Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 34 papers

Altered electrical properties in skeletal muscle of mice with glycogen storage disease type II.

  • Janice A Nagy‎ et al.
  • Scientific reports‎
  • 2022‎

Electrical impedance methods, including electrical impedance myography, are increasingly being used as biomarkers of muscle health since they measure passive electrical properties of muscle that alter in disease. One disorder, Pompe Disease (Glycogen storage disease type II (GSDII)), remains relatively unstudied. This disease is marked by dramatic accumulation of intracellular myofiber glycogen. Here we assessed the electrical properties of skeletal muscle in a model of GSDII, the Pompe6neo/6neo (Pompe) mouse. Ex vivo impedance measurements of gastrocnemius (GA) were obtained using a dielectric measuring cell in 30-week-old female Pompe (N = 10) and WT (N = 10) mice. Longitudinal and transverse conductivity, σ, and the relative permittivity, εr, and Cole-Cole complex resistivity parameters at 0 Hz and infinite frequency, ρo and ρ∞, respectively, and the intracellular resistivity, ρintracellular were determined from the impedance data. Glycogen content (GC) was visualized histologically and quantified biochemically. At frequencies > 1 MHz, Pompe mice demonstrated significantly decreased longitudinal and transverse conductivity, increased Cole-Cole parameters, ρo and ρo-ρ∞, and decreased ρintracellular. Changes in longitudinal conductivity and ρintracellular correlated with increased GC in Pompe animals. Ex vivo high frequency impedance measures are sensitive to alterations in intracellular myofiber features considered characteristic of GSDII, making them potentially useful measures of disease status.


Mitochondrial reprogramming in peripheral blood mononuclear cells of patients with glycogen storage disease type Ia.

  • Alessandro Rossi‎ et al.
  • Genes & nutrition‎
  • 2023‎

Glycogen storage disease type Ia (GSDIa) is an inborn metabolic disorder caused by the deficiency of glucose-6-phospatase-α (G6Pase-α) leading to mitochondrial dysfunction. It remains unclear whether mitochondrial dysfunction is present in patients' peripheral blood mononuclear cells (PBMC) and whether dietary treatment can play a role. The aim of this study was to investigate mitochondrial function in PBMC of GSDIa patients.


A Prospective Study on Continuous Glucose Monitoring in Glycogen Storage Disease Type Ia: Toward Glycemic Targets.

  • Alessandro Rossi‎ et al.
  • The Journal of clinical endocrinology and metabolism‎
  • 2022‎

Although previous research has shown the benefit of continuous glucose monitoring (CGM) for hepatic glycogen storage diseases (GSDs), current lack of prospectively collected CGM metrics and glycemic targets for CGM-derived outcomes in the hepatic GSD population limits its use.


Dietary lipids in glycogen storage disease type III: A systematic literature study, case studies, and future recommendations.

  • Alessandro Rossi‎ et al.
  • Journal of inherited metabolic disease‎
  • 2020‎

A potential role of dietary lipids in the management of hepatic glycogen storage diseases (GSDs) has been proposed, but no consensus on management guidelines exists. The aim of this study was to describe current experiences with dietary lipid manipulations in hepatic GSD patients. An international study was set up to identify published and unpublished cases describing hepatic GSD patients with a dietary lipid manipulation. A literature search was performed according to the Cochrane Collaboration methodology through PubMed and EMBASE (up to December 2018). All delegates who attended the dietetics session at the IGSD2017, Groningen were invited to share unpublished cases. Due to multiple biases, only data on GSDIII were presented. A total of 28 cases with GSDIII and a dietary lipid manipulation were identified. Main indications were cardiomyopathy and/or myopathy. A high fat diet was the most common dietary lipid manipulation. A decline in creatine kinase concentrations (n = 19, P < .001) and a decrease in cardiac hypertrophy in paediatric GSDIIIa patients (n = 7, P < .01) were observed after the introduction with a high fat diet. This study presents an international cohort of GSDIII patients with different dietary lipid manipulations. High fat diet may be beneficial in paediatric GSDIIIa patients with cardiac hypertrophy, but careful long-term monitoring for potential complications is warranted, such as growth restriction, liver inflammation, and hepatocellular carcinoma development.


A splice-switching oligonucleotide treatment ameliorates glycogen storage disease type 1a in mice with G6PC c.648G>T.

  • Kentaro Ito‎ et al.
  • The Journal of clinical investigation‎
  • 2023‎

Glycogen storage disease type 1a (GSD1a) is caused by a congenital deficiency of glucose-6-phosphatase-α (G6Pase-α, encoded by G6PC), which is primarily associated with life-threatening hypoglycemia. Although strict dietary management substantially improves life expectancy, patients still experience intermittent hypoglycemia and develop hepatic complications. Emerging therapies utilizing new modalities such as adeno-associated virus and mRNA with lipid nanoparticles are under development for GSD1a but potentially require complicated glycemic management throughout life. Here, we present an oligonucleotide-based therapy to produce intact G6Pase-α from a pathogenic human variant, G6PC c.648G>T, the most prevalent variant in East Asia causing aberrant splicing of G6PC. DS-4108b, a splice-switching oligonucleotide, was designed to correct this aberrant splicing, especially in liver. We generated a mouse strain with homozygous knockin of this variant that well reflected the pathophysiology of patients with GSD1a. DS-4108b recovered hepatic G6Pase activity through splicing correction and prevented hypoglycemia and various hepatic abnormalities in the mice. Moreover, DS-4108b had long-lasting efficacy of more than 12 weeks in mice that received a single dose and had favorable pharmacokinetics and tolerability in mice and monkeys. These findings together indicate that this oligonucleotide-based therapy could provide a sustainable and curative therapeutic option under easy disease management for GSD1a patients with G6PC c.648G>T.


Development of a clinical assay for detection of GAA mutations and characterization of the GAA mutation spectrum in a Canadian cohort of individuals with glycogen storage disease, type II.

  • M E McCready‎ et al.
  • Molecular genetics and metabolism‎
  • 2007‎

Glycogen storage disease, type II (GSDII; Pompe disease; acid maltase deficiency) is an autosomal recessive disease caused by mutations of the GAA gene that lead to deficient acid alpha-glucosidase enzyme activity and accumulation of lysosomal glycogen. Although measurement of acid alpha-glucosidase enzyme activity in fibroblasts remains the gold standard for the diagnosis of GSDII, analysis of the GAA gene allows confirmation of clinical or biochemical diagnoses and permits predictive and prenatal testing of individuals at risk of developing GSDII. We have developed a clinical molecular test for the detection of GAA mutations based on cycle sequencing of the complete coding region. GAA exons 2-20 are amplified in six independent PCR using intronic primers. The resulting products were purified and sequenced. Preliminary studies using this protocol were conducted with DNA from 21 GSDII-affected individuals from five centers across Canada. In total, 41 of 42 mutations were detected (96.7% detection rate). Mutations spanned intron 1 through exon 19 and included nine novel mutations. Haplotype analysis of recurrent mutations further suggested that three of these mutations are likely to have occurred independently at least twice. Additionally, we report the identification of the c.-32-13T>G GAA mutation in an individual with infantile variant GSDII, despite reports of this mutation being associated almost exclusively with late-onset forms of the disease. The development of a clinical molecular test provides an important tool for the management and counseling of families and individuals with GSDII, and has provided useful information about the GAA mutation spectrum in Canada.


Clinical and biochemical heterogeneity between patients with glycogen storage disease type IA: the added value of CUSUM for metabolic control.

  • Fabian Peeks‎ et al.
  • Journal of inherited metabolic disease‎
  • 2017‎

To study heterogeneity between patients with glycogen storage disease type Ia (GSD Ia), a rare inherited disorder of carbohydrate metabolism caused by the deficiency of glucose-6-phosphatase (G6Pase).


Correction of metabolic abnormalities in a mouse model of glycogen storage disease type Ia by CRISPR/Cas9-based gene editing.

  • Irina Arnaoutova‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2021‎

Glycogen storage disease type Ia (GSD-Ia), deficient in glucose-6-phosphatase-α (G6PC), is characterized by impaired glucose homeostasis and a hallmark of fasting hypoglycemia. We have developed a recombinant adeno-associated virus (rAAV) vector-mediated gene therapy for GSD-Ia that is currently in a phase I/II clinical trial. While therapeutic expression of the episomal rAAV-G6PC clinical vector is stable in mice, the long-term durability of expression in humans is currently being established. Here we evaluated CRISPR/Cas9-based in vivo genome editing technology to correct a prevalent pathogenic human variant, G6PC-p.R83C. We have generated a homozygous G6pc-R83C mouse strain and shown that the G6pc-R83C mice manifest impaired glucose homeostasis and frequent hypoglycemic seizures, mimicking the pathophysiology of GSD-Ia patients. We then used a CRISPR/Cas9-based gene editing system to treat newborn G6pc-R83C mice and showed that the treated mice grew normally to age 16 weeks without hypoglycemia seizures. The treated G6pc-R83C mice, expressing ≥ 3% of normal hepatic G6Pase-α activity, maintained glucose homeostasis, displayed normalized blood metabolites, and could sustain 24 h of fasting. Taken together, we have developed a second-generation therapy in which in vivo correction of a pathogenic G6PC-p.R83C variant in its native genetic locus could lead to potentially permanent, durable, long-term correction of the GSD-Ia phenotype.


Replacing acid alpha-glucosidase in Pompe disease: recombinant and transgenic enzymes are equipotent, but neither completely clears glycogen from type II muscle fibers.

  • Nina Raben‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2005‎

Pompe disease (type II glycogen storage disease) is an autosomal recessive disorder caused by a deficiency of lysosomal acid alpha-glucosidase (GAA) leading to the accumulation of glycogen in the lysosomes primarily in cardiac and skeletal muscle. The recombinant human GAA (rhGAA) is currently in clinical trials for enzyme replacement therapy of Pompe disease. Both clinical data and the results of preclinical studies in our knockout model of this disease show that rhGAA is much more effective in resolving the cardiomyopathy than the skeletal muscle myopathy. By contrast, another form of human GAA--transgenic enzyme constitutively produced in liver and secreted into the bloodstream of knockout mice (Gaa-/-)--completely prevented both cardiac and skeletal muscle glycogen accumulation. In the experiments reported here, the transgenic enzyme was much less efficient when delivered to skeletal muscle after significant amounts of glycogen had already accumulated. Furthermore, the transgenic enzyme and the rhGAA have similar therapeutic effects, and both efficiently clear glycogen from cardiac muscle and type I muscle fibers, but not type II fibers. Low abundance of proteins involved in endocytosis and trafficking of lysosomal enzymes combined with increased autophagy in type II fibers may explain the resistance to therapy.


Glycogen Reduction in Myotubes of Late-Onset Pompe Disease Patients Using Antisense Technology.

  • Elisa Goina‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2017‎

Glycogen storage disease type II (GSDII) is a lysosomal disorder caused by the deficient activity of acid alpha-glucosidase (GAA) enzyme, leading to the accumulation of glycogen within the lysosomes. The disease has been classified in infantile and late-onset forms. Most late-onset patients share a splicing mutation c.-32-13T > G in intron 1 of the GAA gene that prevents efficient recognition of exon 2 by the spliceosome. In this study, we have mapped the splicing silencers of GAA exon 2 and developed antisense morpholino oligonucleotides (AMOs) to inhibit those regions and rescue normal splicing in the presence of the c.-32-13T > G mutation. Using a minigene approach and patient fibroblasts, we successfully increased inclusion of exon 2 in the mRNA and GAA enzyme production by targeting a specific silencer with a combination of AMOs. Most importantly, the use of these AMOs in patient myotubes results in a decreased accumulation of glycogen. To our knowledge, this is the only therapeutic approach resulting in a decrease of glycogen accumulation in patient tissues beside enzyme replacement therapy (ERT) and TFEB overexpression. As a result, it may represent a highly novel and promising therapeutic line for GSDII.


Dysregulation of multiple facets of glycogen metabolism in a murine model of Pompe disease.

  • Kristin M Taylor‎ et al.
  • PloS one‎
  • 2013‎

Pompe disease, also known as glycogen storage disease (GSD) type II, is caused by deficiency of lysosomal acid α-glucosidase (GAA). The resulting glycogen accumulation causes a spectrum of disease severity ranging from a rapidly progressive course that is typically fatal by 1 to 2 years of age to a slower progressive course that causes significant morbidity and early mortality in children and adults. The aim of this study is to better understand the biochemical consequences of glycogen accumulation in the Pompe mouse. We evaluated glycogen metabolism in heart, triceps, quadriceps, and liver from wild type and several strains of GAA(-/-) mice. Unexpectedly, we observed that lysosomal glycogen storage correlated with a robust increase in factors that normally promote glycogen biosynthesis. The GAA(-/-) mouse strains were found to have elevated glycogen synthase (GS), glycogenin, hexokinase, and glucose-6-phosphate (G-6-P, the allosteric activator of GS). Treating GAA(-/-) mice with recombinant human GAA (rhGAA) led to a dramatic reduction in the levels of glycogen, GS, glycogenin, and G-6-P. Lysosomal glycogen storage also correlated with a dysregulation of phosphorylase, which normally breaks down cytoplasmic glycogen. Analysis of phosphorylase activity confirmed a previous report that, although phosphorylase protein levels are identical in muscle lysates from wild type and GAA(-/-) mice, phosphorylase activity is suppressed in the GAA(-/-) mice in the absence of AMP. This reduction in phosphorylase activity likely exacerbates lysosomal glycogen accumulation. If the dysregulation in glycogen metabolism observed in the mouse model of Pompe disease also occurs in Pompe patients, it may contribute to the observed broad spectrum of disease severity.


Inhibition of glycogen biosynthesis via mTORC1 suppression as an adjunct therapy for Pompe disease.

  • Karen M Ashe‎ et al.
  • Molecular genetics and metabolism‎
  • 2010‎

Pompe disease, also known as glycogen storage disease (GSD) type II, is caused by deficiency of lysosomal acid alpha-glucosidase (GAA). The resulting glycogen accumulation causes a spectrum of disease severity ranging from a rapidly progressive course that is typically fatal by 1-2years of age to a more slowly progressive course that causes significant morbidity and early mortality in children and adults. Recombinant human GAA (rhGAA) improves clinical outcomes with variable results. Adjunct therapy that increases the effectiveness of rhGAA may benefit some Pompe patients. Co-administration of the mTORC1 inhibitor rapamycin with rhGAA in a GAA knockout mouse reduced muscle glycogen content more than rhGAA or rapamycin alone. These results suggest mTORC1 inhibition may benefit GSDs that involve glycogen accumulation in muscle.


The Respiratory Phenotype of Pompe Disease Mouse Models.

  • Anna F Fusco‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

Pompe disease is a glycogen storage disease caused by a deficiency in acid α-glucosidase (GAA), a hydrolase necessary for the degradation of lysosomal glycogen. This deficiency in GAA results in muscle and neuronal glycogen accumulation, which causes respiratory insufficiency. Pompe disease mouse models provide a means of assessing respiratory pathology and are important for pre-clinical studies of novel therapies that aim to treat respiratory dysfunction and improve quality of life. This review aims to compile and summarize existing manuscripts that characterize the respiratory phenotype of Pompe mouse models. Manuscripts included in this review were selected utilizing specific search terms and exclusion criteria. Analysis of these findings demonstrate that Pompe disease mouse models have respiratory physiological defects as well as pathologies in the diaphragm, tongue, higher-order respiratory control centers, phrenic and hypoglossal motor nuclei, phrenic and hypoglossal nerves, neuromuscular junctions, and airway smooth muscle. Overall, the culmination of these pathologies contributes to severe respiratory dysfunction, underscoring the importance of characterizing the respiratory phenotype while developing effective therapies for patients.


Newborn Screening for Pompe Disease.

  • Takaaki Sawada‎ et al.
  • International journal of neonatal screening‎
  • 2020‎

Glycogen storage disease type II (also known as Pompe disease (PD)) is an autosomal recessive disorder caused by defects in α-glucosidase (AαGlu), resulting in lysosomal glycogen accumulation in skeletal and heart muscles. Accumulation and tissue damage rates depend on residual enzyme activity. Enzyme replacement therapy (ERT) should be started before symptoms are apparent in order to achieve optimal outcomes. Early initiation of ERT in infantile-onset PD improves survival, reduces the need for ventilation, results in earlier independent walking, and enhances patient quality of life. Newborn screening (NBS) is the optimal approach for early diagnosis and treatment of PD. In NBS for PD, measurement of AαGlu enzyme activity in dried blood spots (DBSs) is conducted using fluorometry, tandem mass spectrometry, or digital microfluidic fluorometry. The presence of pseudodeficiency alleles, which are frequent in Asian populations, interferes with NBS for PD, and current NBS systems cannot discriminate between pseudodeficiency and cases with PD or potential PD. The combination of GAA gene analysis with NBS is essential for definitive diagnoses of PD. In this review, we introduce our experiences and discuss NBS programs for PD implemented in various countries.


Autophagy dysregulation in Danon disease.

  • Anna Chiara Nascimbeni‎ et al.
  • Cell death & disease‎
  • 2017‎

The autophagy-lysosome system is critical for muscle homeostasis and defects in lysosomal function result in a number of inherited muscle diseases, generally referred to as autophagic vacuolar myopathies (AVMs). Among them, Danon Disease (DD) and glycogen storage disease type II (GSDII) are due to primary lysosomal protein defects. DD is characterized by mutations in the lysosome-associated membrane protein 2 (LAMP2) gene. The DD mouse model suggests that inefficient lysosome biogenesis/maturation and impairment of autophagosome-lysosome fusion contribute to the pathogenesis of muscle wasting. To define the role of autophagy in human disease, we analyzed the muscle biopsies of DD patients and monitored autophagy and several autophagy regulators like transcription factor EB (TFEB), a master player in lysosomal biogenesis, and vacuolar protein sorting 15 (VPS15), a critical factor for autophagosome and endosome biogenesis and trafficking. Furthermore, to clarify whether the mechanisms involved are shared by other AVMs, we extended our mechanistic study to a group of adult GSDII patients. Our data show that, similar to GSDII, DD patients display an autophagy block that correlates with the severity of the disease. Both DD and GSDII show accumulation and altered localization of VPS15 in autophagy-incompetent fibers. However, TFEB displays a different pattern between these two lysosomal storage diseases. Although in DD TFEB and downstream targets are activated, in GSDII patients TFEB is inhibited. These findings suggest that these regulatory factors may have an active role in the pathogenesis of these diseases. Therapeutic approaches targeted to normalize these factors and restore the autophagic flux in these patients should therefore be considered.


The impact of antibodies in late-onset Pompe disease: a case series and literature review.

  • Trusha T Patel‎ et al.
  • Molecular genetics and metabolism‎
  • 2012‎

Pompe disease (glycogen storage disease type II, GSD II) is an autosomal recessive disease caused by a deficiency of acid α-glucosidase (GAA), leading to lysosomal glycogen accumulation in various tissues, most notably cardiac, skeletal and smooth muscle. While both infantile and late-onset patients have benefited greatly from alglucosidase alfa (Myozyme®) enzyme replacement therapy (ERT), a subgroup of patients does not demonstrate as pronounced a response as others. Various factors have been identified which may help predict the response to ERT in infantile Pompe disease patients. High, sustained antibody titers (HSAT) have been correlated with poor response to ERT in infantile Pompe cases. However, the literature on the role of antibodies in the late-onset Pompe disease (LOPD) population is limited. Our literature review highlights the need for studies to explore the potential impact of antibodies in LOPD. Further supporting the importance of this issue, our retrospective chart review of sixty LOPD patients revealed that six of these sixty (10%) LOPD patients developed HSAT of ≥1:51,200 on two or more occasions at or beyond 6 months on ERT. Here, we present a series of three of these six LOPD patients for whom detailed antibody data and clinical data were available for greater than 1 year on ERT. These three patients developed HSAT corresponding with clinical decline as demonstrated by pulmonary function, quality of life, and motor function testing, affirming the development of HSAT in a subset of patients with LOPD, and its potentially negative impact on clinical response to ERT. The findings of our study and literature review lead us to conclude that there is a strong indication for systematic studies to accurately delineate the potential impact of antibodies in LOPD.


Transcription factor EB (TFEB) is a new therapeutic target for Pompe disease.

  • Carmine Spampanato‎ et al.
  • EMBO molecular medicine‎
  • 2013‎

A recently proposed therapeutic approach for lysosomal storage disorders (LSDs) relies upon the ability of transcription factor EB (TFEB) to stimulate autophagy and induce lysosomal exocytosis leading to cellular clearance. This approach is particularly attractive in glycogen storage disease type II [a severe metabolic myopathy, Pompe disease (PD)] as the currently available therapy, replacement of the missing enzyme acid alpha-glucosidase, fails to reverse skeletal muscle pathology. PD, a paradigm for LSDs, is characterized by both lysosomal abnormality and dysfunctional autophagy. Here, we show that TFEB is a viable therapeutic target in PD: overexpression of TFEB in a new muscle cell culture system and in mouse models of the disease reduced glycogen load and lysosomal size, improved autophagosome processing, and alleviated excessive accumulation of autophagic vacuoles. Unexpectedly, the exocytosed vesicles were labelled with lysosomal and autophagosomal membrane markers, suggesting that TFEB induces exocytosis of autophagolysosomes. Furthermore, the effects of TFEB were almost abrogated in the setting of genetically suppressed autophagy, supporting the role of autophagy in TFEB-mediated cellular clearance.


Efficacy and safety of enzyme replacement therapy with alglucosidase alfa for the treatment of patients with infantile-onset Pompe disease: a systematic review and metanalysis.

  • A D Dornelles‎ et al.
  • Frontiers in pediatrics‎
  • 2024‎

Pompe disease (PD) is a glycogen disorder caused by the deficient activity of acid alpha-glucosidase (GAA). We sought to review the latest available evidence on the safety and efficacy of recombinant human GAA enzyme replacement therapy (ERT) for infantile-onset PD (IOPD).


Extraocular muscle function in adult-onset Pompe disease tested by saccadic eye movements.

  • E Anagnostou‎ et al.
  • Neuromuscular disorders : NMD‎
  • 2014‎

Glycogen storage disease type II (Pompe disease) affects mainly proximal skeletal muscles. Despite older histological evidence of extraocular muscle involvement, ocular motor palsies or other eye movement abnormalities are not considered part of the clinical picture. We investigated the dynamics of saccadic eye movements of five patients suffering from late-onset Pompe disease and compared their performance to that of age matched healthy controls. Horizontal rightward and leftward saccades were recorded binocularly, while subjects looked at LED targets placed at ±5°, 10° and 15° eccentricities. No differences in saccade amplitudes, peak velocities or durations were observed between controls and patients. More specifically, for 5° saccades, patients had a mean peak velocity of 146°/s with duration of 76ms. For 10° and 15° saccades these values were 258°/s, 86ms and 324°/s, 101ms respectively, thereby lying well within one standard deviation of the mean of normal data. Moreover, saccadic amplitude accuracy was also unimpaired. These results indicate that patients with late onset Pompe disease perform fast and accurate horizontal saccades without evidence of muscle paresis or other ocular motor abnormalities. Reported histological abnormalities of extraocular muscles do not appear to have a phenotypic impact.


GAA compound heterozygous mutations associated with autophagic impairment cause cerebral infarction in Pompe disease.

  • Xiaodong Jia‎ et al.
  • Aging‎
  • 2020‎

Clinical manifestations of the late-onset adult Pompe disease (glycogen storage disease type II) are heterogeneous. To identify genetic defects of a special patient population with cerebrovascular involvement as the main symptom, we performed whole-genome sequencing (WGS) analysis on a consanguineous Chinese family of total eight members including two Pompe siblings both had cerebral infarction. Two novel compound heterozygous variants were found in GAA gene: c.2238G>C in exon 16 and c.1388_1406del19 in exon 9 in the two patients. We verified the function of the two mutations in leading to defects in GAA protein expression and enzyme activity that are associated with autophagic impairment. We further performed a gut microbiome metagenomics analysis, found that the child's gut microbiome metagenome is very similar to his mother. Our finding enriches the gene mutation spectrum of Pompe disease, and identified the association of the two new mutations with autophagy impairment. Our data also indicates that gut microbiome could be shared within Pompe patient and cohabiting family members, and the abnormal microbiome may affect the blood biochemical index. Our study also highlights the importance of deep DNA sequencing in potential clinical applications.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: