Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 59 papers

Mechanism of agonist-induced [Ca2+]i oscillations in pituitary gonadotrophs.

  • S S Stojilković‎ et al.
  • The Journal of biological chemistry‎
  • 1993‎

Gonadotropin-releasing hormone (GnRH) activates oscillatory Ca2+ signaling in pituitary gonadotrophs at a frequency (up to 25 min-1) that is dose-dependent and is determined by the degree of receptor-mediated inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) formation. Similar dose-dependent and frequency-modulated Ca2+ oscillations were elicited by intracellular administration of Ins(1,4,5)P3 and its nonhydrolyzable analogs, consistent with models in which Ins(1,4,5)P3 levels determine the frequency of Ca2+ oscillations but do not fluctuate in synchrony with [Ca2+]i. At constant agonist concentrations, Ca2+ spiking varied in amplitude, with a number of progressively larger transients before the onset of maximal oscillations, followed by a gradual decrease in spike amplitude that was accompanied by an increase in spiking frequency. The decline in the amplitude and increase in frequency of Ca2+ transients during stimulation by GnRH were not related to a decrease in the propagation of the Ca2+ signal within the cell but were associated with gradual depletion of the agonist-sensitive Ca2+ pool. Once initiated, the pattern of Ca2+ spiking was not altered by blockade of receptor occupancy, by inhibition of phospholipase C, or by reduction of extracellular [Ca2+]. Also, the endoplasmic reticulum (Ca2+)-ATPase blocker, thapsigargin, could substitute for Ins(1,4,5)P3 in initiating the oscillatory Ca2+ response. These findings indicate that although the Ins(1,4,5)P3 concentration determines the pattern of transients at the initiation of the oscillatory Ca2+ signal, maintenance of the signal does not require a sustained rise in Ins(1,4,5)P3. Since the frequency of Ca2+ oscillations is also influenced by depletion of luminal [Ca2+], it is possible that the Ins(1,4,5)P3-sensitive channels in the endoplasmic reticulum are tonically inhibited by high intraluminal Ca2+ levels and that Ins(1,4,5)P3 surmounts such inhibition by promoting Ca2+ discharge. When a critical level of Ca2+ discharge is attained, repetitive Ca2+ transients are generated by an autocatalytic mechanism in which a sustained rise in Ins(1,4,5)P3 is not an essential requirement.


The localization of gonadotrophs in normal adult male and female rats.

  • M O Dada‎ et al.
  • Endocrinology‎
  • 1984‎

We investigated the localization of LH and FSH cells within the pituitary glands of normal adult rats. Groups of four female rats were decapitated at one of five different times during the estrous cycle. Four male rats were also decapitated. Paired horizontal flip-flopped serial paraplast sections from the dorsal, middle, and ventral portions of each pituitary gland were stained. For each pair, one section was stained with antirat LH-S4 and the other section with antirat FSH-S7, by the unlabeled antibody peroxidase-antiperoxidase method. All immunoreactive cells were counted, and the area of pars distalis in each section was determined. We studied the spatial distribution of gonadotrophs within the sections and determined if a polarization along the antero-posterior axis existed. In the "sex zone" of the pars distalis, the cross-sectional area of LH cells and the percentages of LH cells that also contained FSH and vice versa were determined and compared with those obtained from the entire pars distalis. Additional sections were stained for TSH, ACTH, GH, or PRL, and the distribution of stained cells was compared with that of those that stained for LH or LH/FSH, particularly in the sex zone and in the pars intermedia. The results indicate that 1) gonadotrophs are more evenly distributed dorsoventrally within the pars distalis of male rats than in that of female rats; 2) an antero-posterior polarity in gonadotropic distribution is more pronounced in male rats than in female rats; 3) gonadotrophs containing only LH are less numerous in male than female rats, and in the female tend to be centrally located within the pars distalis; 4) the sex zone contains PRL cells and gonadotrophs, and the percentages of gonadotrophs that contain LH or LH and FSH are not different from those of the entire pars distalis; 5) LH, and occasionally LH/FSH cells, are present between lobules of immunoreactive ACTH cells in the pars intermedia; and 6) LH cells in the pars intermedia are smaller than those in the sex zone or entire pars distalis.


Distinct Expression Patterns of Osteopontin and Dentin Matrix Protein 1 Genes in Pituitary Gonadotrophs.

  • Ivana Bjelobaba‎ et al.
  • Frontiers in endocrinology‎
  • 2019‎

Cell-matrix interactions play important roles in pituitary development, physiology, and pathogenesis. In other tissues, a family of non-collagenous proteins, termed SIBLINGs, are known to contribute to cell-matrix interactions. Anterior pituitary gland expresses two SIBLING genes, Dmp1 (dentin matrix protein-1) and Spp1 (secreted phosphoprotein-1) encoding DMP1 and osteopontin proteins, respectively, but their expression pattern and roles in pituitary functions have not been clarified. Here we provide novel evidence supporting the conclusion that Spp1/osteopontin, like Dmp1/DMP1, are expressed in gonadotrophs in a sex- and age-specific manner. Other anterior pituitary cell types do not express these genes. In contrast to Dmp1, Spp1 expression is higher in males; in females, the expression reaches the peak during the diestrus phase of estrous cycle. In further contrast to Dmp1 and marker genes for gonadotrophs, the expression of Spp1 is not regulated by gonadotropin-releasing hormone in vivo and in vitro. However, Spp1 expression increases progressively after pituitary cell dispersion in both female and male cultures. We may speculate that gonadotrophs signal to other pituitary cell types about changes in the structure of pituitary cell-matrix network by osteopontin, a function consistent with the role of this secretory protein in postnatal tissue remodeling, extracellular matrix reorganization after injury, and tumorigenesis.


Heifers express G-protein coupled receptor 61 in anterior pituitary gonadotrophs in stage-dependent manner.

  • Kiran Pandey‎ et al.
  • Animal reproduction science‎
  • 2017‎

Gonadotropin-releasing hormone receptors (GnRHRs) colocalize with insulin and glucocorticoid receptors in lipid rafts of the gonadotroph plasma membrane, where they facilitate downstream signaling. We recently found that orphan G-protein-coupled receptor (GPR)61 is expressed in the anterior pituitary (AP) of heifers, leading us to speculate that GPR61 colocalizes with GnRHR in the plasma membrane of gonadotroph and is expressed at specific times of the reproductive cycle. To test this hypothesis, we examined the coexpression of GnRHR, GPR61, and either luteinizing hormone (LH) β subunit or follicle-stimulating hormone (FSH) β subunit in AP tissue and cultured AP cells by immunofluorescence microscopy. GPR61 was detected in gonadotrophs, with a majority of them being colocalized with GnRHR and the remainder present at other parts of the cell surface or in the cytoplasm. We obtained a strong positive overlap coefficient (0.71±0.01) between GPR61 and GnRHR on the cell-surface of cultured GnRHR-positive AP cells. Real-time PCR and western blot analyses found that expression was lower (P<0.05) in AP tissues during early luteal phase as compared to pre-ovulation or mid- or late luteal phases. Additionally, the 5ꞌ-flanking region of the GPR61 gene contained several sites with response elements similar to those of estrogen or progesterone. These data suggested that GPR61 colocalizes with GnRHR in the plasma membrane of gonadotrophs, and its expression changes stage-dependently in the bovine anterior pituitary gland.


Gonadotropin releasing hormone (GnRH) and estradiol (E(2)) regulation of cell cycle in gonadotrophs.

  • Hadas Lewy‎ et al.
  • Molecular and cellular endocrinology‎
  • 2003‎

The number of pituitary cells, their size, hormonal content and release and response to external cues varies between day and night and during the estrus cycle. Previous studies have demonstrated that pituitary cells proliferate rhythmically and that estradiol (E(2)) is a mitogen of alpha T3 cells. We, therefore, studied the effect of gonadotropin releasing hormone (GnRH) and E(2), on the cell cycle in primary cultures of mouse pituitary cells and in the gonadotroph cell line L beta T2. We found that GnRH and E(2) modulate the cell cycle in a time dependent manner and induce proliferation in cultures of mouse pituitary and L beta T2 cells. GnRH induces proliferation in cells isolated in the morning of the estrus day and increases the number of cells in G2 stage when isolated in noon and evening. However, the transition into the G1 stage is enabled only by co-addition of E(2) and GnRH. GnRH stimulates LH release from L beta T2 cells after 2 days via exocytosis while after 4 days in culture, the increase in LH release may be accounted for by the increase in cell number. E(2) enhanced the GnRH response after 2 days, and abolished it after 4 days in culture. Furthermore, E(2) has no effect on LH release and cell number after 2 days in culture, however, after 4 days in culture, E(2) had no effect on the total amount of LH released but inhibited LH release per cell due to increase in cell number. Our results show that GnRH and E(2) function to shorten the cell cycle and regulate the cell number of each stage of the cell cycle. The effect of GnRH and E(2) on the cell cycle is dependent on the circadian time. This mechanism may serve to modulate the size and function of the pituitary cell population and consequently the function of pituitary gonadotrophs regulating the surge of LH release before ovulation.


Stimulation of Ca(2+)-independent exocytosis in rat pituitary gonadotrophs by G-protein.

  • F W Tse‎ et al.
  • The Journal of physiology‎
  • 2000‎

We employed the whole-cell recording technique in conjunction with fluorometry to measure cytosolic Ca(2+) concentration ([Ca(2+)](i)) and exocytosis (capacitance measurement) in single, identified rat gonadotrophs. Direct activation of G-protein (via intracellular dialysis of non-hydrolysable analogues of GTP, but not of GDP) triggered a slow rise in capacitance even in the presence of a fast intracellular Ca(2+) chelator. The broad-spectrum kinase inhibitors H7 and staurosporine did not prevent this Ca(2+)-independent exocytosis, ruling out the involvement of the cAMP and PKC pathways. AlF(4)(-), a potent stimulator of heterotrimeric G-proteins, failed to stimulate any exocytosis when the intracellular Ca(2+) store was depleted, implicating the involvement of AlF(4)(-)-insensitive G-protein(s). Maximal stimulation of Ca(2+)-independent exocytosis by GTP analogues did not reduce the number of readily releasable granules that were available subsequently for Ca(2+)-dependent release. The last finding raises the possibility that the G-protein-stimulated Ca(2+)-independent exocytosis may regulate a pool of granules that is distinct from the Ca(2+)-dependent pool.


Folliculostellate cells are required for laminin release from gonadotrophs in rat anterior pituitary.

  • Takehiro Tsukada‎ et al.
  • Acta histochemica et cytochemica‎
  • 2014‎

The anterior pituitary gland is organized tissue comprising hormone-producing cells and folliculostellate (FS) cells. FS cells interconnect to form a meshwork, and their cytoplasmic processes are anchored by a basement membrane containing laminin. Recently, we developed a three-dimensional (3D) cell culture that reproduces this FS cell architecture. In this study of the novel function of FS cells, we used transgenic rats that express green fluorescent protein in FS cells for the 3D culture. Anterior pituitary cells were cultured with different proportions of FS cells (0%, 5%, 10%, and 20%). Anterior pituitary cells containing 5-20% FS cells formed round/oval cell aggregates, whereas amorphous cell aggregates were formed in the absence of FS cells. Interestingly, immunohistochemistry showed laminin-immunopositive cells instead of extracellular laminin deposition in FS cell-deficient cell aggregates. Double-immunostaining revealed that these laminin-immunopositive cells were gonadotrophs. Laminin mRNA expression did not differ in relation to the presence or absence of FS cells. When anterior pituitary cells with no FS cells were cultured with FS cell-conditioned medium, the proportion of laminin-immunopositive cells was lower than in control. These results suggest that a humoral factor from FS cells is required for laminin release from gonadotrophs.


Bone morphogenetic protein-4 interacts with activin and GnRH to modulate gonadotrophin secretion in LbetaT2 gonadotrophs.

  • L Nicol‎ et al.
  • The Journal of endocrinology‎
  • 2008‎

We have shown previously that, in sheep primary pituitary cells, bone morphogenetic proteins (BMP)-4 inhibits FSHbeta mRNA expression and FSH release. In contrast, in mouse LbetaT2 gonadotrophs, others have shown a stimulatory effect of BMPs on basal or activin-stimulated FSHbeta promoter-driven transcription. As a species comparison with our previous results, we used LbetaT2 cells to investigate the effects of BMP-4 on gonadotrophin mRNA and secretion modulated by activin and GnRH. BMP-4 alone had no effect on FSH production, but enhanced the activin+GnRH-induced stimulation of FSHbeta mRNA and FSH secretion, without any effect on follistatin mRNA. BMP-4 reduced LHbeta mRNA up-regulation in response to GnRH (+/-activin) and decreased GnRH receptor expression, which would favour FSH, rather than LH, synthesis and secretion. In contrast to sheep pituitary gonadotrophs, which express only BMP receptor types IA (BMPRIA) and II (BMPRII), LbetaT2 cells also express BMPRIB. Smad1/5 phosphorylation induced by BMP-4, indicating activation of BMP signalling, was the same whether BMP-4 was used alone or combined with activin+/-GnRH. We hypothesized that activin and/or GnRH pathways may be modulated by BMP-4, but neither the activin-stimulated phosphorylation of Smad2/3 nor the GnRH-induced ERK1/2 or cAMP response element-binding phosphorylation were modified. However, the GnRH-induced activation of p38 MAPK was decreased by BMP-4. This was associated with increased FSHbeta mRNA levels and FSH secretion, but decreased LHbeta mRNA levels. These results confirm 1. BMPs as important modulators of activin and/or GnRH-stimulated gonadotrophin synthesis and release and 2. important species differences in these effects, which could relate to differences in BMP receptor expression in gonadotrophs.


Postnatal Development and Maintenance of Functional Pituitary Gonadotrophs Is Dependent on PI4-Kinase A.

  • Stephanie Constantin‎ et al.
  • Endocrinology‎
  • 2023‎

Postnatal development of functional pituitary gonadotrophs is necessary for maturation of the hypothalamic-pituitary-gonadal axis, puberty, and reproduction. Here we examined the role of PI4-kinase A, which catalyzes the biosynthesis of PI4P in mouse reproduction by knocking out this enzyme in cells expressing the gonadotropin-releasing hormone (GnRH) receptor. Knockout (KO) mice were infertile, reflecting underdeveloped gonads and reproductive tracts and lack of puberty. The number and distribution of hypothalamic GnRH neurons and Gnrh1 expression in postnatal KOs were not affected, whereas Kiss1/kisspeptin expression was increased. KO of PI4-kinase A also did not alter embryonic establishment and neonatal development and function of the gonadotroph population. However, during the postnatal period, there was a progressive loss of expression of gonadotroph-specific genes, including Fshb, Lhb, and Gnrhr, accompanied by low gonadotropin synthesis. The postnatal gonadotroph population also progressively declined, reaching approximately one-third of that observed in controls at 3 months of age. In these residual gonadotrophs, GnRH-dependent calcium signaling and calcium-dependent membrane potential changes were lost, but intracellular administration of inositol-14,5-trisphosphate rescued this signaling. These results indicate a key role for PI4-kinase A in the postnatal development and maintenance of a functional gonadotroph population.


Immunohistochemical localization of chromogranin A in gonadotrophs and somatotrophs of the turkey and chicken pituitary.

  • J A Proudman‎ et al.
  • General and comparative endocrinology‎
  • 2003‎

In the course of producing monoclonal antibodies to turkey prolactin, three monoclonal antibodies to turkey chromogranin A (CgA) were also produced, apparently arising from minor contamination of the turkey prolactin immunogen with peptide fragments of CgA. The identity of the antigen recognized by these antibodies was established by tandem mass spectrometry de novo sequencing of seven tryptic peptides from a turkey pituitary protein purified by immunoaffinity chromatography. These peptides showed high homology with distinctly separate regions of mammalian and ostrich CgA, and in silico cloned chicken CgA sequences. Chromogranin A immunostaining patterns on Western blots and pituitary tissue sections differed from those of prolactin, growth hormone, or luteinizing hormone (LH). Dual-label fluorescent immunohistochemistry revealed that CgA was co-localized with LH in most avian gonadotrophs in young chickens and turkeys, but not in adult, laying birds. Conversely, CgA was found in a majority of somatotrophs in laying birds but was absent from somatotrophs in young, growing chickens and turkeys. Lactotrophs contained no detectable CgA immunoreactivity in the tissues studied. These results suggest that CgA may modulate hormone secretion by gonadotrophs and somatotrophs in a manner that differs between cell type with age or reproductive state.


Signaling pathways and promoter regions that mediate pituitary adenylate cyclase activating polypeptide (PACAP) self-regulation in gonadotrophs.

  • Rongquiang Yang‎ et al.
  • Molecular and cellular endocrinology‎
  • 2020‎

Pituitary adenylate cyclase-activating polypeptide (PACAP) is thought to play a role in the development and regulation of gonadotrophs. PACAP levels are very high in the rodent fetal pituitary, and decline substantially and rapidly at birth, followed by a significant rise in FSHβ and GnRH-R expression. Because there is evidence that PACAP stimulates its own transcription, we propose that this self-regulation is interrupted around the time of birth. To begin to examine the mechanisms for PACAP self-regulation, we used two well-established gonadotroph cell lines, αT3-1 cells and the more mature LβT2 cells which were transfected with a PACAP promoter-reporter construct As in vivo, the basal PACAP transcription level is significantly lower in the more mature LβT2 cells in which basal cAMP signaling is also much reduced. The PACAP promoter was stimulated by PACAP in both cell lines. Treatment with inhibitors of second messenger pathways implicated PKA, PKC and MAPK in PACAP transcription. Three regions of the PACAP promoter were found to confer inhibition or stimulation of PACAP transcription. By inhibiting cAMP response element binding (CREB) activity and mutating a proximal CREB binding site, we found that CREB is essential for promoter activation. Finally, overexpression of PACAP receptor HOP1 isoform, to increase the level in LβT2 cells to that of αT3-1 cells and simulate the E19 pituitary, increased PACAP- stimulated sensitivity and significantly altered downstream gene transcription. These results provide novel insight into the feed-forward regulation of PACAP expression that may help initiate gonadotroph function at birth.


β-Arrestin-dependent signaling in GnRH control of hormone secretion from goldfish gonadotrophs and somatotrophs.

  • Enezi Khalid‎ et al.
  • General and comparative endocrinology‎
  • 2020‎

In goldfish, two native isoforms of gonadotropin-releasing hormone (GnRH2 and GnRH3) stimulate luteinizing hormone (LH) and growth hormone (GH) release from pituitary cells through activation of cell-surface GnRH-receptors (GnRHRs) on gonadotrophs and somatotrophs. Interestingly, GnRH2 and GnRH3 induce LH and GH release via non-identical post-receptor signal transduction pathways in a ligand- and cell-type-selective manner. In this study, we examined the involvement of β-arrestins in the control of GnRH-induced LH and GH secretion from dispersed goldfish pituitary cells. Treatment with Barbadin, which interferes with β-arrestin and β2-adaptin subunit interaction, reduced LH responses to GnRH2 and GnRH3, as well as GH responses to GnRH2; but enhanced GnRH3-induced GH secretion. Barbadin also had positive influences on basal hormone release, and basal GH release in particular, as well as basal activity of extracellular signal-regulated kinase (ERK) and GnRH-induced ERK activation. These findings indicate that β-arrestins play permissive roles in the control of GnRH-stimulated LH release. However, in somatotrophs, β-arrestins, perhaps by mediating agonist-selective endosomal trafficking of engaged GnRHRs, participate in GnRH-isoform-specific GH release responses (stimulatory and inhibitory for GnRH2-GnRHR and GnRH3-GnRHR activation, respectively). The correlative stimulatory influences of Barbadin on basal hormone release and ERK activation suggest that β-arrestins may negatively regulate basal secretion through modulation of basal ERK activity. These results provide the first direct evidence of a role for β-arrestins in hormone secretion from an untransformed primary pituitary cell model, and establish these proteins as important receptor-proximal players in mediating functional selectivity downstream of goldfish GnRHRs.


Co-localisation of gonadotrophins and granins in gonadotrophs at different stages of the oestrous cycle in sheep.

  • J L Crawford‎ et al.
  • The Journal of endocrinology‎
  • 2002‎

Associations between granins (secretogranin II (SgII) and chromogranin A and B (CgA and CgB)) and gonadotrophins (LH and FSH) have been reported in rodents and they may interact to facilitate differential storage and secretion of LH and FSH. This study investigated the relationship between granins and gonadotrophins in sheep at different stages of the oestrous cycle. Thirty-four cycling ewes had their oestrous cycles synchronised, and were divided into late luteal (LL; n=5) and early (EF; n=4), mid (n=3) and late (LF; n=11) follicular stages, and 24-53 h (n=5), 80-100 h (n=3) and 120-144 h (n=3) after the preovulatory LH surge (PS). LHbeta mRNA levels were low in LF ewes (when plasma levels and pulse frequency of LH were high) but had increased by 80-100 h PS. In contrast, FSHbeta mRNA levels decreased during the follicular phase and plasma FSH concentrations followed a similar pattern, to peak at 24-53 h PS due to low plasma oestradiol levels. While alpha-gonadotrophin subunit (alpha-GSU), SgII and CgA mRNA levels did not change, CgB mRNA levels were elevated in EF ewes and had declined in ewes around the surge. Four distinctly sized mRNA transcripts ( approximately 1.3, 2.0, 2.8 and 3.2 kb) were observed for CgA mRNA, while a double band was observed for LHbeta mRNA that was subsequently reduced to a single band after 3'-poly(A) tail truncation. The long and short LHbeta transcripts were prevalent in follicular and luteal ewes respectively. Numbers of LH(+ve)/FSH(-ve) granules stored within gonadotrophs were not different in LL and LF ewes (even though proportions of LH(+ve) granules were higher in LF ewes), but were reduced at 24-53 h PS. The majority of LH(+ve) granules also contained SgII, although few CgA(+ve) granules were found. Granule partitioning was evident whereby FSH and CgA were located near the periphery, and LH and SgII throughout the matrix. In conclusion, increases in both storage of LH(+ve) granules and secretion of LH in LF ewes despite constant LHbeta mRNA levels was facilitated, at least in part, by improved LHbeta mRNA transcript stability. Fewer LH(+ve)/FSH(-ve) granules were in storage after the PS, which was mirrored by a reduction in LH pulsatile release. Surprisingly, in view of results in rodents indicating significant changes, SgII and CgA mRNA levels did not change over the oestrous cycle in sheep. Conversely, CgB mRNA levels decreased around the time of PS. These novel results illustrate major differences in granin-gonadotrophin interactions between sheep and rodents.


Promotion of intragranular co-aggregation with LH by enhancement of secretogranin II storage resulted in increased intracellular granule storage in gonadotrophs of GnRH-deprived male mice.

  • J L Crawford‎ et al.
  • Reproduction (Cambridge, England)‎
  • 2002‎

Intracellular associations indicate that granins may play a role in the regulatory mechanisms involved in differential secretion of gonadotrophins. The effect of GnRH on mRNA expression, storage and secretory patterns of granins and gonadotrophins was investigated in male mice. GnRH antiserum (G/A) was injected into mice in the treatment group (n = 15) at 12 h intervals for 2 days and a subset (n = 9) was killed. Buserelin (G/A + B) was administered to the remaining mice (n = 6), which were killed 2 h later; control mice (n = 6) were killed at the onset of the study. LHb mRNA content was lower in G/A and G/A + B mice compared with controls, whereas plasma LH concentrations were higher in G/A + B mice. FSHbeta mRNA content did not change, whereas plasma FSH concentrations were lower in G/A mice compared with controls, and higher in G/A + B mice compared with both G/A and control mice. Secretogranin II (SgII) and CgA mRNA contents were not different between experimental groups. There were more granules per gonadotroph in G/A mice, and considerably fewer after Buserelin treatment. Immunogold labelling of gonadotrophs revealed the presence of LH(+ve)/SgII(+ve) and LH(+ve)/SgII(-ve) granules, and negligible numbers of LH(-ve)/SgII(+ve) granules. Both the numbers of LH(+ve)/SgII(+ve) granules and overall granule antigenicity for SgII were higher in G/A mice compared with controls and G/A + B mice. In contrast, there were fewer LH(+ve)/SgII(-ve) granules per gonadotroph in G/A mice compared with controls. In conclusion, absence of GnRH input to the pituitary gland resulted in preferential storage of SgII and subsequently increased intragranular co-aggregation with LH. Administration of Buserelin to G/A mice resulted in the apparent release of LH(+ve)/SgII(+ve) granules that was reflected by an increase in plasma LH concentrations, indicating that these granules were in the regulated secretory pathway. In contrast, secretion of LH(+ve)/SgII(-ve) granules did not appear to be influenced by the actions of Buserelin and, therefore, may have been destined for constitutive release, possibly to maintain basal plasma LH concentrations.


Release and extracellular metabolism of ATP by ecto-nucleotidase eNTPDase 1-3 in hypothalamic and pituitary cells.

  • Mu-Lan He‎ et al.
  • Purinergic signalling‎
  • 2005‎

Hypothalamic and pituitary cells express G protein-coupled adenosine and P2Y receptors and cation-conducting P2X receptor-channels, suggesting that extracellular ATP and other nucleotides may function as autocrine and/or paracrine signaling factors in these cells. Consistent with this hypothesis, we show that cultured normal and immortalized pituitary and hypothalamic cells release ATP under resting conditions. RT-PCR analysis also revealed the presence of transcripts for ecto-nucleotidase eNTPDase 1-3 in these cells. These enzymes were functional as documented by degradation of endogenously released and exogenously added ATP. Blocking the activity of eNTPDases by ARL67156 led to an increase in ATP release in perifused pituitary cells and inhibition of degradation of extracellularly added ATP. Furthermore, the addition of apyrase, a soluble ecto-nucleotidase, and the expression of recombinant mouse eNTPDase-2, enhanced degradation of both endogenously released and exogenously added ATP. The released ATP by resting hypothalamic cells was sufficient to activate and desensitize high-affinity recombinant P2X receptors, whereas facilitation of ATP metabolism by the addition of apyrase protected their desensitization. These results indicate that colocalization of ATP release sites and ecto-nucleotidase activity at the plasma membrane of hypothalamic and pituitary cells provides an effective mechanism for the operation of nucleotides as extracellular signaling molecules.


Reduced gonadotroph stimulation by ethanolamine plasmalogens in old bovine brains.

  • Hiroya Kadokawa‎ et al.
  • Scientific reports‎
  • 2021‎

Ethanolamine plasmalogens (EPls), unique alkenylacyl-glycerophospholipids, are the only known ligands of G-protein-coupled receptor 61-a novel receptor co-localised with gonadotropin-releasing hormone receptors on anterior pituitary gonadotrophs. Brain EPl decreases with age. Commercial EPl-extracted from the cattle brain (unidentified age)-can independently stimulate FSH secretion from gonadotrophs. We hypothesised that there exists an age-related difference in the quality, quantity, and ability of bovine brain EPls to stimulate bovine gonadotrophs. We compared the brains of young (about 26 month old heifers) and old (about 90 month old cows) Japanese Black bovines, including EPls obtained from both groups. Additionally, mRNA expressions of the EPl biosynthesis enzymes, glyceronephosphate O-acyltransferase, alkylglycerone phosphate synthase, and fatty acyl-CoA reductase 1 (FAR1) were evaluated in young and old hypothalami. The old-brain EPl did not stimulate FSH secretion from gonadotrophs, unlike the young-brain EPl. Molecular species of EPl were compared using two-dimensional liquid chromatography-mass spectrometry. We identified 20 EPl molecular species of which three and three exhibited lower (P < 0.05) and higher (P < 0.05) ratios, respectively, in old compared to young brains. In addition, quantitative reverse transcription-polymerase chain reaction detected higher FAR1 levels in the POA, but not in the ARC&ME tissues, of old cows than that of fertile young heifers. Therefore, old-brain EPl may be associated with age-related infertility.


Single-Cell RNA Sequencing Analysis of Chicken Anterior Pituitary: A Bird's-Eye View on Vertebrate Pituitary.

  • Jiannan Zhang‎ et al.
  • Frontiers in physiology‎
  • 2021‎

It is well-established that anterior pituitary contains multiple endocrine cell populations, and each of them can secrete one/two hormone(s) to regulate vital physiological processes of vertebrates. However, the gene expression profiles of each pituitary cell population remains poorly characterized in most vertebrate groups. Here we analyzed the transcriptome of each cell population in adult chicken anterior pituitaries using single-cell RNA sequencing technology. The results showed that: (1) four out of five known endocrine cell clusters have been identified and designated as the lactotrophs, thyrotrophs, corticotrophs, and gonadotrophs, respectively. Somatotrophs were not analyzed in the current study. Each cell cluster can express at least one known endocrine hormone, and novel marker genes (e.g., CD24 and HSPB1 in lactotrophs, NPBWR2 and NDRG1 in corticotrophs; DIO2 and SOUL in thyrotrophs, C5H11ORF96 and HPGDS in gonadotrophs) are identified. Interestingly, gonadotrophs were shown to abundantly express five peptide hormones: FSH, LH, GRP, CART and RLN3; (2) four non-endocrine/secretory cell types, including endothelial cells (expressing IGFBP7 and CFD) and folliculo-stellate cells (FS-cells, expressing S100A6 and S100A10), were identified in chicken anterior pituitaries. Among them, FS-cells can express many growth factors, peptides (e.g., WNT5A, HBEGF, Activins, VEGFC, NPY, and BMP4), and progenitor/stem cell-associated genes (e.g., Notch signaling components, CDH1), implying that the FS-cell cluster may act as a paracrine/autocrine signaling center and enrich pituitary progenitor/stem cells; (3) sexually dimorphic expression of many genes were identified in most cell clusters, including gonadotrophs and lactotrophs. Taken together, our data provides a bird's-eye view on the diverse aspects of anterior pituitaries, including cell composition, heterogeneity, cell-to-cell communication, and gene expression profiles, which facilitates our comprehensive understanding of vertebrate pituitary biology.


Ghrelin receptor expression and colocalization with anterior pituitary hormones using a GHSR-GFP mouse line.

  • Alex Reichenbach‎ et al.
  • Endocrinology‎
  • 2012‎

Ghrelin is the endogenous ligand for the GH secretagogue receptor (GHSR) and robustly stimulates GH release from the anterior pituitary gland. Ghrelin also regulates the secretion of anterior pituitary hormones including TSH, LH, prolactin (PRL), and ACTH. However, the relative contribution of a direct action at the GHSR in the anterior pituitary gland vs. an indirect action at the GHSR in the hypothalamus remains undefined. We used a novel GHSR-enhanced green fluorescent protein (eGFP) reporter mouse to quantify GHSR coexpression with GH, TSH, LH, PRL, and ACTH anterior pituitary cells in males vs. females and in chow-fed or calorie-restricted (CR) mice. GHSR-eGFP-expressing cells were only observed in anterior pituitary. The number of GHSR-eGFP-expressing cells was higher in male compared with females, and CR did not affect the GHSR-eGFP cell number. Double staining revealed 77% of somatotrophs expressed GHSR-eGFP in both males and females. Nineteen percent and 12.6% of corticotrophs, 21% and 9% of lactotrophs, 18% and 19% of gonadotrophs, and 3% and 9% of males and females, respectively, expressed GHSR-eGFP. CR increased the number of TSH cells, but suppressed the number of lactotrophs and gonadotrophs, expressing GHSR-eGFP compared with controls. These studies support a robust stimulatory action of ghrelin via the GHSR on GH secretion and identify a previously unknown sexual dimorphism in the GHSR expression in the anterior pituitary. CR affects GHSR-eGFP expression on lactotrophs, gonadotrophs, and thyrotrophs, which may mediate reproductive function and energy metabolism during periods of negative energy balance. The low to moderate expression of GHSR-eGFP suggests that ghrelin plays a minor direct role on remaining anterior pituitary cells.


Pars distalis cell quantification in normal adult male and female rats.

  • M O Dada‎ et al.
  • The Journal of endocrinology‎
  • 1984‎

We analysed cell types in the pars distalis of normal young adult male and female rats with respect to their percentages and the relative volumes they occupy. In male rats the percentages of the cell types were: prolactin 49.80, GH 22.67, LH 5.04, FSH 4.22, ACTH 2.93 and TSH 2.09. The volume densities were: prolactin 20.48, GH 20.95, LH 7.34, FSH 6.73, ACTH 3.75 and TSH 3.19. In female rats the percentages of the cell types were: prolactin 52.40, GH 20.30, LH 5.89, FSH 4.06, ACTH 2.53, TSH 2.40 and the volume densities were: prolactin 28.09, GH 20.86, LH 8.11, FSH 5.46, ACTH 3.49 and TSH 2.91. The percentages of pars distalis cells which did not stain with the antisera to the six classical hormones were 17.47 in male and 16.48 in female rats. The results suggest that (1) in both sexes the number (N) of prolactin cells greater than N of GH cells greater than N of gonadotrophs greater than N of TSH or ACTH cells, (2) the percentage of each cell type was similar in both sexes, (3) the volume density (Vv) of prolactin cells was greater than the Vv of GH cells in female but not in male rats and in both sexes the Vv of GH cells greater than the Vv of gonadotrophs greater than the Vv of TSH or ACTH cells, (4) in both sexes the volume (V) of prolactin cells less than the V of GH cells less than the V of gonadotrophs, the V of TSH cells or the V of ACTH cells, (5) the V of prolactin cells was greater in female than in male rats and (6) approximately 17% of the cells in the pars distalis of both sexes did not contain 'immunoreactive' prolactin, GH, LH, FSH, TSH or ACTH.


Easy detection of hormone secretion from LβT2 cells by using Gaussia luciferase.

  • Kazuhiro Satou‎ et al.
  • The Journal of reproduction and development‎
  • 2017‎

Reproduction is regulated by gonadotropins secreted from gonadotrophs. The production and secretion of gonadotropins are mainly regulated by gonadotropin-releasing hormone (GnRH). Agonists or antagonists that influence GnRH action on gonadotrophs are important to regulate reproduction; however, these factors have not been fully characterized due to the lack of simple and easy-to-use techniques to detect gonadotropin secretion from gonadotropin-producing cells. In the present study, we found that Gaussia luciferase (Gluc), which was expressed in LβT2 cells, can be secreted like a luteinizing-hormone (LH) upon stimulation with GnRH. The Gluc secreted into the medium was easily monitored as luminescence signals. The detection range of the GnRH-induced Gluc activity was comparable to that of the enzyme-linked immunosorbent assay for LH. In addition, when the Gluc was expressed in AtT20 cells, which produce adrenocorticotropic hormone (ACTH), the Gluc activity in the medium increased in parallel with the ACTH secretion upon stimulation with corticotropin-releasing hormone. Thus, the Gluc assay in the present study can be easily used for high-throughput screening of factors that influence LH or ACTH secretion from LβT2 or AtT20 cells, respectively.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: