Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,820 papers

Functional Oocytes Derived from Granulosa Cells.

  • Chenglei Tian‎ et al.
  • Cell reports‎
  • 2019‎

The generation of genomically stable and functional oocytes has great potential for preserving fertility and restoring ovarian function. It remains elusive whether functional oocytes can be generated from adult female somatic cells through reprogramming to germline-competent pluripotent stem cells (gPSCs) by chemical treatment alone. Here, we show that somatic granulosa cells isolated from adult mouse ovaries can be robustly induced to generate gPSCs by a purely chemical approach, with additional Rock inhibition and critical reprogramming facilitated by crotonic sodium or acid. These gPSCs acquired high germline competency and could consistently be directed to differentiate into primordial-germ-cell-like cells and form functional oocytes that produce fertile mice. Moreover, gPSCs promoted by crotonylation and the derived germ cells exhibited longer telomeres and high genomic stability like PGCs in vivo, providing additional evidence supporting the safety and effectiveness of chemical induction, which is particularly important for germ cells in genetic inheritance.


Dopamine receptor repertoire of human granulosa cells.

  • Veronica Rey-Ares‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2007‎

High levels of dopamine (DA) were described in human ovary and recently evidence for DA receptors in granulosa and luteal cells has been provided, as well. However, neither the full repertoire of ovarian receptors for DA, nor their specific role, is established. Human granulosa cells (GCs) derived from women undergoing in vitro fertilization (IVF) are an adequate model for endocrine cells of the follicle and the corpus luteum and were therefore employed in an attempt to decipher their DA receptor repertoire and functionality.


FMRpolyG accumulates in FMR1 premutation granulosa cells.

  • M Friedman-Gohas‎ et al.
  • Journal of ovarian research‎
  • 2020‎

Fragile X premutation (Amplification of CGG number 55-200) is associated with increased risk for fragile X-Associated Premature Ovarian Insufficiency (FXPOI) in females and fragile X-associated tremor/ataxia syndrome (FXTAS) predominantly in males. Recently, it has been shown that CGG repeats trigger repeat associated non-AUG initiated translation (RAN) of a cryptic polyglycine-containing protein, FMRpolyG. This protein accumulates in ubiquitin-positive inclusions in neuronal brain cells of FXTAS patients and may lead to protein-mediated neurodegeneration. FMRpolyG inclusions were also found in ovary stromal cells of a FXPOI patient. The role of FMRpolyG expression has not been thoroughly examined in folliculogenesis related cells. The main goal of this study is to evaluate whether FMRpolyG accumulates in mural granulosa cells of FMR1 premutation carriers. Following FMRpolyG detection, we aim to examine premutation transfected COV434 as a suitable model used to identify RAN translation functions in FXPOI pathogenesis.


Lineage tracing of mutant granulosa cells reveals in vivo protective mechanisms that prevent granulosa cell tumorigenesis.

  • Shudong Niu‎ et al.
  • Cell death and differentiation‎
  • 2023‎

Ovarian granulosa cell tumors (GCTs) originate from granulosa cells (GCs) and represent the most common sex cord-stromal tumor in humans. However, the developmental regulations and molecular mechanisms underlying their etiology are largely unknown. In the current study, we combined a multi-fluorescent reporter mouse model with a conditional knockout mouse model, in which the tumor suppressor genes Pten and p27 were deleted in GCs, to perform cell lineage tracing of mutant GCs. We found that only 30% of ovaries with substantial mutant GCs developed into GCTs that derived from a single mutant GC. In-depth molecular analysis of the process of tumorigenesis demonstrated that up-regulation of immune evasion genes Cd24a and Cd47 led, in part, to the transition of mutant GCs to GCTs. Therefore, treatment with the Cd47 inhibitor RRX-001 was tested and found to efficiently suppress the growth of GCTs in vivo. Together, our study has revealed an immune evasion mechanism via CD24/CD47 upregulation to GCT formation, shedding light on the future potential clinical therapies for GCTs.


Paxillin knockout in mouse granulosa cells increases fecundity†.

  • Kenji Vann‎ et al.
  • Biology of reproduction‎
  • 2023‎

Paxillin is an intracellular adaptor protein involved in focal adhesions, cell response to stress, steroid signaling, and apoptosis in reproductive tissues. To investigate the role of paxillin in granulosa cells, we created a granulosa-specific paxillin knockout mouse model using Cre recombinase driven by the Anti-Müllerian hormone receptor 2 gene promoter. Female granulosa-specific paxillin knockout mice demonstrated increased fertility in later reproductive age, resulting in higher number of offspring when bred continuously up to 26 weeks of age. This was not due to increased numbers of estrous cycles, ovulated oocytes per cycle, or pups per litter, but this was due to shorter time to pregnancy and increased number of litters in the granulosa-specific paxillin knockout mice. The number of ovarian follicles was not significantly affected by the knockout at 30 weeks of age. Granulosa-specific paxillin knockout mice had slightly altered estrous cycles but no difference in circulating reproductive hormone levels. Knockout of paxillin using clustered regularly interspaced short palindromic repeat-associated protein 9 (CRISPR-Cas9) in human granulosa-derived immortalized KGN cells did not affect cell proliferation or migration. However, in cultured primary mouse granulosa cells, paxillin knockout reduced cell death under basal culture conditions. We conclude that paxillin knockout in granulosa cells increases female fecundity in older reproductive age mice, possibly by reducing granulosa cell death. This study implicates paxillin and its signaling network as potential granulosa cell targets in the management of age-related subfertility.


FSH regulates acetycholine production by ovarian granulosa cells.

  • Artur Mayerhofer‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2006‎

It has been previously shown that cultured granulosa cells (GCs) derived from human ovarian preovulatory follicles contain choline acetyltransferase (ChAT), the enzyme responsible for acetylcholine (ACh) synthesis. They also produce ACh and express functional muscarinic ACh receptors. ACh can act on GCs to increase proliferation, disrupt gap junctional communication, alter intracellular calcium levels, as well as expression of transcription factors, suggesting an unrecognized role of ACh in GC function. To gain further insights into the possible role of ACh in the ovary, we examined ChAT expression in the gland before and after birth, as well as in adults, and studied the regulation of ACh production by FSH.


Granulosa cells and follicular development: a brief review.

  • Giovanna Santos Cavalcanti‎ et al.
  • Revista da Associacao Medica Brasileira (1992)‎
  • 2023‎

No abstract available


Study of differential proteomics in granulosa cells of premature ovarian insufficiency (POI) and the roles and mechanism of RAC1 in granulosa cells.

  • Qing-Yan Zhang‎ et al.
  • Molecular and cellular endocrinology‎
  • 2022‎

In the present study, we focused on characterizing the proteome in granulosa cells in patients with biochemical premature ovarian insufficiency (bPOI) in order to identify differential proteins and investigate the fundamental mechanisms of POI. A total of 2688 proteins were identified based on the data-independent acquisition method, and 70 differentially expressed proteins were significant. Bioinformatic analyses, including gene expression pattern analysis, gene ontology enrichment analysis, Kyoto Encyclopedia of Genes and Genomes pathway analysis, and Search Tool for the Retrieval of Interacting Genes/Proteins analysis, revealed discrete modules and the underlying molecular mechanisms in bPOI. Importantly, we observed that Ras-related C3 botulinum toxin substrate 1 (RAC1) was downregulated in the granulosa cells of bPOI. Low expression of RAC1 may affect the development process of POI by affecting the proliferation, apoptosis, and hormone synthesis of granulosa cells. Downregulation of RAC1 expression in the KGN and COV434 cells inhibited cell proliferation, blocked cells in the G1/G0 phase, and promoted apoptosis. Western blot results showed that β-catenin and cyclin D1 in the KGN and COV434 cells transfected with RAC1-siRNA were downregulated, while P21 and Bax were upregulated. Knocking down RAC1 in the KGN cells or adding the RAC1 enzyme inhibitor to the human luteinized granulosa cells (hLGC) inhibited the synthesis of E2, and the expression of aromatase and follicle-stimulating hormone receptor (FSHR) was reduced.


Analysis of cell-cell interaction between mural granulosa cells and cumulus granulosa cells during ovulation using single-cell RNA sequencing data of mouse ovary.

  • Yuichiro Shirafuta‎ et al.
  • Reproductive medicine and biology‎
  • 2024‎

We investigated the interactions between mural granulosa cells (MGCs) and cumulus granulosa cells (CGCs) during ovulation after the LH surge.


Genotoxicity of Superparamagnetic Iron Oxide Nanoparticles in Granulosa Cells.

  • Marina Pöttler‎ et al.
  • International journal of molecular sciences‎
  • 2015‎

Nanoparticles that are aimed at targeting cancer cells, but sparing healthy tissue provide an attractive platform of implementation for hyperthermia or as carriers of chemotherapeutics. According to the literature, diverse effects of nanoparticles relating to mammalian reproductive tissue are described. To address the impact of nanoparticles on cyto- and genotoxicity concerning the reproductive system, we examined the effect of superparamagnetic iron oxide nanoparticles (SPIONs) on granulosa cells, which are very important for ovarian function and female fertility. Human granulosa cells (HLG-5) were treated with SPIONs, either coated with lauric acid (SEONLA) only, or additionally with a protein corona of bovine serum albumin (BSA; SEON(LA-BSA)), or with dextran (SEON(DEX)). Both micronuclei testing and the detection of γH2A.X revealed no genotoxic effects of SEON(LA-BSA), SEON(DEX) or SEON(LA). Thus, it was demonstrated that different coatings of SPIONs improve biocompatibility, especially in terms of genotoxicity towards cells of the reproductive system.


FTO protects human granulosa cells from chemotherapy-induced cytotoxicity.

  • Rongli Wang‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2022‎

Premature ovarian failure (POF) is a serious problem for young women who receive chemotherapy, and its pathophysiological basis is the dysfunction of granulosa cells. According to previous reports, menstrual-derived stem cells (MenSCs) can restore ovarian function and folliculogenesis in mice with chemotherapy-induced POF. Fat mass- and obesity-associated (FTO) was reported to be associated with oocyte development and maturation. FTO was decreased in POF and may be a biomarker for the occurrence of POF. Knockdown of FTO in granulosa cells promoted cell apoptosis and inhibited proliferation. But the relationship between FTO and ovarian repair was still unclear. This study was aimed at investigating the FTO expression level and the role of FTO in the MenSCs recovering the function of injured granulosa cells.


Smad4 Feedback Enhances BMPR1B Transcription in Ovine Granulosa Cells.

  • Anwar Abdurahman‎ et al.
  • International journal of molecular sciences‎
  • 2019‎

BMPR1B is a type 1B receptor of the canonical bone morphogenetic protein (BMP)/Sma- and mad-related protein (Smad) signaling pathway and is well known as the first major gene associated with sheep prolificacy. However, little is known about the transcriptional regulation of the ovine BMPR1B gene. In this study, we identified the ovine BMPR1B gene promoter and demonstrated that its transcription was regulated by Smad4. In sheep ovarian follicles, three transcriptional variants of BMPR1B gene with distinct transcription start sites were identified using 5' RACE assay while variants II and III were more strongly expressed. Luciferase assay showed that the region -405 to -200 nt is the PII promoter region of variant II. Interestingly, two putative Smad4-binding elements (SBEs) were detected in this region. Luciferase and ChIP assay revealed that Smad4 enhances PII promoter activity of the ovine BMPR1B gene by directly interacting with SBE1 motif. Furthermore, in the ovine granulosa cells, Smad4 regulated BMPRIB expression, and BMPRIB-mediated granulosa cells apoptosis. Overall, our findings not only characterized the 5' regulatory region of the ovine BMPR1B gene, but also uncovered a feedback regulatory mechanism of the canonical BMP/Smad signaling pathway and provided an insight into the transcriptional regulation of BMPR1B gene and sheep prolificacy.


Differentially regulated genes in Esr2-mutant rat granulosa cells.

  • Vincentaben Khristi‎ et al.
  • Data in brief‎
  • 2018‎

RNA seq analyses were performed in granulosa cells (GCs) collected from gonadotropin treated ESR2 mutant rats. Data obtained from a null mutant with Esr2 exon 3 deletion (∆3) and another DNA binding domain (DBD) mutant with exon 4 deletion (∆4) were compared to that of wildtype (WT) rats. The raw data were analyzed using CLC genomics workbench. High quality RNA-sequencing reads were aligned to the Rattus norvegicus genome. Differentially expressed genes in ∆3 or ∆4 Esr2-mutant GCs were identified based on the following criteria: FDR p-Value ≤0.05 and an absolute fold change of 2. Fewer differentially expressed genes were identified in ∆3 compared to the ∆4 mutant group. As both mutant groups demonstrated a common phenotype of ovulation failure, differentially expressed genes common to both in ∆3 and ∆4 mutant rats were emphasized and further analyzed in the companion article "ESR2 regulates granulosa cell genes essential for follicle maturation and ovulation" [1].


4-aminopyridine decreases progesterone production by porcine granulosa cells.

  • Yan Li‎ et al.
  • Reproductive biology and endocrinology : RB&E‎
  • 2003‎

Ion channels occur as large families of related genes with cell-specific expression patterns. Granulosa cells have been shown to express voltage-gated potassium channels from more than one family. The purpose of this study was to determine the effects of 4-aminopyridine (4-AP), an antagonist of KCNA but not KCNQ channels.


The NADPH oxidase 4 is a major source of hydrogen peroxide in human granulosa-lutein and granulosa tumor cells.

  • Theresa Buck‎ et al.
  • Scientific reports‎
  • 2019‎

H2O2 is a reactive oxygen species (ROS), which can diffuse away from its site of generation and may act as a cell-to-cell signaling factor. The mechanisms responsible for the generation of H2O2 in human ovarian follicles and possible signaling role(s) of H2O2 are not well known. We identified a source of H2O2, the enzyme NADPH oxidase (NOX) 4, in isolated differentiated, in-vitro fertilisation-derived human granulosa-lutein cells (GCs), in proliferating human granulosa tumour cells (KGN), as well as in situ in cells of growing ovarian follicles. H2O2 was readily detected in the supernatant of cultured GCs and KGN cells. H2O2 levels were significantly lowered by the NOX4 blocker GKT137831, indicating a pronounced contribution of NOX4 to overall H2O2 generation by these cells. We provide evidence that extracellular H2O2 is taken up by GCs, which is facilitated by aquaporins (peroxiporins). We thus conclude that GC-derived H2O2 might act as autocrine/paracrine factor. Addition of H2O2 increased MAPK-phosphorylation in GCs. Moreover, reducing H2O2 production with GKT137831 slowed proliferation of KGN cells. Our results pinpoint NOX4 and H2O2 as physiological players in the regulation of GC functions.


Brain-derived neurotrophic factor expression in granulosa lutein cells.

  • Miguel A Dominguez‎ et al.
  • Reproductive biomedicine online‎
  • 2011‎

Brain-derived neurotrophic factor (BDNF) is thought to play a role in follicle activation and oocyte maturation. It is postulated that BDNF and its receptor, tyrosine kinase receptor B (TrkB), may also play a role in maintaining the corpus luteum. Therefore,human granulosa lutein cells (GLC) were obtained from women undergoing ovulation induction and treated with increasing concentrations of cAMP (0, 125, 500 and 1000 μmol/l). BDNF and progesterone concentrations were quantified by enzyme-linked immunosorbent assay. cAMP treatment significantly increased progesterone output but had no effect on BDNF concentration in the spent media. However, the BDNF concentration was significantly increased in GLC lysates. To assess the expression of BDNF and TrkB in active versus regressing corpora lutea, ovaries from adult female BALBc mice (n = 4) from each day of the oestrous cycle were processed for immunohistochemistry. Two markers of luteal activity were used (3b-hydroxysteroid dehydrogenase and tenascin-X). There was a trend towards higher BDNF and TrkB H-scores in active versus regressing corpus lutea. In conclusion, intracellular BNDF concentrations were dose-dependently increased by cAMP but treatments had no effect on BDNF output. It is speculated that BDNF contributes in an autocrine manner to GLC survival in the active corpus luteum.


Transcriptional regulation of human ferredoxin 1 in ovarian granulosa cells.

  • Yoshitaka Imamichi‎ et al.
  • Molecular and cellular endocrinology‎
  • 2013‎

Ferredoxin 1 (FDX1; adrenodoxin) is an iron-sulfur protein that is involved in various metabolic processes, including steroid hormone synthesis in mammalian tissues. We investigated the transcriptional regulation of FDX1 in ovarian granulosa cells. Previously, we reported that the NR5A family, including steroidogenic factor-1 (SF-1) and liver receptor homolog-1 could induce differentiation of human mesenchymal stem cells (hMSCs) into steroidogenic cells. A ChIP assay showed that SF-1 could bind to the FDX1 promoter in differentiated hMSCs. Luciferase reporter assays showed that transcription of FDX1 was synergistically activated by the NR5A family and 8Br-cAMP treatment through two SF-1 binding sites and a CRE-like sequence in a human ovarian granulosa cell line, KGN. Knockdown of FDX1 attenuated progesterone production in KGN cells. These results indicate transcription of FDX1 is regulated by the NR5A family and cAMP signaling, and participates in steroid hormone production in ovarian granulosa cells.


Anti-Müllerian hormone recruits BMPR-IA in immature granulosa cells.

  • Lauriane Sèdes‎ et al.
  • PloS one‎
  • 2013‎

Anti-Müllerian hormone (AMH) is a member of the TGF-β superfamily secreted by the gonads of both sexes. This hormone is primarily known for its role in the regression of the Müllerian ducts in male fetuses. In females, AMH is expressed in granulosa cells of developing follicles. Like other members of the TGF-β superfamily, AMH transduces its signal through two transmembrane serine/threonine kinase receptors including a well characterized type II receptor, AMHR-II. The complete signalling pathway of AMH involving Smads proteins and the type I receptor is well known in the Müllerian duct and in Sertoli and Leydig cells but not in granulosa cells. In addition, few AMH target genes have been identified in these cells. Finally, while several co-receptors have been reported for members of the TGF-β superfamily, none have been described for AMH. Here, we have shown that none of the Bone Morphogenetic Proteins (BMPs) co-receptors, Repulsive guidance molecules (RGMs), were essential for AMH signalling. We also demonstrated that the main Smad proteins used by AMH in granulosa cells were Smad 1 and Smad 5. Like for the other AMH target cells, the most important type I receptor for AMH in these cells was BMPR-IA. Finally, we have identified a new AMH target gene, Id3, which could be involved in the effects of AMH on the differentiation of granulosa cells and its other target cells.


Doxorubicin induces cytotoxicity and miR-132 expression in granulosa cells.

  • Boodor Al-Kawlani‎ et al.
  • Reproductive toxicology (Elmsford, N.Y.)‎
  • 2020‎

Doxorubicin (DOX) is one of the most commonly used drugs for the treatment of childhood cancers, including leukemia and lymphomas. Despite the high survival rate, female leukemia survivors are at higher risk of ovarian failure and infertility later in life. Treatment with chemotherapeutic drugs like DOX is associated with damage in ovarian follicles, but the affectation grade of granulosa cells remains unclear. To assess and avoid the possible side-effects of DOX, early biomarkers of ovarian injury and chemotherapy-induced ovarian toxicity should be identified. MicroRNAs (miRNAs) have emerged in recent years as a promising new class of biomarkers for drug-induced tissue toxicity. In this study, the effects of DOX on cell viability, steroidogenesis, and miRNA expression were studied in primary granulosa cells (GCs) and in two cellular models (COV434 and KGN cells). We report that compared to other chemotherapeutic drugs, DOX treatment is more detrimental to granulosa cells as observed by decrease of cell viability. Treatment with DOX changes the expression of the aromatase gene (CYP19A1) and the secretion of 17β-estradiol (E2) in a cell-specific manner. miR-132-3p is dose-dependently increased by DOX in all cellular models. In absence of DOX, miR-132-3p overexpression in COV434 cells has no effect on E2 secretion or CYP19A1 expression. Altogether, these findings contribute to understanding the hormonal disbalance caused by DOX in human ovarian cells and suggest miR-132 as a putative sensor to predict DOX-induced ovarian toxicity.


Proteomic analysis of healthy and atretic porcine follicular granulosa cells.

  • Xin Shan‎ et al.
  • Journal of proteomics‎
  • 2021‎

Follicular atresia is initiated with the apoptosis of granulosa cells (GCs) after birth in mammals. The molecular mechanisms underlying GC apoptosis during follicular selection are unclear at present. The objective of this study is to identify the proteins and pathways that may be involved in porcine follicular atresia. Proteins isolated from GCs collected from healthy and atretic follicles were detected by tandem mass tag (TMT) protein labeling and LC-MS/MS. A total of 4591 proteins in the healthy follicle granulosa cell (HFGC) and atretic follicle granulosa cell (AFGC) groups were identified, and 399 differentially abundant proteins were found between the HFGC and AFGC groups; of which 262 proteins were significantly up-regulated and 137 proteins were significantly down-regulated. Differential protein enrichment analysis showed that proteins involved in proteolysis, protein destabilization, phagocytosis, and engulfment were more abundant in the AFGC group. Also, these proteins were mainly involved in the lysosome, phagosome, autophagy, and apoptosis pathways. Specially, PTGFRN is potential important regulated protein in the development of the antral follicle, and down-regulation of PTGFRN in GCs may lead to follicular atresia. Our study shows that the identified proteins and their related signaling pathways may play crucial roles during health follicle develop to atretic follicle. SIGNIFICANCE: Follicular atresia during 'selection' reduces the reproductive potential of sows. In this study, we found 399 proteins differentially abundant. between the HFGC and AFGC groups. These results establish a foundation for elucidating the mechanism of follicular atresia in swine.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: