

  • U Wallin‎ et al.
  • British journal of cancer‎
  • 2011‎

Growth differentiation factor 15 (GDF15) belongs to the transforming growth factor beta superfamily and has been associated with activation of the p53 pathway in human cancer. The aim of this study was to assess the prognostic value of GDF15 in patients with colorectal cancer (CRC).


Association between Circulating Growth Differentiation Factor 15 and Cirrhotic Primary Biliary Cholangitis.

  • Zhanyi Li‎ et al.
  • BioMed research international‎
  • 2020‎

Primary biliary cholangitis (PBC) is a common condition that usually shows a progressive course towards cirrhosis without adequate treatment. Growth differentiation factor 15 (GDF15) plays multiple roles in various pathological conditions. The overall role of circulating GDF15 in cirrhotic PBC requires further investigation. Twenty patients with cirrhotic PBC, 26 with non-cirrhotic PBC, and 10 healthy subjects were enrolled between 2014 and 2018, and the serum levels of GDF15 were measured via enzyme immunoassay. The correlations between serum GDF15, weight, biochemical parameters, and the prognosis were analysed. Serum levels of GDF15 were significantly higher in cirrhotic PBC patients than in non-cirrhotic PBC patients or healthy controls (p = 0.009 and p < 0.001, respectively). The circulating GDF15 levels strongly correlated with weight changes (r = -0.541, p = 0.0138), albumin (r = -0.775, p < 0.0001), direct bilirubin (r = -0.786, p < 0.0001), total bile acids (r = 0.585, p = 0.007), and C-reactive protein (r = 0.718, p = 0.0005). Moreover, circulating GDF15 levels strongly correlated with the Mayo risk score (r = 0.685, p = 0.0009) and Model for End-stage Liver Disease score (r = 0.687, p = 0.0008). Determined by the area under the receiver operating characteristic curves, the overall diagnostic accuracies of GDF15 were as follows: cirrhosis = 0.725 (>3646.55 pg/mL, sensitivity: 70.0%, specificity: 69.2%), decompensated cirrhosis = 0.956 (>4073.30 pg/mL, sensitivity: 84.62%, specificity: 100%), and cirrhotic biochemical non-responders = 0.835 (>3479.20 pg/mL, sensitivity: 71.43%, specificity: 92.31%). GDF15 may be a useful and integrated biochemical marker to evaluate not only the disease severity and prognosis but also the nutrition and response to treatment of cirrhotic PBC patients, and its overall performance is satisfactory. Therapy targeting GDF15 is likely to benefit cirrhotic PBC patients and is worth further research.


Growth Differentiation Factor 15 (GDF-15): A Novel Biomarker Associated with Poorer Respiratory Function in COVID-19.

  • Leticia Alserawan‎ et al.
  • Diagnostics (Basel, Switzerland)‎
  • 2021‎

It is essential to find new biomarkers for severity stratification of patients with coronavirus disease (COVID-19). Growth differentiation factor 15 (GDF-15) is upregulated in pathological conditions that involve inflammation and/or oxidative stress. We determined circulating levels of GDF-15 and correlated them with clinical and laboratory parameters reflecting severity in 84 patients with COVID-19, finding that GDF-15 levels were higher in both patients than in 20 healthy controls and were higher in patients with poorer respiratory function. GDF-15 levels also correlated with interleukin-6, C-reactive protein, ferritin and D-dimer levels and with neutrophilia and lymphopenia. Of all the analysed biomarkers, GDF-15 showed the best area under the receiver operating characteristics curve in identifying patients with poor respiratory function. In conclusion, our data support GDF-15 as a biomarker associated with pulmonary impairment in COVID-19 and so can potentially be useful in stratifying COVID-19 cases by severity.


Growth differentiation factor-15 slows the growth of murine prostate cancer by stimulating tumor immunity.

  • Yasmin Husaini‎ et al.
  • PloS one‎
  • 2020‎

Growth Differentiation Factor-15 (GDF15) is a divergent TGF-beta superfamily cytokine that is overexpressed by most cancers and is induced by anticancer therapy. Transgenic and induced animal models suggest that it protects from cancer development but the mechanisms are uncertain. We investigated the role of immunity in GDF15 induced reduction in prostate cancer (PCa) growth. The C57BL/6 transgenic TRAMP prostate cancer prone mice were bred with mice that were immunodeficient and/or systemically overexpressed GDF15. We developed a novel orthotopic TRAMP PCa model in which primary TRAMP tumor cells were implanted into prostates of mice to reduce the study time. These mice were administered recombinant mouse GDF15, antibody to CD8, PD1 or their respective controls. We found that GDF15 induced protection from tumor growth was reversed by lack of adaptive immunity. Flow cytometric evaluation of lymphocytes within these orthotopic tumors showed that GDF15 overexpression was associated with increased CD8 T cell numbers and an increased number and proportion of recently activated CD8+CD11c+ T cells and a reduced proportion of "exhausted" CD8+PD1+ T cells. Further, depletion of CD8 T cells in tumor bearing mice abolished the GDF15 induced protection from tumor growth. Infusion of GDF15 into mice bearing orthotopic TRAMP tumor, substantially reduced tumor growth that was further reduced by concurrent PD1 antibody administration. GDF15 overexpression or recombinant protein protects from TRAMP tumor growth by modulating CD8 T cell mediated antitumor immunity and augments the positive effects of anti-PD1 blockers.


The role of growth differentiation factor 15 in the pathogenesis of primary myelofibrosis.

  • Tatsuki Uchiyama‎ et al.
  • Cancer medicine‎
  • 2015‎

Growth differentiation factor 15 (GDF15) is a pleiotropic cytokine that belongs to the transforming growth factor-β superfamily. Elevated serum concentrations of this cytokine have been reported in patients with various malignancies. To assess the potential roles of GDF15 in hematologic malignancies, we measured its serum levels in patients with these diseases. We found that serum GDF15 levels were elevated in almost all these patients, particularly in patients with primary myelofibrosis (PMF). Immunohistochemical staining of bone marrow (BM) specimens revealed that GDF15 was strongly expressed by megakaryocytes, which may be sources of increased serum GDF15 in PMF patients. Therefore, we further assessed the contribution of GDF15 to the pathogenesis of PMF. Recombinant human (rh) GDF15 enhanced the growth of human BM mesenchymal stromal cells (BM-MSCs), and it enhanced the potential of these cells to support human hematopoietic progenitor cell growth in a co-culture system. rhGDF15 enhanced the growth of human primary fibroblasts, but it did not affect their expression of profibrotic genes. rhGDF15 induced osteoblastic differentiation of BM-MSCs in vitro, and pretreatment of BM-MSCs with rGDF15 enhanced the induction of bone formation in a xenograft mouse model. These results suggest that serum levels of GDF15 in PMF are elevated, that megakaryocytes are sources of this cytokine in BM, and that GDF15 may modulate the pathogenesis of PMF by enhancing proliferation and promoting osteogenic differentiation of BM-MSCs.


Local anesthetic lidocaine-inducible gene, growth differentiation factor-15 suppresses the growth of cancer cell lines.

  • Keiko Haraguchi-Suzuki‎ et al.
  • Scientific reports‎
  • 2022‎

Administration of local anesthetics, such as lidocaine, in the perioperative period improves outcomes of cancer patients. However, its precise mechanism is still unresolved. The growth of human cancer cell lines, including HeLa cells, are suppressed by lidocaine treatment. We identified that growth differentiation factor-15 (GDF-15) was commonly upregulated in lidocaine-treated cancer cell lines. GDF-15 is a divergent member of the transforming growth factor-β (TGF-β) superfamily and it is produced as an unprocessed pro-protein form and then cleaved to generate a mature form. In lidocaine-treated HeLa cells, increased production of GDF-15 in the endoplasmic reticulum (ER) was observed and unprocessed pro-protein form of GDF-15 was secreted extracellularly. Further, lidocaine induced apoptosis and apoptosis-inducible Tribbles homologue 3 (TRIB3) was also commonly upregulated in lidocaine-treated cancer cell lines. In addition, transcription factor C/EBP homologous protein (CHOP), which is a positive regulator of not only GDF-15 but TRIB3 was also induced by lidocaine. Lidocaine-induced growth suppression and apoptosis was suppressed by knockdown of GDF-15 or TRIB3 expression by small interference RNA (siRNA). These observations suggest that lidocaine suppresses the growth of cancer cells through increasing GDF-15 and TRIB3 expression, suggesting its potential application as cancer therapy.


Growth differentiation factor 15 and early prognosis after out-of-hospital cardiac arrest.

  • Ferran Rueda‎ et al.
  • Annals of intensive care‎
  • 2019‎

Growth differentiation factor 15 (GDF-15) is an inflammatory cytokine released in response to tissue injury. It has prognostic value in cardiovascular diseases and other acute and chronic conditions. Here, we explored the value of GDF-15 as an early predictor of neurologic outcome after an out-of-hospital cardiac arrest (OHCA).


Heightened levels of plasma growth differentiation factor 15 in men living with HIV.

  • Neeti Agarwal‎ et al.
  • Physiological reports‎
  • 2022‎

Plasma biomarkers that reflect energy balance disorders in people living with HIV (PLWH) remain limited. Growth differentiation factor 15 (GDF15) abundance in plasma of mice and humans induces negative energy balance but also becomes highly elevated in obesity and other metabolic diseases. We sought to compare plasma GDF15 levels in PLWH and HIV-negative persons and mouse models expressing the HIV accessory protein Vpr (that recapitulate HIV-associated metabolic disorders) and determine their relationship to metabolic parameters. We measured liver Gdf15 mRNA levels and plasma GDF15 levels in male Vpr mice and littermate controls. In parallel, we analyzed plasma GDF15 levels in 18 male PLWH on stable, long-term antiretroviral therapy and 13 HIV-negative men (6 healthy controls and 7 with metabolic syndrome). Plasma GDF15 levels were correlated with anthropometric and immune cell parameters in humans. Gene expression analysis of Vpr mouse liver demonstrated elevated Gdf15 mRNA. Plasma GDF15 levels were also higher in Vpr mouse models. Levels of plasma GDF15 in PLWH were greater than in both HIV-negative groups and correlated positively with the CD4/CD8 T cell ratio in PLWH. Plasma GDF15 levels correlated positively with age in the HIV-negative subjects but not in PLWH. Since GDF15 levels predict fatty liver disease and energy balance disorders, further studies are warranted to determine the effect of GDF15 in mediating the metabolic disturbances that occur in Vpr mice and PLWH.


Integrated analyses of growth differentiation factor-15 concentration and cardiometabolic diseases in humans.

  • Susanna Lemmelä‎ et al.
  • eLife‎
  • 2022‎

Growth differentiation factor-15 (GDF15) is a stress response cytokine that is elevated in several cardiometabolic diseases and has attracted interest as a potential therapeutic target. To further explore the association of GDF15 with human disease, we conducted a broad study into the phenotypic and genetic correlates of GDF15 concentration in up to 14,099 individuals. Assessment of 772 traits across 6610 participants in FINRISK identified associations of GDF15 concentration with a range of phenotypes including all-cause mortality, cardiometabolic disease, respiratory diseases and psychiatric disorders, as well as inflammatory markers. A meta-analysis of genome-wide association studies (GWAS) of GDF15 concentration across three different assay platforms (n=14,099) confirmed significant heterogeneity due to a common missense variant (rs1058587; p.H202D) in GDF15, potentially due to epitope-binding artefacts. After conditioning on rs1058587, statistical fine mapping identified four independent putative causal signals at the locus. Mendelian randomisation (MR) analysis found evidence of a causal relationship between GDF15 concentration and high-density lipoprotein (HDL) but not body mass index (BMI). Using reverse MR, we identified a potential causal association of BMI on GDF15 (IVW pFDR = 0.0040). Taken together, our data derived from human population cohorts do not support a role for moderately elevated GDF15 concentrations as a causal factor in human cardiometabolic disease but support its role as a biomarker of metabolic stress.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: