Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,518 papers

Therapeutic Bacteriophages for Gram-Negative Bacterial Infections in Animals and Humans.

  • Panagiotis Zagaliotis‎ et al.
  • Pathogens & immunity‎
  • 2022‎

Drug-resistant Gram-negative bacterial pathogens are an increasingly serious health threat causing worldwide nosocomial infections with high morbidity and mortality. Of these, the most prevalent and severe are Pseudomonas aeruginosa, Klebsiella pneumoniae, Escherichia coli, Acinetobacter baumannii, and Salmonella typhimurium. The extended use of antibiotics has led to the emergence of multidrug resistance in these bacteria. Drug-inactivating enzymes produced by these bacteria, as well as other resistance mechanisms, render drugs ineffective and make treatment of such infections more difficult and complicated. This makes the development of novel antimicrobial agents an urgent necessity. Bacteriophages, which are bacteria-killing viruses first discovered in 1915, have been used as therapeutic antimicrobials in the past, but their use was abandoned due to the widespread availability of antibiotics in the 20th century. The emergence, however, of drug-resistant pathogens has re-affirmed the need for bacteriophages as therapeutic strategies. This review describes the use of bacteriophages as novel agents to combat this rapidly emerging public health crisis by comprehensively enumerating and discussing the innovative use of bacteriophages in both animal models and in patients infected by Gram-negative bacteria.


Colistimethate sodium-chitosan hydrogel for treating Gram-negative bacterial wound infections.

  • Aathira Pradeep‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

The drug resistance is higher among Gram-negative bacteria and demands the usage of strong antibiotics which can in turn result in systemic toxicity. In the treatment of the chronic wounds harboring pathogenic Gram-negative bacteria, the demand for an antimicrobial product that can be topically administered has been on the rise. In an effort to address the above issue, we have developed Colistimethate sodium (a high-end antibiotic) loaded chitosan hydrogel and characterized. The prepared hydrogel is very stable and observed to be bio- and hemo-compatible in nature. The antibacterial activity of the prepared hydrogel was studied against both ATCC (American Type Culture Collection) strains and clinical isolates of Escherichia coli, Pseudomonas aeruginosa and Klebsiella pneumoniae. The CMS incorporated hydrogel is also capable of inhibiting the biofilm formation. The developed hydrogel can be potentially being used for the treatment of Gram-negative bacterial infected wounds.


Advances in novel antibiotics to treat multidrug-resistant gram-negative bacterial infections.

  • Aaron Matlock‎ et al.
  • Internal and emergency medicine‎
  • 2021‎

Antimicrobial resistance is a growing threat to public health and an increasingly common problem for acute care physicians to confront. Several novel antibiotics have been approved in the past decade to combat these infections; however, physicians may be unfamiliar with how to appropriately utilize them. The purpose of this review is to evaluate novel antibiotics active against resistant gram-negative bacteria and highlight clinical information regarding their use in the acute care setting. This review focuses on novel antibiotics useful in the treatment of infections caused by resistant gram-negative organisms that may be seen in the acute care setting. These novel antibiotics include ceftolozane/tazobactam, ceftazidime/avibactam, meropenem/vaborbactam, imipenem/cilistatin/relebactam, cefiderocol, plazomicin, eravacycline, and omadacycline. Acute care physicians should be familiar with these novel antibiotics so they can utilize them appropriately.


Gram-negative and Gram-positive bacterial infections give rise to a different metabolic response in a mouse model.

  • Verena Hoerr‎ et al.
  • Journal of proteome research‎
  • 2012‎

Metabolomics has become an important tool to study host-pathogen interactions and to discover potential novel therapeutic targets. In an attempt to develop a better understanding of the process of pathogenesis and the associated host response we have used a quantitative (1)H NMR approach to study the metabolic response to different bacterial infections. Here we describe that metabolic changes found in serum of mice that were infected with Staphylococcus aureus, Streptococcus pneumoniae, Escherichia coli and Pseudomonas aeruginosa can distinguish between infections caused by Gram-positive and Gram-negative bacterial strains. By combining the results of the mouse study with those of bacterial footprinting culture experiments, bacterially secreted metabolites could be identified as potential bacterium-specific biomarkers for P. aeruginosa infections but not for the other strains. Multivariate statistical analysis revealed correlations between metabolic, cytokine and physiological responses. In TLR4 and TLR2 knockout mice, host-response pathway correlated metabolites could be identified and allowed us for the first time to distinguish between bacterial- and host-induced metabolic changes. Since Gram-positive and Gram-negative bacteria activate different receptor pathways in the host, our results suggest that it may become possible in the future to use a metabolomics approach to improve on current clinical microbiology diagnostic methods.


Synergistic antibacterial effect of silver and ebselen against multidrug-resistant Gram-negative bacterial infections.

  • Lili Zou‎ et al.
  • EMBO molecular medicine‎
  • 2017‎

Multidrug-resistant (MDR) Gram-negative bacteria account for a majority of fatal infections, and development of new antibiotic principles and drugs is therefore of outstanding importance. Here, we report that five most clinically difficult-to-treat MDR Gram-negative bacteria are highly sensitive to a synergistic combination of silver and ebselen. In contrast, silver has no synergistic toxicity with ebselen on mammalian cells. The silver and ebselen combination causes a rapid depletion of glutathione and inhibition of the thioredoxin system in bacteria. Silver ions were identified as strong inhibitors of Escherichia coli thioredoxin and thioredoxin reductase, which are required for ribonucleotide reductase and DNA synthesis and defense against oxidative stress. The bactericidal efficacy of silver and ebselen was further verified in the treatment of mild and acute MDR E. coli peritonitis in mice. These results demonstrate that thiol-dependent redox systems in bacteria can be targeted in the design of new antibacterial drugs. The silver and ebselen combination offers a proof of concept in targeting essential bacterial systems and might be developed for novel efficient treatments against MDR Gram-negative bacterial infections.


Synergistic Activity and Mechanism of Sanguinarine with Polymyxin B against Gram-Negative Bacterial Infections.

  • Luyao Qiao‎ et al.
  • Pharmaceutics‎
  • 2024‎

Compounds that potentiate the activity of clinically available antibiotics provide a complementary solution, except for developing novel antibiotics for the rapid emergence of multidrug-resistant Gram-negative bacteria (GNB). We sought to identify compounds potentiating polymyxin B (PMB), a traditional drug that has been revived as the last line for treating life-threatening GNB infections, thus reducing its nephrotoxicity and heterogeneous resistance in clinical use. In this study, we found a natural product, sanguinarine (SA), which potentiated the efficacy of PMB against GNB infections. The synergistic effect of SA with PMB was evaluated using a checkerboard assay and time-kill curves in vivo and the murine peritonitis model induced by Escherichia coli in female CD-1 mice in vivo. SA assisted PMB in accelerating the reduction in bacterial loads both in vitro and in vivo, improving the inflammatory responses and survival rate of infected animals. The subsequent detection of the intracellular ATP levels, membrane potential, and membrane integrity indicated that SA enhanced the bacterial-membrane-breaking capacity of PMB. A metabolomic analysis showed that the inhibition of energy metabolism, interference with nucleic acid biosynthesis, and the blocking of L-Ara4N-related PMB resistance may also contribute to the synergistic effect. This study is the first to reveal the synergistic activity and mechanism of SA with PMB, which highlights further insights into anti-GNB drug development.


Removal of natural anti-αGal antibodies elicits protective immunity against Gram-negative bacterial infections.

  • Sara Olivera-Ardid‎ et al.
  • Frontiers in immunology‎
  • 2023‎

Antibody-dependent enhancement (ADE) of bacterial infections occurs when blocking or inhibitory antibodies facilitate the infectivity of pathogens. In humans, antibodies involved in ADE of bacterial infections may include those naturally produced against Galα1-3Galβ1-4GlcNAcβ (αGal). Here, we investigate whether eliminating circulating anti-αGal antibodies using a soluble αGal glycopolymer confers protection against Gram-negative bacterial infections. We demonstrated that the in vivo intra-corporeal removal of anti-αGal antibodies in α1,3-galactosyltransferase knockout (GalT-KO) mice was associated with protection against mortality from Gram-negative sepsis after cecal ligation and puncture (CLP). The improved survival of GalT-KO mice was associated with an increased killing capacity of serum against Escherichia coli isolated after CLP and reduced binding of IgG1 and IgG3 to the bacteria. Additionally, inhibition of anti-αGal antibodies from human serum in vitro increases the bactericidal killing of E. coli O86:B7 and multidrug-resistant Klebsiella pneumoniae and Pseudomonas aeruginosa. In the case of E. coli O86:B7, there was also an improvement in bacteria opsonophagocytosis by macrophages. Both lytic mechanisms were related to a decreased binding of IgG2 to the bacteria. Our results show that protective immunity against Gram-negative bacterial pathogens can be elicited, and infectious diseases caused by these bacteria can be prevented by removing natural anti-αGal antibodies.


A New Water-Soluble Bactericidal Agent for the Treatment of Infections Caused by Gram-Positive and Gram-Negative Bacterial Strains.

  • Alessandro Presentato‎ et al.
  • Antibiotics (Basel, Switzerland)‎
  • 2020‎

Grapefruit and lemon pectin obtained from the respective waste citrus peels via hydrodynamic cavitation in water only are powerful, broad-scope antimicrobials against Gram-negative and -positive bacteria. Dubbed IntegroPectin, these pectic polymers functionalized with citrus flavonoids and terpenes show superior antimicrobial activity when compared to commercial citrus pectin. Similar to commercial pectin, lemon IntegroPectin determined ca. 3-log reduction in Staphylococcus aureus cells, while an enhanced activity of commercial citrus pectin was detected in the case of Pseudomonas aeruginosa cells with a minimal bactericidal concentration (MBC) of 15 mg mL-1. Although grapefruit and lemon IntegroPectin share equal MBC in the case of P. aeruginosa cells, grapefruit IntegroPectin shows boosted activity upon exposure of S. aureus cells with a 40 mg mL-1 biopolymer concentration affording complete killing of the bacterial cells. Insights into the mechanism of action of these biocompatible antimicrobials and their effect on bacterial cells, at the morphological level, were obtained indirectly through Fourier Transform Infrared spectroscopy and directly through scanning electron microscopy. In the era of antimicrobial resistance, these results are of great societal and sanitary relevance since citrus IntegroPectin biomaterials are also devoid of cytotoxic activity, as already shown for lemon IntegroPectin, opening the route to the development of new medical treatments of polymicrobial infections unlikely to develop drug resistance.


Pleural effusion adenosine deaminase: a candidate biomarker to discriminate between Gram-negative and Gram-positive bacterial infections of the pleural space.

  • Ruolin Li‎ et al.
  • Clinics (Sao Paulo, Brazil)‎
  • 2016‎

Delay in the treatment of pleural infection may contribute to its high mortality. In this retrospective study, we aimed to evaluate the diagnostic accuracy of pleural adenosine deaminase in discrimination between Gram-negative and Gram-positive bacterial infections of the pleural space prior to selecting antibiotics.


Curative Treatment of Severe Gram-Negative Bacterial Infections by a New Class of Antibiotics Targeting LpxC.

  • Nadine Lemaître‎ et al.
  • mBio‎
  • 2017‎

The infectious diseases caused by multidrug-resistant bacteria pose serious threats to humankind. It has been suggested that an antibiotic targeting LpxC of the lipid A biosynthetic pathway in Gram-negative bacteria is a promising strategy for curing Gram-negative bacterial infections. However, experimental proof of this concept is lacking. Here, we describe our discovery and characterization of a biphenylacetylene-based inhibitor of LpxC, an essential enzyme in the biosynthesis of the lipid A component of the outer membrane of Gram-negative bacteria. The compound LPC-069 has no known adverse effects in mice and is effective in vitro against a broad panel of Gram-negative clinical isolates, including several multiresistant and extremely drug-resistant strains involved in nosocomial infections. Furthermore, LPC-069 is curative in a murine model of one of the most severe human diseases, bubonic plague, which is caused by the Gram-negative bacterium Yersinia pestis Our results demonstrate the safety and efficacy of LpxC inhibitors as a new class of antibiotic against fatal infections caused by extremely virulent pathogens. The present findings also highlight the potential of LpxC inhibitors for clinical development as therapeutics for infections caused by multidrug-resistant bacteria.IMPORTANCE The rapid spread of antimicrobial resistance among Gram-negative bacilli highlights the urgent need for new antibiotics. Here, we describe a new class of antibiotics lacking cross-resistance with conventional antibiotics. The compounds inhibit LpxC, a key enzyme in the lipid A biosynthetic pathway in Gram-negative bacteria, and are active in vitro against a broad panel of clinical isolates of Gram-negative bacilli involved in nosocomial and community infections. The present study also constitutes the first demonstration of the curative treatment of bubonic plague by a novel, broad-spectrum antibiotic targeting LpxC. Hence, the data highlight the therapeutic potential of LpxC inhibitors against a wide variety of Gram-negative bacterial infections, including the most severe ones caused by Y. pestis and by multidrug-resistant and extensively drug-resistant carbapenemase-producing strains.


Bi-Functional Alginate Oligosaccharide-Polymyxin Conjugates for Improved Treatment of Multidrug-Resistant Gram-Negative Bacterial Infections.

  • Joana Stokniene‎ et al.
  • Pharmaceutics‎
  • 2020‎

The recent emergence of resistance to colistin, an antibiotic of last resort with dose-limiting toxicity, has highlighted the need for alternative approaches to combat infection. This study aimed to generate and characterise alginate oligosaccharide ("OligoG")-polymyxin (polymyxin B and E (colistin)) conjugates to improve the effectiveness of these antibiotics. OligoG-polymyxin conjugates (amide- or ester-linked), with molecular weights of 5200-12,800 g/mol and antibiotic loading of 6.1-12.9% w/w, were reproducibly synthesised. In vitro inflammatory cytokine production (tumour necrosis factor alpha (TNFα) ELISA) and cytotoxicity (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) of colistin (2.2-9.3-fold) and polymyxin B (2.9-27.2-fold) were significantly decreased by OligoG conjugation. Antimicrobial susceptibility tests (minimum inhibitory concentration (MIC), growth curves) demonstrated similar antimicrobial efficacy of ester- and amide-linked conjugates to that of the parent antibiotic but with more sustained inhibition of bacterial growth. OligoG-polymyxin conjugates exhibited improved selectivity for Gram-negative bacteria in comparison to mammalian cells (approximately 2-4-fold). Both OligoG-colistin conjugates caused significant disruption of Pseudomonas aeruginosa biofilm formation and induced bacterial death (confocal laser scanning microscopy). When conjugates were tested in an in vitro "time-to-kill" (TTK) model using Acinetobacter baumannii, only ester-linked conjugates reduced viable bacterial counts (~2-fold) after 4 h. Bi-functional OligoG-polymyxin conjugates have potential therapeutic benefits in the treatment of multidrug-resistant (MDR) Gram-negative bacterial infections, directly reducing toxicity whilst retaining antimicrobial and antibiofilm activities.


Clinical Characteristics and Causative Pathogens of Infective Arthritis and Risk Factors for Gram-Negative Bacterial Infections.

  • Yongseop Lee‎ et al.
  • Infection & chemotherapy‎
  • 2020‎

The aim of this study was to describe the clinical and microbiological characteristics of infective arthritis and to analyze risk factors for Gram-negative bacterial infections that cause infective arthritis.


CSF inflammatory markers differ in gram-positive versus gram-negative shunt infections.

  • Gwenn L Skar‎ et al.
  • Journal of neuroinflammation‎
  • 2019‎

Cerebrospinal fluid (CSF) shunt placement is frequently complicated by bacterial infection. Shunt infection diagnosis relies on bacterial culture of CSF which can often produce false-negative results. Negative cultures present a conundrum for physicians as they are left to rely on other CSF indices, which can be unremarkable. New methods are needed to swiftly and accurately diagnose shunt infections. CSF chemokines and cytokines may prove useful as diagnostic biomarkers. The objective of this study was to evaluate the potential of systemic and CSF biomarkers for identification of CSF shunt infection.


The place of new antibiotics for Gram-negative bacterial infections in intensive care: report of a consensus conference.

  • Pierre-François Dequin‎ et al.
  • Annals of intensive care‎
  • 2023‎

New beta-lactams, associated or not with beta-lactamase inhibitors (NBs/BIs), can respond to the spread of carbapenemase-producing enterobacteriales and nonfermenting carbapenem-resistant bacteria. The risk of emergence of resistance to these NBs/BIs makes guidelines necessary. The SRLF organized a consensus conference in December 2022.


Carbapenem-resistant Enterobacteriaceae (CRE) and gram-negative bacterial infections in south-west Nigeria: a retrospective epidemiological surveillance study.

  • Oluwafolajimi Adetoye Adesanya‎ et al.
  • AIMS public health‎
  • 2020‎

Carbapenem-resistant Enterobacteriaceae (CRE) are often responsible for severe, life-threatening infections and they represent a critical threat to the available antibiotic agents and to global health. An understanding of the epidemiology of these infections will be indispensable to the development of appropriate case management as well as infection prevention and control (IPC) measures in any healthcare setting.


Double-carbapenem therapy in the treatment of multidrug resistant Gram-negative bacterial infections: a systematic review and meta-analysis.

  • Yuan-Yuan Li‎ et al.
  • BMC infectious diseases‎
  • 2020‎

To compare the efficacy and safety of double-carbapenem therapy (DCT) with other antibiotics for the treatment of multidrug resistant (MDR) Gram-negative bacterial infections.


Network meta-analysis of antibiotic resistance patterns in gram-negative bacterial infections: a comparative study of carbapenems, fluoroquinolones, and aminoglycosides.

  • Ghazala Muteeb‎
  • Frontiers in microbiology‎
  • 2023‎

Antimicrobial resistance poses a grave global threat, particularly with the emergence of multidrug-resistant gram-negative bacterial infections, which severely limit treatment options. The increasing global threat of antimicrobial resistance demands rigorous investigation, particularly concerning multidrug-resistant gram-negative bacterial infections that present limited therapeutic options. This study employed a network meta-analysis, a powerful tool for comparative effectiveness assessment of diverse antibiotics. The primary aim of this study was to comprehensively evaluate and compare resistance patterns among widely used antibiotic classes, namely carbapenems, fluoroquinolones, and aminoglycosides, for combating gram-negative pathogens.


Ceftazidime-avibactam: an evidence-based review of its pharmacology and potential use in the treatment of Gram-negative bacterial infections.

  • Philippe Lagacé-Wiens‎ et al.
  • Core evidence‎
  • 2014‎

Avibactam (NXL104, AVE1330A) is a semi-synthetic, non-β-lactam, β-lactamase inhibitor that is active against Ambler class A, class C, and some class D serine β-lactamases. In this review, we summarize the in vitro data, pharmacology, mechanisms of action and resistance, and clinical trial data relating to the use of this agent combined with ceftazidime for the treatment of Gram-negative bacterial infections. The addition of avibactam to ceftazidime improves its in vitro activity against Enterobacteriaceae and Pseudomonas aeruginosa. Avibactam does not improve the activity of ceftazidime against Acinetobacter spp., Burkholderia spp., or most anaerobic Gram-negative rods. Pharmacodynamic data indicate that ceftazidime-avibactam is bactericidal at concentrations achievable in human serum. Animal studies demonstrate that ceftazidime-avibactam is effective in ceftazidime-resistant Gram-negative septicemia, meningitis, pyelonephritis, and pneumonia. Limited clinical trials published to date have reported that ceftazidime-avibactam is as effective as therapy with a carbapenem in complicated urinary tract infection and complicated intra-abdominal infection (combined with metronidazole) including infection caused by cephalosporin-resistant Gram-negative isolates. Safety and tolerability of ceftazidime-avibactam in clinical trials has been excellent, with few serious drug-related adverse events reported. Given the abundant clinical experience with ceftazidime and the significant improvement that avibactam provides in its activity against contemporary β-lactamase-producing Gram-negative pathogens, it is likely this new combination agent will play a role in the empiric treatment of complicated urinary tract infections (monotherapy) and complicated intra-abdominal infections (in combination with metronidazole) caused or suspected to be caused by antimicrobial-resistant pathogens (eg, extended spectrum beta-lactamase-, AmpC-, or Klebsiella pneumoniae carbapenemase-producing Enterobacteriaceae and multidrug-resistant P. aeruginosa). Potential future uses also include hospital-acquired pneumonia (in combination with antistaphylococcal and antipneumococcal agents) or treatment of skin and soft tissue infections caused by antimicrobial-resistant Gram-negative pathogens (eg, diabetic foot infections), but further clinical trials are required.


Discovering the Potentials of Four Phage Endolysins to Combat Gram-Negative Infections.

  • Daria V Vasina‎ et al.
  • Frontiers in microbiology‎
  • 2021‎

Endolysin-based therapeutics are promising antibacterial agents and can successfully supplement the existing antibacterial drugs array. It is specifically important in the case of Gram-negative pathogens, e.g., ESKAPE group bacteria, which includes Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter species, and are highly inclined to gain multiple antibiotic resistance. Despite numerous works devoted to the screening of new lytic enzymes and investigations of their biochemical properties, there are significant breaches in some aspects of their operating characteristics, including safety issues of endolysin use. Here, we provide a comprehensive study of the antimicrobial efficacy aspects of four Gram-negative bacteria-targeting endolysins LysAm24, LysAp22, LysECD7, and LysSi3, their in vitro and in vivo activity, and their biological safety. These endolysins possess a wide spectrum of action, are active against planktonic bacteria and bacterial biofilms, and are effective in wound and burn skin infection animal models. In terms of safety, these enzymes do not contribute to the development of short-term resistance, are not cytotoxic, and do not significantly affect the normal intestinal microflora in vivo. Our results provide a confident base for the development of effective and safe candidate dosage forms for the treatment of local and systemic infections caused by Gram-negative bacterial species.


Replication Dynamics for Six Gram-Negative Bacterial Species during Bloodstream Infection.

  • Mark T Anderson‎ et al.
  • mBio‎
  • 2021‎

Bloodstream infections (BSI) are a major public health burden due to high mortality rates and the cost of treatment. The impact of BSI is further compounded by a rise in antibiotic resistance among Gram-negative species associated with these infections. Escherichia coli, Serratia marcescens, Klebsiella pneumoniae, Enterobacter hormaechei, Citrobacter freundii, and Acinetobacter baumannii are all common causes of BSI, which can be recapitulated in a murine model. The objective of this study was to characterize infection kinetics and bacterial replication rates during bacteremia for these six pathogens to gain a better understanding of bacterial physiology during infection. Temporal observations of bacterial burdens of the tested species demonstrated varied abilities to establish colonization in the spleen, liver, or kidney. K. pneumoniae and S. marcescens expanded rapidly in the liver and kidney, respectively. Other organisms, such as C. freundii and E. hormaechei, were steadily cleared from all three target organs throughout the infection. In situ replication rates measured by whole-genome sequencing of bacterial DNA recovered from murine spleens demonstrated that each species was capable of sustained replication at 24 h postinfection, and several species demonstrated <60-min generation times. The relatively short generation times observed in the spleen were in contrast to an overall decrease in bacterial burden for some species, suggesting that the rate of immune-mediated clearance exceeded replication. Furthermore, bacterial generation times measured in the murine spleen approximated those measured during growth in human serum cultures. Together, these findings provide insight into the infection kinetics of six medically important species during bacteremia. IMPORTANCE Bloodstream infections are a global public health problem. The goal of this work was to determine the replication characteristics of Gram-negative bacterial species in the host following bloodstream infection. The number of bacteria in major organs is likely determined by a balance between replication rates and the ability of the host to clear bacteria. We selected a cohort of six species from three families that represent common causative agents of bloodstream infections in humans and determined their replication rates in a murine bacteremia model. We found that the bacteria grow rapidly in the spleen, demonstrating that they can obtain the necessary nutrients for growth in this environment. However, the overall number of bacteria decreased in most cases, suggesting that killing of bacteria outpaces their growth. Through a better understanding of how bacteria replicate during bloodstream infections, we aim to gain insight into future means of combating these infections.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: