Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 711 papers

Effect of greenhouse conditions on the leaf apoplastic proteome of Coffea arabica plants.

  • Leonor Guerra-Guimarães‎ et al.
  • Journal of proteomics‎
  • 2014‎

This work describes the coffee leaf apoplastic proteome and its modulation by the greenhouse conditions. The apoplastic fluid (APF) was obtained by leaf vacuum infiltration, and the recovered proteins were separated by 2-DE and subsequently identified by matrix assisted laser desorption/ionization time of flight-mass spectrometry, followed by homology search in EST coffee databases. Prediction tools revealed that the majority of the 195 identified proteins are involved in cell wall metabolism and in stress/defense responses. Although most of the proteins follow the classical secretory mechanism, a low percentage of them seem to result from unconventional secretion (leaderless secreted proteins). Principal components analysis revealed that the APF samples formed two distinct groups, with the temperature amplitude mostly contributing for this separation (higher or lower than 10°C, respectively). Sixty one polypeptide spots allowed defining these two groups and 28 proteins were identified, belonging to carbohydrate metabolism, cell wall modification and proteolysis. Interestingly stress/defense proteins appeared as more abundant in Group I which is associated with a higher temperature amplitude. It seems that the proteins in the coffee leaf APF might be implicated in structural modifications in the extracellular space that are crucial for plant development/adaptation to the conditions of the prevailing environment.


Effect of Repeated Plant Debris Reutilization as Organic Amendment on Greenhouse Soil Fertility.

  • Francisco José Castillo-Díaz‎ et al.
  • International journal of environmental research and public health‎
  • 2021‎

Greenhouse agriculture typically generates large amounts of waste with plant residue (agricultural biomass) being the most abundant. This residue is generated on a seasonal basis, which complicates the external management of the material. Recently, the European Union (EU) has been implementing a policy based on sustainability through the circular economy that seeks to minimize waste generation. The effect of reusing 3.5 kg·m-2 tomato plants from the previous season as the only fertilizer versus no fertilization and inorganic fertilization in 215-day tomato cycles after transplanting was studied in this trial. The study was carried out during three seasons in greenhouse agriculture in Almeria (Spain) with the repeated use of the solarization technique. The plant debris had similar production results during two of the three seasons and fruit quality parameters were similar to inorganic fertilization. In addition, some physicochemical variables improved and the biological depressive effect of solarization was mitigated. The results suggest that the reuse of the tomato plant debris as the only fertilizer could be an alternative to conventional fertilization under the conditions tested.


Effect of Salicylic Acid in the Yield of Ricinine in Ricinus communis under Greenhouse Condition.

  • Carlos Eduardo Zavala-Gómez‎ et al.
  • Plants (Basel, Switzerland)‎
  • 2021‎

Castor bean (Ricinus communis) seeds contain ricinine, an alkaloid with insecticidal and insectistatic activities. Elicitation with salicylic acid (SA) has proven to stress R. communis and might modify the ricinine concentration. The aim of this study was to evaluate the concentration of ricinine in the bagasse of seeds from R. communis elicited with exogenous SA under greenhouse conditions. Plants were grown and divided into five groups, which were sprayed with SA and drench with 50 mL 60 days after sowing with concentrations of SA (0, 100, 300, 600 and 900 µM). Clusters were mixed and separated according to the treatment, and dried. The seeds were ground, the oil was extracted by Soxhlet with hexane, and then the bagasse was extracted with methanol. Ricinine was determined by HPLC. Elicitation did not change the plant height or diameter; the control group had 9.17 µg mL-1 of ricinine; and the concentrations followed a hormesis curve with the peak at 300 µM of SA that had a ricinine concentration of 18.25 µg mL-1. Elicitation with SA might be a cost-effective technique to increase ricinine from R. communis bagasse.


Combined Effect of Entomopathogens against Thrips tabaci Lindeman (Thysanoptera: Thripidae): Laboratory, Greenhouse and Field Trials.

  • Sehrish Gulzar‎ et al.
  • Insects‎
  • 2021‎

Onion thrips, Thrips tabaci Lindeman (Thysanoptera: Thripidae) is one of the most damaging insect pests of onions, Allium cepa L., which is an economically important agricultural crop cultivated worldwide. In this study, the combined application of entomopathogenic nematodes with entomopathogenic fungi against different soil dwelling stages of T. tabaci was evaluated. The nematodes included Heterorhabditis bacteriophora (VS strain) and Steinernema feltiae (SN strain), and fungi included Beauveria bassiana (WG-11) and Metarhizium anisopliae (WG-02); all four paired combinations (nematode + fungus) were included. In a small cup bioassay, only the combined application of H. bacteriophora and B. bassiana (WG-11) caused a synergistic interaction against pre-pupae, while all other combinations were compatible in an additive manner against pupae and late second instars. In a larger arena, a potted soil bioassay, again, combined applications of both pathogens produced greater mortality compared to single applications of each pathogen; all the combinations exhibited additive interactions, with the highest mortality observed in pre-pupae, followed by pupae and late second instar larvae using H. bacteriophora and B. bassiana (WG-11). Additionally, in the potted plant bioassay, lower adult emergence was observed from treated groups compared to control groups. Under field conditions, lower numbers of adults and larvae were found in treated groups relative to controls. Overall, the pre-pupal stage was more susceptible to the pathogen treatments, followed by pupae and late second instar larvae, and also combined applications of both pathogens suppressed the adult population. Combined application of entomopathogenic nematodes and fungi could be used for integrated pest management (IPM) of T. tabaci in onion production systems.


Effect of the ridge position ratio on the thermal environment of the Chinese solar greenhouse.

  • Xiaoyang Wu‎ et al.
  • Royal Society open science‎
  • 2021‎

This paper clarified the mechanism of the south and north roofs' effect on the thermal environment of the Chinese solar greenhouse (CSG), using a new parameter: ridge position ratio (RPR), which can describe the dynamic dependency relationship between the south and north roofs. A mathematical model was established using a method of combining computational fluid dynamics (CFD) simulation with experiments, then the model was used to further analyse the effect of RPR on the thermal environment of the CSG. The experimental greenhouse was simulated as an empty building to obtain results independently from these factors including crop and ventilation conditions. The results showed that the occurrence time of the maximum air temperature will be delayed when RPR increases to 0.3 during the daytime. As RPR increases, the heat storage layer of the soil gradually becomes thinner, but the north wall remains unchanged. RPR has a relatively small effect on the minimum temperature of each greenhouse part during the night. Mathematical models of the relationships between RPR, the solar energy that entered the greenhouse and the released heat energy of the enclosure structures were established, respectively. This paper can provide theoretical guidance for the structural design of the CSG.


Effect of different levels of nitrogen on rhizosphere bacterial community structure in intensive monoculture of greenhouse lettuce.

  • Jian-Gang Li‎ et al.
  • Scientific reports‎
  • 2016‎

Pyrosequencing-based analyses revealed significant effects among low (N50), medium (N80), and high (N100) fertilization on community composition involving a long-term monoculture of lettuce in a greenhouse in both summer and winter. The non-fertilized control (CK) treatment was characterized by a higher relative abundance of Actinobacteria, Acidobacteria, and Chloroflexi; however, the average abundance of Firmicutes typically increased in summer, and the relative abundance of Bacteroidetes increased in winter in the N-fertilized treatments. Principle component analysis showed that the distribution of the microbial community was separated by a N gradient with N80 and N100 in the same group in the summer samples, while CK and N50 were in the same group in the winter samples, with the other N-level treatments existing independently. Redundancy analysis revealed that available N, NO3(-)-N, and NH4(+)-N, were the main environmental factors affecting the distribution of the bacterial community. Correlation analysis showed that nitrogen affected the shifts of microbial communities by strongly driving the shifts of Firmicutes, Bacteroidetes, and Proteobacteria in summer samples, and Bacteroidetes, Actinobacteria, and Acidobacteria in winter samples. The study demonstrates a novel example of rhizosphere bacterial diversity and the main factors influencing rizosphere microbial community in continuous vegetable cropping within an intensive greenhouse ecosystem.


Greenhouse Gas Emission Efficiencies of World Countries.

  • Levent Kutlu‎
  • International journal of environmental research and public health‎
  • 2020‎

Greenhouse gas emissions have increased rapidly since the industrial revolution. This has led to an unnatural increase in the global surface temperature, and to other changes in our environment. Acknowledging this observation, the United Nations Framework Convention on Climate Change started an international environmental treaty. This treaty was extended by Kyoto protocol, which was adopted on 11 December 1997. Using the stochastic frontier analysis, we analyze the efficiencies of countries in terms of achieving the lowest greenhouse gas emission levels per GDP output in the years between 1990-2015. We find that the average greenhouse gas emission efficiencies of world countries for the time periods 1990-1997, 1998-2007, 2008-2012, and 2013-2015 are 82.40%, 90.37%, 89.54%, and 84.81%, respectively. Moreover, compared to the 1990-1997 period, 92.50%, 79.51%, and 59.84% of the countries improved their greenhouse gas emission efficiencies in the 1998-2007, 2008-2012, and 2013-2015 periods, respectively. Hence, the Kyoto protocol helped in increasing greenhouse emission efficiency. However, this efficiency-boosting effect faded away over time.


The Effect of Scale Insects on Growth Parameters of cv. Chardonnay and cv. Sauvignon Blanc Grapevines Grown in a Greenhouse.

  • Paul D Cooper‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

Plants can respond to insects that feed with stylet mouthparts using various processes that are initiated via the salicylic acid metabolic pathway. In Australia, scale insects of the genus Parthenolecanium can cause economic damage to grapevines as they feed on the vines and produce honeydew as a waste by-product, which supports the growth of black sooty mould on fruit and leaves, potentially affecting the plant growth and yield. Using rootlings of Sauvignon Blanc (SB, resistant) and Chardonnay (Char, susceptible), the growth and production of volatile organic compounds (VOCs) following exposure to scale insect infestations were measured under controlled greenhouse conditions. At harvest, the numbers of scale insects per five leaves were higher on plants infested at the start of the study compared with the control plants. Infested SB had increased dry root and shoot mass compared with the SB control, which was also the case with Char (control and infested). Leaf volatiles differed between cultivars in response to scale infestation. Benzyl alcohol decreased among infested SB plants compared with the other treatments. A change in the salicylic acid pathway as indicated by the change in benzyl alcohol may cause the increased growth in SB associated with the increased scale insect infestation.


Effect of internal surface structure of the north wall on Chinese solar greenhouse thermal microclimate based on computational fluid dynamics.

  • Xingan Liu‎ et al.
  • PloS one‎
  • 2020‎

Chinese solar greenhouses are unique facility agriculture buildings and widely used in northeastern China, providing a favorable requirement for crop growth. The north wall configurations play an essential role in heat storage and thermal insulation and directly affect the management of the internal environment. This research is devoted to further improve the thermal performance of the greenhouse and explore the potential of the north wall. A mathematical model was designed to investigate the concave-convex wall configurations based on computational fluid dynamics. Four passive heat-storage north walls were analyzed by using the same constituent materials, including a plane wall, a vertical wall, a horizontal wall and an alveolate wall. The numerical model was validated by experimental measurements. The temperature distributions of the north walls were examined and a comparative analysis of the heat storage-release capabilities was carried out. The results showed that the heat-storage capacity of the north wall is affected by the surface structure. Moreover, the critical factor influencing the air temperature is the sum of the heat load released by the wall and the energy increment of greenhouse air. The results suggested that the alveolate wall has preferable thermal accumulation capacity. The concave-convex wall configurations have a wider range of heat transfer performance along the thickness direction, while the plane wall has a superior thermal environment. This study provides a basic theoretical reference to rationally design the internal surface structures of the north wall.


Greenhouse Gas Emission Inefficiency Spillover Effects in European Countries.

  • Levent Kutlu‎ et al.
  • International journal of environmental research and public health‎
  • 2021‎

In our study, we examine whether spatial spillover effects exist for greenhouse gas emission efficiency for 38 European countries between 2005 and 2014. We find that inefficiencies of other countries would lead to lower efficiency levels for a country. This negative inefficiency spillover effect goes down till 2008 then goes up till 2011, then stays relatively stable after 2011. Any strategy to reduce inefficiencies of other countries could potentially improve the efficiency levels. We find that human development index shows significant positive impact on greenhouse gas emission efficiency levels. In particular, one standard deviation increase in human development index would lead to a 11.12 percentage points increase in the greenhouse gas emission efficiencies on average. Different countries show different efficiency levels and efficiency growth patterns over time. However, the pattern of spatial spillover is quite similar among all countries over time.


Effect of organic photovoltaic and red-foil transmittance on yield, growth and photosynthesis of two spinach genotypes under field and greenhouse conditions.

  • Uchenna Noble Ukwu‎ et al.
  • Photosynthesis research‎
  • 2023‎

The galloping rise in global population in recent years and the accompanying increase in food and energy demands has created land use crisis between food and energy production, and eventual loss of agricultural lands to the more lucrative photovoltaics (PV) energy production. This experiment was carried out to investigate the effect of organic photovoltaics (OPV) and red-foil (RF) transmittance on growth, yield, photosynthesis and SPAD value of spinach under greenhouse and field conditions. Three OPV levels (P0: control; P1: transmittance peak of 0.11 in blue light (BL) and 0.64 in red light (RL); P2: transmittance peak of 0.09 in BL and 0.11 in RL) and two spinach genotypes (bufflehead, eland) were combined in a 3 × 2 factorial arrangement in a completely randomized design with 4 replications in the greenhouse, while two RF levels (RF0: control; RF1: transmittance peak of 0.01 in BL and 0.89 in RL) and two spinach genotypes were combined in a 2 × 2 factorial in randomized complete block design with four replications in the field. Data were collected on growth, yield, photosynthesis and chlorophyll content. Analysis of variance (ANOVA) showed significant reduction in shoot weight and total biomass of spinach grown under very low light intensities as a function of the transmittance properties of the OPV cell used (P2). P1 competed comparably (p > 0.05) with control in most growth and yield traits measured. In addition, shoot to root distribution was higher in P1 than control. RF reduced shoot and total biomass production of spinach in the field due to its inability to transmit other spectra of light. OPV-RF transmittance did not affect plant height (PH), leaf number (LN), and SPAD value but leaf area (LA) was highest in P2. Photochemical energy conversion was higher in P1, P2 and RF1 in contrast to control due to lower levels of non-photochemical energy losses through the Y(NO) and Y(NPQ) pathways. Photo-irradiance curves showed that plants grown under reduced light (P2) did not efficiently manage excess light when exposed to high light intensities. Bufflehead genotype showed superior growth and yield traits than eland across OPV and RF levels. It is therefore recommended that OPV cells with transmittance properties greater than or equal to 11% in BL and 64% in RL be used in APV systems for improved photochemical and land use efficiency.


From scientific arguments to scepticism: Humans' place in the Greenhouse.

  • Anaïs Augé‎
  • Public understanding of science (Bristol, England)‎
  • 2022‎

This article investigates the different roles attributed to humanity in the climate change debate, through the depiction of the greenhouse effect. Our hypothesis is that the stance associated with different genres will not only demonstrate different conceptualisations of the greenhouse effect but also convey different views on humans' capacity (or lack of capacity) to mitigate climate change. The corpus under study is composed of texts pertaining to three genres which display particular viewpoints: scientific papers present a documented view on the phenomenon, online forum discussions present exchanges between users who endorse or question particular characteristics of the Greenhouse, and sceptical newspaper articles explicitly deny the existence of an anthropogenic phenomenon. Through a corpus-based, cognitive and pragmatic analysis of the metaphorical expression greenhouse effect, the research shows that humans' place(s) in the Greenhouse is a significant part of environmental argumentative strategies.


China's process-related greenhouse gas emission dataset 1990-2020.

  • Xiang Yu‎ et al.
  • Scientific data‎
  • 2023‎

China's industrial process-related Greenhouse Gas (GHG) emissions are growing rapidly and are already equivalent to 13-19% of energy-related emissions in the past three decades. Previous studies mainly focused on emissions from fossil fuel combustion, however, there are a broad range of misconceptions regarding the trend and source of process-related emissions. To effectively implement emission reduction policies, it is necessary to compile an accurate accounting of process-related GHG emissions. However, the incompleteness in scope, unsuitable emission factor, and delay in updates in the current emission inventory have led to inaccurate emission estimates and inefficient mitigation actions. Following the methodology provided by Intergovernmental Panel on Climate Change (IPCC), we constructed a time series inventory of process-related GHG emissions for 15 industrial products from 1990-2020 in China. This emission inventory covers more than 90% of China's process-related GHG emissions. In our study, emission factors were adjusted to refer to the industrial production process, technology, and raw material structure in China, which has led to increased accuracy of emission accounting. The dataset can help identify the sources of process-related GHG emissions in China and provide a data base for further policy implications.


Optimal fertigation for high yield and fruit quality of greenhouse strawberry.

  • Yong Wu‎ et al.
  • PloS one‎
  • 2020‎

Nitrogen (N), phosphorus (P), potassium (K), and water are four crucial factors that have significant effects on strawberry yield and fruit quality. We used a 11 that involved 36 treatments with five levels of each of the four variables (N, P, and K fertilizers and water) to optimize fertilization and water combination for high yield and quality. Moreover, we used the SSC/TA ratio (the ratio of soluble solid content to titratable acid) as index of quality. Results showed that N fertilizer was the most important factor, followed by water and P fertilizer, and the N fertilizer had significant effect on yield and SSC/TA ratio. By contrast, the K fertilizer had significant effect only on yield. N×K fertilizer interacted significantly on yield, whereas the other interactions among the four factors had no significant effects on yield or SSC/TA ratio. The effects of the four factors on yield and SSC/TA ratio were ranked as N fertilizer > water > K fertilizer > P fertilizer and N fertilizer > P fertilizer > water > K fertilizer, respectively. The yield and SSC/TA ratio increased when NPK fertilizer and water increased, but then decreased when excessive NPK fertilizer and water were applied. The optimal fertilizer and water combination were 22.28-24.61 g plant-1 Ca (NO3)2·4H2O, 1.75-2.03 g plant-1 NaH2PO4, 12.41-13.91 g plant-1 K2SO4, and 12.00-13.05 L water plant-1 for yields of more than 110 g plant-1 and optimal SSC/TA ratio of 8.5-14.


Invasive floating macrophytes reduce greenhouse gas emissions from a small tropical lake.

  • K Attermeyer‎ et al.
  • Scientific reports‎
  • 2016‎

Floating macrophytes, including water hyacinth (Eichhornia crassipes), are dominant invasive organisms in tropical aquatic systems, and they may play an important role in modifying the gas exchange between water and the atmosphere. However, these systems are underrepresented in global datasets of greenhouse gas (GHG) emissions. This study investigated the carbon (C) turnover and GHG emissions from a small (0.6 km(2)) water-harvesting lake in South India and analysed the effect of floating macrophytes on these emissions. We measured carbon dioxide (CO2) and methane (CH4) emissions with gas chambers in the field as well as water C mineralization rates and physicochemical variables in both the open water and in water within stands of water hyacinths. The CO2 and CH4 emissions from areas covered by water hyacinths were reduced by 57% compared with that of open water. However, the C mineralization rates were not significantly different in the water between the two areas. We conclude that the increased invasion of water hyacinths and other floating macrophytes has the potential to change GHG emissions, a process that might be relevant in regional C budgets.


Effect of the application of cattle urine with or without the nitrification inhibitor DCD, and dung on greenhouse gas emissions from a UK grassland soil.

  • L M Cardenas‎ et al.
  • Agriculture, ecosystems & environment‎
  • 2016‎

Emissions of nitrous oxide (N2O) from soils from grazed grasslands have large uncertainty due to the great spatial variability of excreta deposition, resulting in heterogeneous distribution of nutrients. The contribution of urine to the labile N pool, much larger than that from dung, is likely to be a major source of emissions so efforts to determine N2O emission factors (EFs) from urine and dung deposition are required to improve the inventory of greenhouse gases from agriculture. We investigated the effect of the application of cattle urine and dung at different times of the grazing season on N2O emissions from a grassland clay loam soil. Methane emissions were also quantified. We assessed the effect of a nitrification inhibitor, dicyandiamide (DCD), on N2O emissions from urine application and also included an artificial urine treatment. There were significant differences in N2O EFs between treatments in the spring (largest from urine and lowest from dung) but not in the summer and autumn applications. We also found that there was a significant effect of season (largest in spring) but not of treatment on the N2O EFs. The resulting EF values were 2.96, 0.56 and 0.11% of applied N for urine for spring, summer and autumn applications, respectively. The N2O EF values for dung were 0.14, 0.39 and 0.10% for spring, summer and autumn applications, respectively. The inhibitor was effective in reducing N2O emissions for the spring application only. Methane emissions were larger from the dung application but there were no significant differences between treatments across season of application.


Organic Residue Amendments to Modulate Greenhouse Gas Emissions From Agricultural Soils.

  • Kristof Brenzinger‎ et al.
  • Frontiers in microbiology‎
  • 2018‎

Organic fertilizers have been shown to stimulate CH4 uptake from agricultural soils. Managing fertilizer application to maximize this effect and to minimize emission of other greenhouse gasses offers possibilities to increase sustainability of agriculture. To tackle this challenge, we incubated an agricultural soil with different organic amendments (compost, sewage sludge, digestate, cover crop residues mixture), either as single application or in a mixture and subjected it to different soil moisture concentrations using different amounts of organic amendments. GHG fluxes and in vitro CH4 oxidation rates were measured repeatedly, while changes in organic matter and abundance of GHG relevant microbial groups (nitrifiers, denitrifiers, methanotrophs, methanogens) were measured at the end of the incubation. Overall the dynamics of the analyzed GHGs differed significantly. While CO2 and N2O differed considerably between the treatments, CH4 fluxes remained stable. In contrast, in vitro CH4 oxidation showed a clear increase for all amendments over time. CO2 fluxes were mostly dependent on the amount of organic residue that was used, while N2O fluxes were affected more by soil moisture. Several combinations of amendments led to reductions of CO2, CH4, and/or N2O emissions compared to un-amended soil. Most optimal GHG balance was obtained by compost amendments, which resulted in a similar overall GHG balance as compared to the un-amended soil. However, compost is not very nutrient rich potentially leading to lower crop yield when applied as single fertilizer. Hence, the combination of compost with one of the more nutrient rich organic amendments (sewage sludge, digestate) provides a trade-off between maintaining crop yield and minimizing GHG emissions. Additionally, we could observe a strong increase in microbial communities involved in GHG consumption in all amendments, with the strongest increase associated with cover crop residue mixtures. Future research should focus on the interrelation of plants, soil, and microbes and their impact on the global warming potential in relation to applied organic amendments.


Effect of a formulation of Bacillus firmus on root-knot nematode Meloidogyne incognita infestation and the growth of tomato plants in the greenhouse and nursery.

  • Metasebia Terefe‎ et al.
  • Journal of invertebrate pathology‎
  • 2009‎

Bacillus firmus, commercial WP formulation (BioNem) was evaluated against the root-knot nematode Meloidogyne incognita in a laboratory, greenhouse and under field conditions on tomato plants. In the laboratory tests, an aqueous suspension of BioNem at 0.5%, 1%, 1.5% and 2% concentration reduced egg hatching from 98% to 100%, 24-days after treatment. Treatment of second-stage juveniles with 2.5% and 3% concentration of BioNem, caused 100% inhibition of mobility, 24 h after treatment. In the green house trials, BioNem applied at 8 g/pot (1200 cc soil) planted with a tomato seedlings reduced gall formation by 91%, final nematode populations by 76% and the number of eggs by 45%. Consequently, plant height and biomass was increased by 71% and 50%, respectively, compared to the untreated control, 50-days after treatment application. Application of BioNem at 16 g/pot was phytotoxic to plants. In the field trails, BioNem applied at 200 and 400 kg ha(-1) was effective in reducing the number of galls (75-84%), and increased shoot height (29-31%) and weight (20-24%) over the untreated control, 45-days after treatment. Our results indicate that B. firmus is a promising microorganism for the biological control of M. incognita in tomato pots.


Field to Greenhouse: How Stable Is the Soil Microbiome after Removal from the Field?

  • Priyanka Kushwaha‎ et al.
  • Microorganisms‎
  • 2024‎

Plant-soil feedback (PSF) processes impact plant productivity and ecosystem function, but they are poorly understood because PSFs vary significantly with plant and soil type, plant growth stage, and environmental conditions. Controlled greenhouse studies are essential to unravel the mechanisms associating PSFs with plant productivity; however, successful implementation of these controlled experiments is constrained by our understanding of the persistence of the soil microbiome during the transition from field to greenhouse. This study evaluates the preservation potential of a field soil microbiome when stored in the laboratory under field temperature and moisture levels. Soil microbial diversity, taxonomic composition, and functional potential were evaluated via amplicon sequencing at the start of storage (W0), week 3 (W3), week 6 (W6), and week 9 (W9) to determine the effect of storage time on soil microbiome integrity. Though microbial richness remained stable, Shannon diversity indices decreased significantly at W6 for bacteria/archaea and W3 for fungi. Bacterial/archaeal community composition also remained stable, whereas the fungal community changed significantly during the first 3 weeks. Functional predictions revealed increased capacity for chemoheterotrophy for bacteria/archaea and decreased relative proportions of arbuscular mycorrhizal and ectomycorrhizal fungi. We show that preservation of the field soil microbiome must be a fundamental component of experimental design. Either greenhouse experiments should be initiated within 3 weeks of field soil collection, or a preliminary incubation study should be conducted to determine the time and storage conditions required to sustain the integrity of the specific field soil microbiome being studied.


Optimizing illumination in the greenhouse using a 3D model of tomato and a ray tracer.

  • Pieter H B de Visser‎ et al.
  • Frontiers in plant science‎
  • 2014‎

Reduction of energy use for assimilation lighting is one of the most urgent goals of current greenhouse horticulture in the Netherlands. In recent years numerous lighting systems have been tested in greenhouses, yet their efficiency has been very difficult to measure in practice. This simulation study evaluated a number of lighting strategies using a 3D light model for natural and artificial light in combination with a 3D model of tomato. The modeling platform GroIMP was used for the simulation study. The crop was represented by 3D virtual plants of tomato with fixed architecture. Detailed data on greenhouse architecture and lamp emission patterns of different light sources were incorporated in the model. A number of illumination strategies were modeled with the calibrated model. Results were compared to the standard configuration. Moreover, adaptation of leaf angles was incorporated for testing their effect on light use efficiency (LUE). A Farquhar photosynthesis model was used to translate the absorbed light for each leaf into a produced amount of carbohydrates. The carbohydrates produced by the crop per unit emitted light from sun or high pressure sodium lamps was the highest for horizontal leaf angles or slightly downward pointing leaves, and was less for more upward leaf orientations. The simulated leaf angles did not affect light absorption from inter-lighting LED modules, but the scenario with LEDs shining slightly upward (20(°)) increased light absorption and LUE relative to default horizontal beaming LEDs. Furthermore, the model showed that leaf orientation more perpendicular to the string of LEDs increased LED light interception. The combination of a ray tracer and a 3D crop model could compute optimal lighting of leaves by quantification of light fluxes and illustration by rendered lighting patterns. Results indicate that illumination efficiency increases when the lamp light is directed at most to leaves that have a high photosynthetic potential.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: