Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 221 papers

Glycyrrhizic acid nanoparticles inhibit LPS-induced inflammatory mediators in 264.7 mouse macrophages compared with unprocessed glycyrrhizic acid.

  • Wei Wang‎ et al.
  • International journal of nanomedicine‎
  • 2013‎

Glycyrrhizic acid (GA), the main component of radix glycyrrhizae, has a variety of pharmacological activities. In the present study, suspensions of GA nanoparticles with the average particle size about 200 nm were prepared by a supercritical antisolvent (SAS) process. Comparative studies were undertaken using lipopolysaccardide (LPS)-stimulated mouse macrophages RAW 264.7 as in vitro inflammatory model. Several important inflammation mediators such as NO, PGE2, TNF-α and IL-6 were examined. These markers were highly stimulated by LPS and were inhibited both by nano-GA and unprocessed GA in a dose-dependent manner, especially PGE2 and TNF-α. However nano-GA and unprocessed GA inhibited NO only at a high concentration. In general, we found that GA nanoparticle suspensions exhibited much better anti-inflammatory activities compared to unprocessed GA.


Glycyrrhizic acid alleviates bleomycin-induced pulmonary fibrosis in rats.

  • Lili Gao‎ et al.
  • Frontiers in pharmacology‎
  • 2015‎

Idiopathic pulmonary fibrosis is a progressive and lethal form of interstitial lung disease that lacks effective therapies at present. Glycyrrhizic acid (GA), a natural compound extracted from a traditional Chinese herbal medicine Glycyrrhiza glabra, was recently reported to benefit lung injury and liver fibrosis in animal models, yet whether GA has a therapeutic effect on pulmonary fibrosis is unknown. In this study, we investigated the potential therapeutic effect of GA on pulmonary fibrosis in a rat model with bleomycin (BLM)-induced pulmonary fibrosis. The results indicated that GA treatment remarkably ameliorated BLM-induced pulmonary fibrosis and attenuated BLM-induced inflammation, oxidative stress, epithelial-mesenchymal transition, and activation of transforming growth factor-beta signaling pathway in the lungs. Further, we demonstrated that GA treatment inhibited proliferation of 3T6 fibroblast cells, induced cell cycle arrest and promoted apoptosis in vitro, implying that GA-mediated suppression of fibroproliferation may contribute to the anti-fibrotic effect against BLM-induced pulmonary fibrosis. In summary, our study suggests a therapeutic potential of GA in the treatment of pulmonary fibrosis.


Antiviral activity of glycyrrhizic acid conjugates with amino acid esters against Zika virus.

  • Lidia A Baltina‎ et al.
  • Virus research‎
  • 2021‎

Zika virus (ZIKV) is a new pathogenic flavivirus transmitted by mosquitoes Aedes spp. ZIKV infection is accompanied by serious neurological complications and is especially dangerous for pregnant women, in which it can lead to congenital malformations of the fetus and microcephaly in neonates. Currently, there are no licensed vaccines or specific post-infectious therapies for ZIKV infection. This report is devoted to the study of glycyrrhizic acid (GL) derivatives as ZIKV inhibitors. The inhibitory assays on the cytopathic effect (CPE) and viral infectivity of ZIKV in three different human cell lines revealed that the conjugation of GL with amino acids and their esters (methyl, ethyl) is influenced by the antiviral activity of the compounds. GL conjugates with Glu(OMe)-OMe 11, Glu(OH)-OMe 12, Asp(OMe)-OMe 13, TyrOMe 14, LeuOEt 15, and PheOEt 16 with free COOH groups in the triterpene moiety were active against ZIKV. The most active compounds 13 and 14 have IC50 values of 0.23 μM and 0.09 μM against low doses (MOI = 0.05) of ZIKV strain PRVABC59, 1.20 μM and 0.74 μM against high doses (MOI = 10) of ZIKV strain Natal RGN single-round infectious particles, respectively. The lead compound was 14 with a high selectivity index (SI < 500). Compound 13 showed a higher inhibitory effect on the early stage (entry) of ZIKV replication than compound 14, and was less potent than compound 14 at the post-entry stage, consistent with the docking models. Compounds 13 and 14 also had a strong interaction with the active site pocket of NS5 MTase. Compounds 13 and 14 are recommended for expanded antiviral studies against ZIKV infection.


Effect of Glycyrrhizic Acid on Scopolamine-Induced Cognitive Impairment in Mice.

  • Ju Yeon Ban‎ et al.
  • International neurourology journal‎
  • 2020‎

Cognitive impairment is one of the main symptoms of Alzheimer disease and other dementias. Glycyrrhiza uralensis is a natural product that has a protective effect against cognitive impairment. In this study, we investigated whether glycyrrhizic acid, among the main bioactive components of Glycyrrhiza uralensis, has a neuroprotective effect on scopolamine-induced cognitive impairment.


Using glycyrrhizic acid to target sumoylation processes during Epstein-Barr virus latency.

  • Gretchen L Bentz‎ et al.
  • PloS one‎
  • 2019‎

Cellular sumoylation processes are proposed targets for anti-viral and anti-cancer therapies. We reported that Epstein-Barr virus (EBV) latent membrane protein 1 (LMP1) dysregulates cellular sumoylation processes, contributing to its oncogenic potential in EBV-associated malignancies. Ginkgolic acid and anacardic acid, known inhibitors of sumoylation, inhibit LMP1-induced protein sumoylation; however, both drugs have adverse effects in hosts. Here we test the effects of glycyrrhizic acid, a medicinal botanical extract with anti-inflammatory, anti-carcinogenic, and anti-viral properties, on cellular sumoylation processes. While glycyrrhizic acid is known to inhibit EBV penetration, its affect on cellular sumoylation processes remains to be documented. We hypothesized that glycyrrhizic acid inhibits cellular sumoylation processes and may be a viable treatment for Epstein-Barr virus-associated malignancies. Results showed that glycyrrhizic acid inhibited sumoylation processes (without affecting ubiquitination processes), limited cell growth, and induced apoptosis in multiple cell lines. Similar to ginkgolic acid; glycyrrhizic acid targeted the first step of the sumoylation process and resulted in low levels of spontaneous EBV reactivation. Glycyrrhizic acid did not affect induced reactivation of the virus, but the presence of the extract did reduce the ability of the produced virus to infect additional cells. Therefore, we propose that glycyrrhizic acid may be a potential therapeutic drug to augment the treatment of EBV-associated lymphoid malignancies.


Glycyrrhizic Acid Protects Experimental Sepsis Rats against Acute Lung Injury and Inflammation.

  • Jiali Shen‎ et al.
  • Evidence-based complementary and alternative medicine : eCAM‎
  • 2022‎

The incidence of acute lung injury/acute respiratory distress (ALI/ARDS) is high in sepsis aggravating morbidity and mortality. Glycyrrhizic acid (GA) has pharmacological activities in the treatment of inflammation and antiviral.


Glycyrrhizic acid attenuates growth of Leishmania donovani by depleting ergosterol levels.

  • Neeradi Dinesh‎ et al.
  • Experimental parasitology‎
  • 2017‎

In the present study, glycyrrhizic acid (GA) the main component of Glycyrrhiza glabra was evaluated for its efficacy as antileishmanial agent and its mode of action explored. GA inhibits promastigotes and intracellular amastigotes in a dose dependent manner at an IC50 value of 34 ± 3.0 μM and 20 ± 4.2 μM respectively. GA was non-toxic against THP-1 macrophage host cell line. GA was found to inhibit recombinant Leishmania donovani HMG-CoA reductase (LdHMGR) enzyme at the half-maximum inhibitory concentration of 24 ± 4.3 μM indicating the sensitivity and specificity of GA towards the enzyme. However, GA could cause only 30% reduction in HMGR activity when measured in Leishmania promastigotes treated with 34 μM of GA. Interestingly western blot analysis revealed fivefold reduced HMGR expression in GLA treated promastigotes. To further study the mode of action of GA, we used transgenic parasites overexpressing LdHMGR. Results indicated that ∼2 fold resistance was exhibited by LdHMGR overexpressing promastigotes to GA with an IC50 value of 74 μM compared to the wild type parasite. This explained the specific binding of GA to LdHMGR enzyme. There was ∼2 fold depletion in ergosterol levels in wild type promastigotes compared to the HMGR overexpressors. This data was further validated by exogenous supplementation of GA treated cells with ergosterol and 40% reversal of growth inhibition was observed. The results obtained suggested that GA kills the parasite by affecting sterol biosynthetic pathway, especially by inhibiting the L. donovani HMGR and altering ergosterol levels. The finding from the current study shows that GA is a potential antileishmanial chemotherapeutic agent.


Glycyrrhizic Acid Reduces Heart Rate and Blood Pressure by a Dual Mechanism.

  • Kailash Singh‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2016‎

Beta adrenergic receptors are crucial for their role in rhythmic contraction of heart along with their role in the pathological conditions such as tachycardia and high risk of heart failure. Studies report that the levels of beta-1 adrenergic receptor tend to decrease by 50%, whereas, the levels of beta-2 adrenergic receptor remains constant during the risk of heart failure. Beta blockers-the antagonistic molecules for beta-adrenergic receptors, function by slowing the heart rate, which thereby allows the left ventricle to fill completely during tachycardia incidents and hence helps in blood pumping capacity of heart and reducing the risk of heart failure. In the present study, we investigate the potential of glycyrrhizic acid (GA) as a possible principal drug molecule for cardiac arrhythmias owing to its ability to induce reduction in the heart rate and blood pressure. We use in vitro and in silico approach to study GA's effect on beta adrenergic receptor along with an in vivo study to examine its effect on heart rate and blood pressure. Additionally, we explore GA's proficiency in eliciting an increase in the plasma levels of vasoactive intestinal peptide, which by dilating the blood vessel consequently, can be a crucial aid during the occurrence of a potential heart attack. Therefore, we propose GA as a potential principal drug molecule via its potential in modulating heart rate and blood pressure.


Intestinal absorption and biliary elimination of glycyrrhizic acid diethyl ester in rats.

  • Kenjiro Koga‎ et al.
  • Drug design, development and therapy‎
  • 2013‎

The purpose of this study was to evaluate absorption and elimination from the gastrointestinal tract of glycyrrhizic acid diethyl ester (GZ-DE) which was prepared as a prodrug of glycyrrhizic acid (a poorly absorbed compound) in rats.


Lactobacillus murinus Improved the Bioavailability of Orally Administered Glycyrrhizic Acid in Rats.

  • Tianjie Yuan‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Intestinal microbiota has been extensively studied in the context of host health benefit, and it has recently become clear that the gut microbiota influences drug pharmacokinetics and correspondingly efficacy. Intestinal microbiota dysbiosis is closely related with liver cirrhosis, especially the depletion of Lactobacillus. Therefore, the bioavailability of orally administered glycyrrhizic acid (GL) was speculated to be influenced under a pathological state. In the present study, L. murinus was isolated and screened for GL bioconversion capacity in vitro. Compared with Lactobacillus rhamnosus and Lactobacillus acidophilus, L. murinus was chosen for further investigation because it has the highest biotransformation rate. Our results showed that L. murinus could significantly improve the translocation of GL on Caco-2 cell models. Meanwhile, L. murinus was observed to have the ability to bind with the surface of Caco-2 cells and prominently downregulate the transporter gene expression level of multidrug resistance gene 1 (MDR1) and multidrug resistance protein 2 (MRP2), which were involved in the efflux of drugs. Furthermore, L. murinus was selected to be orally administred into rats in healthy and liver cirrhosis groups by a daily gavage protocol. Our data highlighted that supplements of L. murinus significantly improved the bioavailability of orally administered GL in rats, especially under a pathological condition, which may provide a novel strategy for improving the clinical therapeutic effect of liver protective drugs.


Cardioprotective effects of glycyrrhizic acid against isoproterenol-induced myocardial ischemia in rats.

  • Nagaraja Haleagrahara‎ et al.
  • International journal of molecular sciences‎
  • 2011‎

The aim of the present study was to look into the possible protective effects of glycyrrhizic acid (GA) against isoproterenol-induced acute myocardial infarction in Sprague-Dawley rats. The effect of three doses of glycyrrhizic acid in response to isoproterenol (ISO)-induced changes in 8-isoprostane, lipid hydroperoxides, super oxide dismutase and total glutathione were evaluated. Male Sprague-Dawley rats were divided into control, ISO-control, glycyrrhizic acid alone (in three doses-5, 10 and 20 mg/kg BW) and ISO with glycyrrhizic acid (in three doses) groups. ISO was administered at 85 mg/kg BW at two consecutive days and glycyrrhizic acid was administered intraperitoneally for 14 days. There was a significant increase in 8-isoprostane (IP) and lipid hydroperoxide (LPO) level in ISO-control group. A significant decrease in total superoxide dismutase (SOD) and total glutathione (GSH) was seen with ISO-induced acute myocardial infarction. Treatment with GA significantly increased SOD and GSH levels and decreased myocardial LPO and IP levels. Histopathologically, severe myocardial necrosis and nuclear pyknosis and hypertrophy were seen in ISO-control group, which was significantly reduced with GA treatment. Gycyrrhizic acid treatment proved to be effective against isoproterenol-induced acute myocardial infarction in rats and GA acts as a powerful antioxidant and reduces the myocardial lipid hydroperoxide and 8-isoprostane level.


Glycyrrhizic Acid Prevents Paclitaxel-Induced Neuropathy via Inhibition of OATP-Mediated Neuronal Uptake.

  • Ines Klein‎ et al.
  • Cells‎
  • 2023‎

Peripheral neuropathy is a common side effect of cancer treatment with paclitaxel. The mechanisms by which paclitaxel is transported into neurons, which are essential for preventing neuropathy, are not well understood. We studied the uptake mechanisms of paclitaxel into neurons using inhibitors for endocytosis, autophagy, organic anion-transporting polypeptide (OATP) drug transporters, and derivatives of paclitaxel. RT-qPCR was used to investigate the expression levels of OATPs in different neuronal tissues and cell lines. OATP transporters were pharmacologically inhibited or modulated by overexpression and CRISPR/Cas9-knock-out to investigate paclitaxel transport in neurons. Through these experiments, we identified OATP1A1 and OATP1B2 as the primary neuronal transporters for paclitaxel. In vitro inhibition of OATP1A1 and OAT1B2 by glycyrrhizic acid attenuated neurotoxicity, while paclitaxel's antineoplastic effects were sustained in cancer cell lines. In vivo, glycyrrhizic acid prevented paclitaxel-induced toxicity and improved behavioral and electrophysiological measures. This study indicates that a set of OATPs are involved in paclitaxel transport into neurons. The inhibition of OATP1A1 and OATP1B2 holds a promising strategy to prevent paclitaxel-induced peripheral neuropathy.


Glycyrrhizic acid protects juvenile epileptic rats against hippocampal damage through activation of Sirtuin3.

  • Gang Wu‎ et al.
  • Brain research bulletin‎
  • 2020‎

Glycyrrhizic acid (GA) and Sirtuin3 (Sirt3) were both found to be involved in epilepsy (EP), but their interaction was rarely studied. Herein, we aim to investigate the underlying mechanism of GA with the interaction of Sirt3 in juvenile EP rats. The EP model in juvenile rats was established by lithium chloride-pilocarpine and treated with different concentrations of GA, GA + DMSO or GA + 3-TYP [a selective inhibitor of Sirtuin3 (Sirt3)]. The expression of Sirt3, mitochondrial autophagy-related genes (C-III core 1, COX IV, LC3-I, LC3-II), apoptosis-related genes (Bcl-2, Bax, Caspase-3), glutathione (GSH), superoxide dismutase (SOD), malondialchehyche (MDA) and reactive oxygen species (ROS) as well as mitochondrial membrane potential were subsequently detected. The juvenile EP rats treated with GA showed increased level of C-III core 1 and COX IV, increased LC3-I/LC3-II, GSH and SOD, decreased MDA, increased expression of Sirt3, and Bcl-2, and decreased expression of Bax and Caspase-3. However, inhibition of Sirt3 caused reverse results. Collectively, GA could alleviate hippocampal pathological damage, promote mitochondrial autophagy and reduce oxidative stress in juvenile EP rats through activation of Sirt3. Understanding of these mechanisms may allow devising of novel therapeutics for pediatric EP.


Glycyrrhizic Acid Nanoparticles as Antiviral and Anti-inflammatory Agents for COVID-19 Treatment.

  • Zhaoyan Zhao‎ et al.
  • ACS applied materials & interfaces‎
  • 2021‎

COVID-19 has been diffusely pandemic around the world, characterized by massive morbidity and mortality. One of the remarkable threats associated with mortality may be the uncontrolled inflammatory processes, which were induced by SARS-CoV-2 in infected patients. As there are no specific drugs, exploiting safe and effective treatment strategies is an instant requirement to dwindle viral damage and relieve extreme inflammation simultaneously. Here, highly biocompatible glycyrrhizic acid (GA) nanoparticles (GANPs) were synthesized based on GA. In vitro investigations revealed that GANPs inhibit the proliferation of the murine coronavirus MHV-A59 and reduce proinflammatory cytokine production caused by MHV-A59 or the N protein of SARS-CoV-2. In an MHV-A59-induced surrogate mouse model of COVID-19, GANPs specifically target areas with severe inflammation, such as the lungs, which appeared to improve the accumulation of GANPs and enhance the effectiveness of the treatment. Further, GANPs also exert antiviral and anti-inflammatory effects, relieving organ damage and conferring a significant survival advantage to infected mice. Such a novel therapeutic agent can be readily manufactured into feasible treatment for COVID-19.


Glycyrrhizic acid exerts inhibitory activity against the spike protein of SARS-CoV-2.

  • Shaopeng Yu‎ et al.
  • Phytomedicine : international journal of phytotherapy and phytopharmacology‎
  • 2021‎

Coronavirus causes a disease with high infectivity and pathogenicity, especially SARS in 2003, MERS in 2012, and COVID-2019 currently. The spike proteins of these coronaviruses are critical for host cell entry by receptors. Thus, searching for broad-spectrum anti-coronavirus candidates, such as spike protein inhibitors, is vital and desirable due to the mutations in the spike protein. In this study, a combination of computer-aided drug design and biological verification was used to discover active monomers from traditional Chinese medicine. Surface plasmon resonance (SPR) assays and NanoBit assays were used to verify the predicated compounds with their binding activities to spike proteins and inhibitory activities on the SARS-CoV-2 RBD/ACE2 interaction, respectively. Furthermore, an MTT assay was used to evaluate the cell toxicities of active compounds. As a result, glycyrrhizic acid (ZZY-44) was found to be the most efficient and nontoxic broad-spectrum anti-coronavirus molecule in vitro, especially, the significant effect on SARS-CoV-2, which provided a theoretical basis for the study of the pharmacodynamic material basis of traditional Chinese medicine against SARS-CoV-2 and offered a lead compound for further structural modification in order to obtain more effective candidate drugs against SARS-CoV-2.


Glycyrrhizic-Acid-Based Carbon Dots with High Antiviral Activity by Multisite Inhibition Mechanisms.

  • Ting Tong‎ et al.
  • Small (Weinheim an der Bergstrasse, Germany)‎
  • 2020‎

With the gradual usage of carbon dots (CDs) in the area of antiviral research, attempts have been stepped up to develop new antiviral CDs with high biocompatibility and antiviral effects. In this study, a kind of highly biocompatible CDs (Gly-CDs) is synthesized from active ingredient (glycyrrhizic acid) of Chinese herbal medicine by a hydrothermal method. Using the porcine reproductive and respiratory syndrome virus (PRRSV) as a model, it is found that the Gly-CDs inhibit PRRSV proliferation by up to 5 orders of viral titers. Detailed investigations reveal that Gly-CDs can inhibit PRRSV invasion and replication, stimulate antiviral innate immune responses, and inhibit the accumulation of intracellular reactive oxygen species (ROS) caused by PRRSV infection. Proteomics analysis demonstrates that Gly-CDs can stimulate cells to regulate the expression of some host restriction factors, including DDX53 and NOS3, which are directly related to PRRSV proliferation. Moreover, it is found that Gly-CDs also remarkably suppress the propagation of other viruses, such as pseudorabies virus (PRV) and porcine epidemic diarrhea virus (PEDV), suggesting the broad antiviral activity of Gly-CDs. The integrated results demonstrate that Gly-CDs possess extraordinary antiviral activity with multisite inhibition mechanisms, providing a promising candidate for alternative therapy for PRRSV infection.


Glycyrrhizic Acid Inhibits High-Mobility Group Box-1 and Homocysteine-Induced Vascular Dysfunction.

  • Laura Kate Gadanec‎ et al.
  • Nutrients‎
  • 2023‎

Hyperhomocysteinemia (HHcy) worsens cardiovascular outcomes by impairing vascular function and promoting chronic inflammation via release of danger-associated molecular patterns, such as high-mobility group box-1 (HMGB-1). Elevated levels of HMGB-1 have recently been reported in patients with HHcy. Therefore, targeting HMGB-1 may be a potential therapy to improve HHcy-induced cardiovascular pathologies. This study aimed to further elucidate HMGB-1's role during acute HHcy and HHcy-induced atherogenesis and to determine if inhibiting HMGB-1 with glycyrrhizic acid (Glyz) improved vascular function. Male New Zealand White rabbits (n = 25) were placed on either a standard control chow (CD; n = 15) or atherogenic diet (AD; n = 10) for 4 weeks. Rabbit serum and Krebs taken from organ bath studies were collected to quantify HMGB-1 levels. Isometric tension analysis was performed on abdominal aorta (AA) rings from CD and AD rabbits. Rings were incubated with homocysteine (Hcy) [3 mM] for 60 min to induce acute HHcy or rhHMGB-1 [100 nM]. Vascular function was assessed by relaxation to cumulative doses of acetylcholine. Markers of vascular dysfunction and inflammation were quantified in the endothelium, media, and adventitia of AA rings. HMGB-1 was significantly upregulated in serum (p < 0.0001) and Krebs (p < 0.0001) after Hcy exposure or an AD. Incubation with Hcy (p < 0.0001) or rhHMGB-1 (p < 0.0001) and an AD (p < 0.0001) significantly reduced relaxation to acetylcholine, which was markedly improved by Glyz. HMGB-1 expression was elevated (p < 0.0001) after Hcy exposure and AD (p < 0.0001) and was normalized after Glyz treatment. Moreover, markers of vascular function, cell stress and inflammation were also reduced after Glyz. These results demonstrate that HMGB-1 has a central role during HHcy-induced vascular dysfunction and inhibiting it with Glyz could be a potential treatment option for cardiovascular diseases.


Co-treatment with disulfiram and glycyrrhizic acid suppresses the inflammatory response of chondrocytes.

  • Chao Li‎ et al.
  • Journal of orthopaedic surgery and research‎
  • 2021‎

Osteoarthritis (OA) is a kind of systemic musculoskeletal disorder and a most important factor for causing disability and physical painfulness. Nevertheless, due to the fact that OA can be triggered by multiple etiological factors, this disease is hard to be cured. Therefore, it is of great necessity for us to find novel targets or drugs for OA treatment.


Glycyrrhizic acid activates chicken macrophages and enhances their Salmonella-killing capacity in vitro.

  • Bai-Kui Wang‎ et al.
  • Journal of Zhejiang University. Science. B‎

Salmonella enterica remains a major cause of food-borne disease in humans, and Salmonella Typhimurium (ST) contamination of poultry products is a worldwide problem. Since macrophages play an essential role in controlling Salmonella infection, the aim of this study was to evaluate the effect of glycyrrhizic acid (GA) on immune function of chicken HD11 macrophages.


Glycyrrhizic acid exhibits strong anticancer activity in colorectal cancer cells via SIRT3 inhibition.

  • Zhenkui Zuo‎ et al.
  • Bioengineered‎
  • 2022‎

Sirtuin-3 (SIRT3) has been described as a colorectal cancer oncogene and to be regulated by glycyrrhizic acid (GA). However, few studies have explored the interaction between GA and SIRT3. Therefore, in the present study, we showed that GA could significantly decrease SIRT3 protein levels in SW620 and HT29 cells in a dose-dependent manner. Then, we overexpressed SIRT3 by lentivirus infection on SW620 and HT29 cells. We found that, in vitro, GA treatment significantly decreased cell viability, cell clone number, and invasion and migration number, besides significantly increasing apoptosis. Also, GA treatment significantly decreased the Bax/Bcl2 protein ratio and the expression of Cyclin D1, CDK2, CDK4, MMP-9, N-cadherin, and vimentin in SW620 and HT29 cells. Meanwhile, the SIRT3 overexpression could significantly reverse these changes. Moreover, the GA treatment could significantly decrease the weight of xenograft tumor tissues and its SIRT3 protein levels in vivo, while SIRT3 overexpression reversed these effects. Overall, GA inhibited the proliferation, invasion, and migration of colorectal cancer cells, and induced their apoptosis by SIRT3 inhibition.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: