Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 26 papers

Mouse model of glycogen storage disease type III.

  • Kai-Ming Liu‎ et al.
  • Molecular genetics and metabolism‎
  • 2014‎

Glycogen storage disease type IIIa (GSD IIIa) is caused by a deficiency of the glycogen debranching enzyme (GDE), which is encoded by the Agl gene. GDE deficiency leads to the pathogenic accumulation of phosphorylase limit dextrin (PLD), an abnormal glycogen, in the liver, heart, and skeletal muscle. To further investigate the pathological mechanisms behind this disease and develop novel therapies to treat this disease, we generated a GDE-deficient mouse model by removing exons after exon 5 in the Agl gene. GDE reduction was confirmed by western blot and enzymatic activity assay. Histology revealed massive glycogen accumulation in the liver, muscle, and heart of the homozygous affected mice. Interestingly, we did not find any differences in the general appearance, growth rate, and life span between the wild-type, heterozygous, and homozygous affected mice with ad libitum feeding, except reduced motor activity after 50 weeks of age, and muscle weakness in both the forelimb and hind legs of homozygous affected mice by using the grip strength test at 62 weeks of age. However, repeated fasting resulted in decreased survival of the knockout mice. Hepatomegaly and progressive liver fibrosis were also found in the homozygous affected mice. Blood chemistry revealed that alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) activities were significantly higher in the homozygous affected mice than in both wild-type and heterozygous mice and the activity of these enzymes further increased with fasting. Creatine phosphokinase (CPK) activity was normal in young and adult homozygous affected mice. However, the activity was significantly elevated after fasting. Hypoglycemia appeared only at a young age (3 weeks) and hyperlipidemia was not observed in our model. In conclusion, with the exception of normal lipidemia, these mice recapitulate human GSD IIIa; moreover, we found that repeated fasting was detrimental to these mice. This mouse model will be useful for future investigation regarding the pathophysiology and treatment strategy of human GSD III.


Aberrant apolipoprotein C-III glycosylation in glycogen storage disease type III and IX.

  • Nina Ondruskova‎ et al.
  • Metabolism: clinical and experimental‎
  • 2018‎

No abstract available


Glycogen storage disease type III: diagnosis, genotype, management, clinical course and outcome.

  • Christiaan P Sentner‎ et al.
  • Journal of inherited metabolic disease‎
  • 2016‎

Glycogen storage disease type III (GSDIII) is a rare disorder of glycogenolysis due to AGL gene mutations, causing glycogen debranching enzyme deficiency and storage of limited dextrin. Patients with GSDIIIa show involvement of liver and cardiac/skeletal muscle, whereas GSDIIIb patients display only liver symptoms and signs. The International Study on Glycogen Storage Disease (ISGSDIII) is a descriptive retrospective, international, multi-centre cohort study of diagnosis, genotype, management, clinical course and outcome of 175 patients from 147 families (86 % GSDIIIa; 14 % GSDIIIb), with follow-up into adulthood in 91 patients. In total 58 AGL mutations (non-missense mutations were overrepresented and 21 novel mutations were observed) were identified in 76 families. GSDIII patients first presented before the age of 1.5 years, hepatomegaly was the most common presenting clinical sign. Dietary management was very diverse and included frequent meals, uncooked cornstarch and continuous gastric drip feeding. Chronic complications involved the liver (hepatic cirrhosis, adenoma(s), and/or hepatocellular carcinoma in 11 %), heart (cardiac involvement and cardiomyopathy, in 58 % and 15 %, respectively, generally presenting in early childhood), and muscle (pain in 34 %). Type 2 diabetes mellitus was diagnosed in eight out of 91 adult patients (9 %). In adult patients no significant correlation was detected between (non-) missense AGL genotypes and hepatic, cardiac or muscular complications. This study demonstrates heterogeneity in a large cohort of ageing GSDIII patients. An international GSD patient registry is warranted to prospectively define the clinical course, heterogeneity and the effect of different dietary interventions in patients with GSDIII.


A functional mini-GDE transgene corrects impairment in models of glycogen storage disease type III.

  • Antoine Gardin‎ et al.
  • The Journal of clinical investigation‎
  • 2024‎

Glycogen storage disease type III (GSDIII) is a rare inborn error of metabolism affecting liver, skeletal muscle, and heart due to mutations of the AGL gene encoding for the glycogen debranching enzyme (GDE). No curative treatment exists for GSDIII. The 4.6 kb GDE cDNA represents the major technical challenge toward the development of a single recombinant adeno-associated virus-derived (rAAV-derived) vector gene therapy strategy. Using information on GDE structure and molecular modeling, we generated multiple truncated GDEs. Among them, an N-terminal-truncated mutant, ΔNter2-GDE, had a similar efficacy in vivo compared with the full-size enzyme. A rAAV vector expressing ΔNter2-GDE allowed significant glycogen reduction in heart and muscle of Agl-/- mice 3 months after i.v. injection, as well as normalization of histology features and restoration of muscle strength. Similarly, glycogen accumulation and histological features were corrected in a recently generated Agl-/- rat model. Finally, transduction with rAAV vectors encoding ΔNter2-GDE corrected glycogen accumulation in an in vitro human skeletal muscle cellular model of GSDIII. In conclusion, our results demonstrated the ability of a single rAAV vector expressing a functional mini-GDE transgene to correct the muscle and heart phenotype in multiple models of GSDIII, supporting its clinical translation to patients with GSDIII.


Diurnal variability of glucose tetrasaccharide (Glc4) excretion in patients with glycogen storage disease type III.

  • Sarah P Young‎ et al.
  • JIMD reports‎
  • 2021‎

The urinary glucose tetrasaccharide, Glcα1-6Glcα1-4Glcα1-4Glc (Glc4), is a glycogen limit dextrin that is elevated in patients with glycogen storage disease (GSD) type III. We evaluated the potential of uncooked cornstarch therapy to interfere with Glc4 monitoring, by measuring the diurnal variability of Glc4 excretion in patients with GSD III.


A retrospective longitudinal study and comprehensive review of adult patients with glycogen storage disease type III.

  • Ghada Hijazi‎ et al.
  • Molecular genetics and metabolism reports‎
  • 2021‎

A deficiency of glycogen debrancher enzyme in patients with glycogen storage disease type III (GSD III) manifests with hepatic, cardiac, and muscle involvement in the most common subtype (type a), or with only hepatic involvement in patients with GSD IIIb.


Generation of three induced pluripotent stem cell lines from patients with glycogen storage disease type III.

  • Lucille Rossiaud‎ et al.
  • Stem cell research‎
  • 2023‎

Glycogen storage disease type III (GSDIII) is an autosomal recessive disorder characterized by a deficiency of glycogen debranching enzyme (GDE) leading to cytosolic glycogen accumulation and inducing liver and muscle pathology. Skin fibroblasts from three GSDIII patients were reprogrammed into induced pluripotent stem cells (iPSCs) using non-integrated Sendai virus. All of the three lines exhibited normal morphology, expression of pluripotent markers, stable karyotype, potential of trilineage differentiation and absence of GDE expression, making them valuable tools for modeling GSDIII disease in vitro, studying pathological mechanisms and investigating potential treatments.


Uniparental isodisomy of chromosome 1 results in glycogen storage disease type III with profound growth retardation.

  • Emanuela Ponzi‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2019‎

Glycogen storage disease type III (GSDIII) is caused by mutations of AGL gene with debranching enzyme deficiency. Patients with GSDIII manifest fasting hypoglycemia, hepatomegaly, hepatopathy, myopathy, and cardiomyopathy. We report on an 18-year-old boy with a profound growth retardation (<3 SD) besides typical clinical features of GSDIII, whereby endocrinological studies were negative.


Clinical and Functional Characterization of Novel AGL Variants in Two Families with Glycogen Storage Disease Type III.

  • Tingting Yu‎ et al.
  • International journal of endocrinology‎
  • 2023‎

Glycogen storage disease type III (GSDIII) is a uncommon autosomal recessive inherited metabolic disorder, which is caused by variants in the AGL gene. The purpose of this study was to elucidate the clinical and functional features of two novel variants in two families with GSDIIIa.


Glucose-free/high-protein diet improves hepatomegaly and exercise intolerance in glycogen storage disease type III mice.

  • Serena Pagliarani‎ et al.
  • Biochimica et biophysica acta. Molecular basis of disease‎
  • 2018‎

Glycogen disease type III (GSDIII), a rare incurable autosomal recessive disorder due to glycogen debranching enzyme deficiency, presents with liver, heart and skeletal muscle impairment, hepatomegaly and ketotic hypoglycemia. Muscle weakness usually worsens to fixed myopathy and cardiac involvement may present in about half of the patients during disease. Management relies on careful follow-up of symptoms and diet. No common agreement was reached on sugar restriction and treatment in adulthood. We administered two dietary regimens differing in their protein and carbohydrate content, high-protein (HPD) and high-protein/glucose-free (GFD), to our mouse model of GSDIII, starting at one month of age. Mice were monitored, either by histological, biochemical and molecular analysis and motor functional tests, until 10 months of age. GFD ameliorated muscle performance up to 10 months of age, while HPD showed little improvement only in young mice. In GFD mice, a decreased muscle glycogen content and fiber vacuolization was observed, even in aged animals indicating a protective role of proteins against skeletal muscle degeneration, at least in some districts. Hepatomegaly was reduced by about 20%. Moreover, the long-term administration of GFD did not worsen serum parameters even after eight months of high-protein diet. A decreased phosphofructokinase and pyruvate kinase activities and an increased expression of Krebs cycle and gluconeogenesis genes were seen in the liver of GFD fed mice. Our data show that the concurrent use of proteins and a strictly controlled glucose supply could reduce muscle wasting, and indicate a better metabolic control in mice with a glucose-free/high-protein diet.


Dietary lipids in glycogen storage disease type III: A systematic literature study, case studies, and future recommendations.

  • Alessandro Rossi‎ et al.
  • Journal of inherited metabolic disease‎
  • 2020‎

A potential role of dietary lipids in the management of hepatic glycogen storage diseases (GSDs) has been proposed, but no consensus on management guidelines exists. The aim of this study was to describe current experiences with dietary lipid manipulations in hepatic GSD patients. An international study was set up to identify published and unpublished cases describing hepatic GSD patients with a dietary lipid manipulation. A literature search was performed according to the Cochrane Collaboration methodology through PubMed and EMBASE (up to December 2018). All delegates who attended the dietetics session at the IGSD2017, Groningen were invited to share unpublished cases. Due to multiple biases, only data on GSDIII were presented. A total of 28 cases with GSDIII and a dietary lipid manipulation were identified. Main indications were cardiomyopathy and/or myopathy. A high fat diet was the most common dietary lipid manipulation. A decline in creatine kinase concentrations (n = 19, P < .001) and a decrease in cardiac hypertrophy in paediatric GSDIIIa patients (n = 7, P < .01) were observed after the introduction with a high fat diet. This study presents an international cohort of GSDIII patients with different dietary lipid manipulations. High fat diet may be beneficial in paediatric GSDIIIa patients with cardiac hypertrophy, but careful long-term monitoring for potential complications is warranted, such as growth restriction, liver inflammation, and hepatocellular carcinoma development.


A new variant in PHKA2 is associated with glycogen storage disease type IXa.

  • Carmen Rodríguez-Jiménez‎ et al.
  • Molecular genetics and metabolism reports‎
  • 2017‎

Glucogenosis type IX is caused by pathogenic variants of the PHKA2 gene. Herein, we report a patient with clinical symptoms compatible with Glycogen Storage Disease type IXa. PYGL, PHKA1, PHKA2, PHKB and PHKG2 genes were analyzed by Next Generation Sequencing (NGS). We identified the previously undescribed hemizygous missense variant NM_000292.2(PHKA2):c.1963G > A, p.(Glu655Lys) in PHKA2 exon 18. In silico analyses showed two possible pathogenic consequences: it affects a highly conserved amino acid and disrupts the exon 18 canonical splice donor site. The variant was found as a "de novo" event.


Clinical and biochemical heterogeneity between patients with glycogen storage disease type IA: the added value of CUSUM for metabolic control.

  • Fabian Peeks‎ et al.
  • Journal of inherited metabolic disease‎
  • 2017‎

To study heterogeneity between patients with glycogen storage disease type Ia (GSD Ia), a rare inherited disorder of carbohydrate metabolism caused by the deficiency of glucose-6-phosphatase (G6Pase).


Generation of a human induced pluripotent stem cell line, BRCi009-A, derived from a patient with glycogen storage disease type 1a.

  • Yukimi Katagami‎ et al.
  • Stem cell research‎
  • 2020‎

Glycogen storage disease type 1a (GSD1a) is an autosomal recessive disorder caused by mutations of the glucose-6-phosphatase (G6PC) gene. Mutations of the G6PC gene lead to excessive accumulation of glycogen in the liver, kidney, and intestinal mucosa due to the deficiency of microsomal glucose-6-phosphatase. Human induced pluripotent stem cells (iPSCs) enable the production of patient-derived hepatocytes in culture and are therefore a promising tool for modeling GSD1a. Here, we report the establishment of human iPSCs from a GSD1a patient carrying a G6PC mutation (c.648G > T; p.Leu216 = ).


Glycogen storage diseases: Twenty-seven new variants in a cohort of 125 patients.

  • Fernanda Sperb-Ludwig‎ et al.
  • Molecular genetics & genomic medicine‎
  • 2019‎

Hepatic glycogen storage diseases (GSDs) are a group of rare genetic disorders in which glycogen cannot be metabolized to glucose in the liver because of enzyme deficiencies along the glycogenolytic pathway. GSDs are well-recognized diseases that can occur without the full spectrum, and with overlapping in symptoms.


A Novel Gene Therapy Approach for GSD III Using an AAV Vector Encoding a Bacterial Glycogen Debranching Enzyme.

  • Jeong-A Lim‎ et al.
  • Molecular therapy. Methods & clinical development‎
  • 2020‎

Glycogen storage disease type III (GSD III) is an inherited disorder caused by a deficiency of glycogen debranching enzyme (GDE), which results in the accumulation of abnormal glycogen (limit dextrin) in the cytoplasm of liver, heart, and skeletal muscle cells. Currently, there is no curative treatment for this disease. Gene therapy with adeno-associated virus (AAV) provides an optimal treatment approach for monogenic diseases like GSD III. However, the 4.6 kb human GDE cDNA is too large to be packaged into a single AAV vector due to its small carrying capacity. To overcome this limitation, we tested a new gene therapy approach in GSD IIIa mice using an AAV vector ubiquitously expressing a smaller bacterial GDE, Pullulanase, whose cDNA is 2.2 kb. Intravenous injection of the AAV vector (AAV9-CB-Pull) into 2-week-old GSD IIIa mice blocked glycogen accumulation in both cardiac and skeletal muscles, but not in the liver, accompanied by the improvement of muscle functions. Subsequent treatment with a liver-restricted AAV vector (AAV8-LSP-Pull) reduced liver glycogen content by 75% and reversed hepatic fibrosis while maintaining the effect of AAV9-CB-Pull treatment on heart and skeletal muscle. Our results suggest that AAV-mediated gene therapy with Pullulanase is a possible treatment for GSD III.


Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations.

  • Liting Zhai‎ et al.
  • Nature communications‎
  • 2016‎

Glycogen is a branched glucose polymer and serves as an important energy store. Its debranching is a critical step in its mobilization. In animals and fungi, the 170 kDa glycogen debranching enzyme (GDE) catalyses this reaction. GDE deficiencies in humans are associated with severe diseases collectively termed glycogen storage disease type III (GSDIII). We report crystal structures of GDE and its complex with oligosaccharides, and structure-guided mutagenesis and biochemical studies to assess the structural observations. These studies reveal that distinct domains in GDE catalyse sequential reactions in glycogen debranching, the mechanism of their catalysis and highly specific substrate recognition. The unique tertiary structure of GDE provides additional contacts to glycogen besides its active sites, and our biochemical experiments indicate that they mediate its recruitment to glycogen and regulate its activity. Combining the understanding of the GDE catalysis and functional characterizations of its disease-causing mutations provides molecular insights into GSDIII.


Deep morphological analysis of muscle biopsies from type III glycogenesis (GSDIII), debranching enzyme deficiency, revealed stereotyped vacuolar myopathy and autophagy impairment.

  • Pascal Laforêt‎ et al.
  • Acta neuropathologica communications‎
  • 2019‎

Glycogen storage disorder type III (GSDIII), or debranching enzyme (GDE) deficiency, is a rare metabolic disorder characterized by variable liver, cardiac, and skeletal muscle involvement. GSDIII manifests with liver symptoms in infancy and muscle involvement during early adulthood. Muscle biopsy is mainly performed in patients diagnosed in adulthood, as routine diagnosis relies on blood or liver GDE analysis, followed by AGL gene sequencing. The GSDIII mouse model recapitulate the clinical phenotype in humans, and a nearly full rescue of muscle function was observed in mice treated with the dual AAV vector expressing the GDE transgene.In order to characterize GSDIII muscle morphological spectrum and identify novel disease markers and pathways, we performed a large international multicentric morphological study on 30 muscle biopsies from GSDIII patients. Autophagy flux studies were performed in human muscle biopsies and muscles from GSDIII mice. The human muscle biopsies revealed a typical and constant vacuolar myopathy, characterized by multiple and variably sized vacuoles filled with PAS-positive material. Using electron microscopy, we confirmed the presence of large non-membrane bound sarcoplasmic deposits of normally structured glycogen as well as smaller rounded sac structures lined by a continuous double membrane containing only glycogen, corresponding to autophagosomes. A consistent SQSTM1/p62 decrease and beclin-1 increase in human muscle biopsies suggested an enhanced autophagy. Consistent with this, an increase in the lipidated form of LC3, LC3II was found in patients compared to controls. A decrease in SQSTM1/p62 was also found in the GSDIII mouse model.In conclusion, we characterized the morphological phenotype in GSDIII muscle and demonstrated dysfunctional autophagy in GSDIII human samples.These findings suggest that autophagic modulation combined with gene therapy might be considered as a novel treatment for GSDIII.


Defects of Vps15 in skeletal muscles lead to autophagic vacuolar myopathy and lysosomal disease.

  • Ivan Nemazanyy‎ et al.
  • EMBO molecular medicine‎
  • 2013‎

The complex of Vacuolar Protein Sorting 34 and 15 (Vps34 and Vps15) has Class III phosphatidylinositol 3-kinase activity and putative roles in nutrient sensing, mammalian Target Of Rapamycin (mTOR) activation by amino acids, cell growth, vesicular trafficking and autophagy. Contrary to expectations, here we show that Vps15-deficient mouse tissues are competent for LC3-positive autophagosome formation and maintain mTOR activation. However, an impaired lysosomal function in mutant cells is traced by accumulation of adaptor protein p62, LC3 and Lamp2 positive vesicles, which can be reverted to normal levels after ectopic overexpression of Vps15. Mice lacking Vps15 in skeletal muscles, develop a severe myopathy. Distinct from the autophagy deficient Atg7(-/-) mutants, pathognomonic morphological hallmarks of autophagic vacuolar myopathy (AVM) are observed in Vps15(-/-) mutants, including elevated creatine kinase plasma levels, accumulation of autophagosomes, glycogen and sarcolemmal features within the fibres. Importantly, Vps34/Vps15 overexpression in myoblasts of Danon AVM disease patients alleviates the glycogen accumulation. Thus, the activity of the Vps34/Vps15 complex is critical in disease conditions such as AVMs, and possibly a variety of other lysosomal storage diseases.


GAA compound heterozygous mutations associated with autophagic impairment cause cerebral infarction in Pompe disease.

  • Xiaodong Jia‎ et al.
  • Aging‎
  • 2020‎

Clinical manifestations of the late-onset adult Pompe disease (glycogen storage disease type II) are heterogeneous. To identify genetic defects of a special patient population with cerebrovascular involvement as the main symptom, we performed whole-genome sequencing (WGS) analysis on a consanguineous Chinese family of total eight members including two Pompe siblings both had cerebral infarction. Two novel compound heterozygous variants were found in GAA gene: c.2238G>C in exon 16 and c.1388_1406del19 in exon 9 in the two patients. We verified the function of the two mutations in leading to defects in GAA protein expression and enzyme activity that are associated with autophagic impairment. We further performed a gut microbiome metagenomics analysis, found that the child's gut microbiome metagenome is very similar to his mother. Our finding enriches the gene mutation spectrum of Pompe disease, and identified the association of the two new mutations with autophagy impairment. Our data also indicates that gut microbiome could be shared within Pompe patient and cohabiting family members, and the abnormal microbiome may affect the blood biochemical index. Our study also highlights the importance of deep DNA sequencing in potential clinical applications.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: