Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 23 papers

Characteristics and molecular identification of glyceraldehyde-3-phosphate dehydrogenases in poplar.

  • Hui Wei‎ et al.
  • International journal of biological macromolecules‎
  • 2022‎

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an essential enzyme of the glycolysis metabolic pathway, plays a vital role in carbon metabolism, plant development, and stress resistance. As a kind of woody plant, poplars are widely cultivated for afforestation. Although the whole genome data of poplars have been published, little information is known about the GAPDH family of genes in poplar. This study performed a genome-wide identification of the poplar GAPDH family, and 13 determined PtGAPDH genes were identified from poplar genome. Phylogenetic tree showed that the PtGAPDH members were divided into PtGAPA/B, PtGAPC, PtGAPCp, and PtGAPN groups. A total of 13 PtGAPDH genes were distributed on eight chromosomes, 13 gene pairs belonging to segmented replication events were detected in poplar, and 23 collinearity gene pairs were determined between poplar and willow. The PtGAPDHcis-acting elements associated with growth and development as well as stress resistance revealed that PtGAPDHs might be involved in these processes. The phosphoglycerate kinase (PGK) and triose-phosphate isomerase (TPI) were predicted as the putative interaction proteins of PtGAPDHs. Gene ontology (GO) analysis showed that PtGAPDHs play a crucial role in the oxidation and reduction processes. PtGAPDH expression levels were induced by NaCl and PEG treatments, which implied that PtGAPDHs might be involved in stress response. Overexpression of PtGAPC1 significantly changed the contents of lipid and carbohydrate metabolites, which indicated that PtGAPC1 plays an essential role in metabolic regulation. This study highlights the characterizations and profiles of PtGAPDHs and reveals that PtGAPC1 is involved in the loop of lipid and carbohydrate metabolisms.


The Role of Glyceraldehyde-3-Phosphate Dehydrogenases in NADPH Supply in the Oleaginous Filamentous Fungus Mortierella alpina.

  • Shunxian Wang‎ et al.
  • Frontiers in microbiology‎
  • 2020‎

Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a highly conserved enzyme within the glycolytic pathway. GAPDH catalyzes the transformation of glyceraldehyde 3-phosphate to glycerate-1, 3-biphosphate, a process accompanied by the production of NADH. Its role in the NADPH production system of the oleaginous filamentous fungus Mortierella alpina was explored. Two copies of genes encoding GAPDH were characterized, then endogenously overexpressed and silenced through Agrobacterium tumefaciens-mediated transformation methods. The results showed that the lipid content of the overexpression strain, MA-GAPDH1, increased by around 13%. RNA interference of GAPDH1 and GAPDH2 (MA-RGAPDH1 and MA-RGAPDH2) greatly reduced the biomass of the fungus. The lipid content of MA-RGAPDH2 was found to be about 23% higher than that of the control. Both of the lipid-increasing transformants showed a higher NADPH/NADP ratio. Analysis of metabolite and enzyme expression levels revealed that the increased lipid content of MA-GAPDH1 was due to enhanced flux of glyceraldehyde-3-phosphate to glycerate-1, 3-biphosphate. MA-RGAPDH2 was found to strengthen the metabolic flux of dihydroxyacetone phosphate to glycerol-3-phosphate. Thus, GAPDH1 contributes to NADPH supply and lipid accumulation in M. alpina, and has a distinct role from GAPDH2.


The Meloidogyne incognita Nuclear Effector MiEFF1 Interacts With Arabidopsis Cytosolic Glyceraldehyde-3-Phosphate Dehydrogenases to Promote Parasitism.

  • Nhat My Truong‎ et al.
  • Frontiers in plant science‎
  • 2021‎

Root-knot nematodes are obligate endoparasites that maintain a biotrophic relationship with their hosts over a period of several weeks. They induce the differentiation of root cells into specialized multinucleate hypertrophied feeding cells known as giant cells. Nematode effectors synthesized in the esophageal glands and injected into the plant tissue through the syringe-like stylet play a key role in giant cell ontogenesis. The Meloidogyne incognita MiEFF1 is one of the rare effectors of phytopathogenic nematodes to have been located in vivo in feeding cells. This effector specifically targets the giant cell nuclei. We investigated the Arabidopsis functions modulated by this effector, by using a yeast two-hybrid approach to identify its host targets. We characterized a universal stress protein (USP) and cytosolic glyceraldehyde-3-phosphate dehydrogenases (GAPCs) as the targets of MiEFF1. We validated the interaction of MiEFF1 with these host targets in the plant cell nucleus, by bimolecular fluorescence complementation (BiFC). A functional analysis with Arabidopsis GUS reporter lines and knockout mutant lines showed that GAPCs were induced in giant cells and that their non-metabolic functions were required for root-knot nematode infection. These susceptibility factors are potentially interesting targets for the development of new root-knot nematode control strategies.


Regulation of Intersubunit Interactions in Homotetramer of Glyceraldehyde-3-Phosphate Dehydrogenases upon Its Immobilization in Protein-Kappa-Carrageenan Gels.

  • Olga Makshakova‎ et al.
  • Polymers‎
  • 2023‎

Polysaccharides, being biocompatible and biodegradable polymers, are highly attractive as materials for protein delivery systems. However, protein-polysaccharide interactions may lead to protein structural transformation. In the current study, we analyze the structural adjustment of a homotetrameric protein, glyceraldehyde-3-phosphate dehydrogenase (GAPDH), upon its interactions with both flexible coil chain and the rigid helix of κ-carrageenan. FTIR spectroscopy was used to probe the secondary structures of both protein and polysaccharide. Electrostatically driven protein-polysaccharide interactions in dilute solutions resulted in an insoluble complex formation with a constant κ-carrageenan/GAPDH ratio of 0.2, which amounts to 75 disaccharide units per mole of protein tetramer. Upon interactions with both coiled and helical polysaccharides, a weakening of the intersubunit interactions was revealed and attributed to a partial GAPDH tetramer dissociation. In turn, protein distorted the helical conformation of κ-carrageenan when co-gelled. Molecular modeling showed the energy favorable interactions between κ-carrageenan and GAPDH at different levels of oligomerization. κ-Carrageenan binds in the region of the NAD-binding groove and the S-loop in OR contact, which may stabilize the OP dimers. The obtained results highlight the mutual conformational adjustment of oligomeric GAPDH and κ-carrageenan upon interaction and the stabilization of GAPDH's dissociated forms upon immobilization in polysaccharide gels.


Coat protein of rice stripe virus enhances autophagy activity through interaction with cytosolic glyceraldehyde-3-phosphate dehydrogenases, a negative regulator of plant autophagy.

  • Wanying Zhao‎ et al.
  • Stress biology‎
  • 2023‎

Viral infection commonly induces autophagy, leading to antiviral responses or conversely, promoting viral infection or replication. In this study, using the experimental plant Nicotiana benthamiana, we demonstrated that the rice stripe virus (RSV) coat protein (CP) enhanced autophagic activity through interaction with cytosolic glyceraldehyde-3-phosphate dehydrogenase 2 (GAPC2), a negative regulator of plant autophagy that binds to an autophagy key factor, autophagy-related protein 3 (ATG3). Competitive pull-down and co-immunoprecipitation (Co-IP)assays showed that RSV CP activated autophagy by disrupting the interaction between GAPC2 and ATG3. An RSV CP mutant that was unable to bind GAPC2 failed to disrupt the interaction between GAPC2 and ATG3 and therefore lost its ability to induce autophagy. RSV CP enhanced the autophagic degradation of a viral movement protein (MP) encoded by a heterologous virus, citrus leaf blotch virus (CLBV). However, the autophagic degradation of RSV-encoded MP and RNA-silencing suppressor (NS3) proteins was inhibited in the presence of CP, suggesting that RSV CP can protect MP and NS3 against autophagic degradation. Moreover, in the presence of MP, RSV CP could induce the autophagic degradation of a remorin protein (NbREM1), which negatively regulates RSV infection through the inhibition of viral cell-to-cell movement. Overall, our results suggest that RSV CP induces a selective autophagy to suppress the antiviral factors while protecting RSV-encoded viral proteins against autophagic degradation through an as-yet-unknown mechanism. This study showed that RSV CP plays dual roles in the autophagy-related interaction between plants and viruses.


Cloning and heterologous overexpression of three gap genes encoding different glyceraldehyde-3-phosphate dehydrogenases from the plant pathogenic bacterium Pseudomonas syringae pv. tomato strain DC3000.

  • Bouchra Elkhalfi‎ et al.
  • Protein expression and purification‎
  • 2013‎

The gammaproteobacterium Pseudomonas syringae pv. tomato DC3000 is the causal agent of bacterial speck, a common disease of tomato. The mode of infection of this pathogen is not well understood, but according to molecular biological, genomic and proteomic data it produces a number of proteins that may promote infection and draw nutrients from the plant. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is a major enzyme of carbon metabolism that was reported to be a surface antigen and virulence factor in other pathogenic microorganisms, but its possible role in the infection process of P. syringae has so far not been studied. Whole-genome sequence analyses revealed the occurrence in this phytopathogenic bacterium of three paralogous gap genes encoding distinct GAPDHs, namely two class I enzymes having different molecular mass subunits and one class III bifunctional D-erythrose-4-phosphate dehydrogenase/GAPDH enzyme. By using genome bioinformatics data, as well as alignments of both DNA and deduced protein sequences, the three gap genes of P. syringae were one-step cloned with a His-Tag in pET21a vector using a PCR-based strategy, and its expression optimized in Escherichia coli BL21 to achieve high yield of the heterologous proteins. In accordance with their distinct molecular phylogenies, these bacterial gap genes encode functional GAPDHs of diverse molecular masses and nicotinamide-coenzyme specificities, suggesting specific metabolic and/or cellular roles.


The role of glyceraldehyde 3-phosphate dehydrogenase (GapA-1) in Neisseria meningitidis adherence to human cells.

  • Sarfraz A Tunio‎ et al.
  • BMC microbiology‎
  • 2010‎

Glyceraldehyde 3-phosphate dehydrogenases (GAPDHs) are cytoplasmic glycolytic enzymes, which although lacking identifiable secretion signals, have also been found localized to the surface of several bacteria (and some eukaryotic organisms); where in some cases they have been shown to contribute to the colonization and invasion of host tissues. Neisseria meningitidis is an obligate human nasopharyngeal commensal which can cause life-threatening infections including septicaemia and meningitis. N. meningitidis has two genes, gapA-1 and gapA-2, encoding GAPDH enzymes. GapA-1 has previously been shown to be up-regulated on bacterial contact with host epithelial cells and is accessible to antibodies on the surface of capsule-permeabilized meningococcal cells. The aims of this study were: 1) to determine whether GapA-1 was expressed across different strains of N. meningitidis; 2) to determine whether GapA-1 surface accessibility to antibodies was dependent on the presence of capsule; 3) to determine whether GapA-1 can influence the interaction of meningococci and host cells, particularly in the key stages of adhesion and invasion.


Glyceraldehyde-3-Phosphate Dehydrogenase Increases the Adhesion of Lactobacillus reuteri to Host Mucin to Enhance Probiotic Effects.

  • Zhaoxi Deng‎ et al.
  • International journal of molecular sciences‎
  • 2020‎

The ability to adhere to the intestinal mucus layer is an important property of probiotic bacteria. Lactobacillus reuteri strains ZJ615 and ZJ617 show low and high adhesion, respectively, to intestinal epithelial cells. In this study, we quantified bacterial cell wall-associated glyceraldehyde-3-phosphate dehydrogenases (cw-GAPDH) and bacterial cell membrane permeability in both strains using immunoblotting and flow cytometry, respectively. Highly adhesive L. reuteri ZJ617 possessed significantly more cw-GAPDH, higher cell membrane permeability, and significantly higher adhesive ability toward mucin compared with low-adhesive L. reuteri ZJ615. In vitro adhesion studies and analysis of interaction kinetics using the Octet, the system revealed significantly decreased interaction between L. reuteri and mucin when mucin was oxidized when bacterial surface proteins were removed when bacteria were heat-inactivated at 80 °C for 30 min, and when the interaction was blocked with an anti-GAPDH antibody. SWISS-MODEL analysis suggested intensive interactions between mucin glycans (GalNAcα1-O-Ser, GalNAcαSer, and Galβ3GalNAc) and GAPDH. Furthermore, in vivo studies revealed significantly higher numbers of bacteria adhering to the jejunum, ileum, and colon of piglets orally inoculated with L. reuteri ZJ617 compared with those inoculated with L. reuteri ZJ615; this led to a significantly decreased rate of diarrhea in piglets inoculated with L. reuteri ZJ617. In conclusion, there are strong correlations among the abundance of cw-GAPDH in L. reuteri, the ability of the bacterium to adhere to the host, and the health benefits of this probiotic.


A hypothesis for the evolution of nuclear-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase genes in "chromalveolate" members.

  • Kiyotaka Takishita‎ et al.
  • PloS one‎
  • 2009‎

Eukaryotes bearing red alga-derived plastids--photosynthetic alveolates (dinoflagellates plus the apicomplexan Toxoplasma gondii plus the chromerid Chromera velia), photosynthetic stramenopiles, haptophytes, and cryptophytes--possess unique plastid-targeted glyceraldehyde-3-phosphate dehydrogenases (henceforth designated as "GapC1"). Pioneering phylogenetic studies have indicated a single origin of the GapC1 enzymes in eukaryotic evolution, but there are two potential idiosyncrasies in the GapC1 phylogeny: Firstly, the GapC1 tree topology is apparently inconsistent with the organismal relationship among the "GapC1-containing" groups. Secondly, four stramenopile GapC1 homologues are consistently paraphyletic in previously published studies, although these organisms have been widely accepted as monophyletic. For a closer examination of the above issues, in this study GapC1 gene sampling was improved by determining/identifying nine stramenopile and two cryptophyte genes. Phylogenetic analyses of our GapC1 dataset, which is particularly rich in the stramenopile homologues, prompt us to propose a new scenario that assumes multiple, lateral GapC1 gene transfer events to explain the incongruity between the GapC1 phylogeny and the organismal relationships amongst the "GapC1-containing" groups. Under our new scenario, GapC1 genes uniquely found in photosynthetic alveolates, photosynthetic stramenopiles, haptophytes, and cryptopyhytes are not necessarily a character vertically inherited from a common ancestor.


Production of L-lactic acid by the yeast Candida sonorensis expressing heterologous bacterial and fungal lactate dehydrogenases.

  • Marja Ilmén‎ et al.
  • Microbial cell factories‎
  • 2013‎

Polylactic acid is a renewable raw material that is increasingly used in the manufacture of bioplastics, which offers a more sustainable alternative to materials derived from fossil resources. Both lactic acid bacteria and genetically engineered yeast have been implemented in commercial scale in biotechnological production of lactic acid. In the present work, genes encoding L-lactate dehydrogenase (LDH) of Lactobacillus helveticus, Bacillus megaterium and Rhizopus oryzae were expressed in a new host organism, the non-conventional yeast Candida sonorensis, with or without the competing ethanol fermentation pathway.


Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy.

  • Chandar S Thakur‎ et al.
  • Journal of biomolecular NMR‎
  • 2012‎

Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of (13)C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using Escherichia coli variants, that until now were not feasible. Here we show that an E. coli mutant strain that lacks succinate and malate dehydrogenases (DL323) and grown on [3-(13)C]-pyruvate affords ribonucleotides with site specific labeling at C5' (~95%) and C1' (~42%) and minimal enrichment elsewhere in the ribose ring. Enrichment is also achieved at purine C2 and C8 (~95%) and pyrimidine C5 (~100%) positions with minimal labeling at pyrimidine C6 and purine C5 positions. These labeling patterns contrast with those obtained with DL323 E. coli grown on [1, 3-(13)C]-glycerol for which the ribose ring is labeled in all but the C4' carbon position, leading to multiplet splitting of the C1', C2' and C3' carbon atoms. The usefulness of these labeling patterns is demonstrated with a 27-nt RNA fragment derived from the 30S ribosomal subunit. Removal of the strong magnetic coupling within the ribose and base leads to increased sensitivity, substantial simplification of NMR spectra, and more precise and accurate dynamic parameters derived from NMR relaxation measurements. Thus these new labels offer valuable probes for characterizing the structure and dynamics of RNA that were previously limited by the constraint of uniformly labeled nucleotides.


Group B streptococcus GAPDH is released upon cell lysis, associates with bacterial surface, and induces apoptosis in murine macrophages.

  • Liliana Oliveira‎ et al.
  • PloS one‎
  • 2012‎

Glyceraldehyde 3-phosphate dehydrogenases (GAPDH) are cytoplasmic glycolytic enzymes that, despite lacking identifiable secretion signals, have been detected at the surface of several prokaryotic and eukaryotic organisms where they exhibit non-glycolytic functions including adhesion to host components. Group B Streptococcus (GBS) is a human commensal bacterium that has the capacity to cause life-threatening meningitis and septicemia in newborns. Electron microscopy and fluorescence-activated cell sorter (FACS) analysis demonstrated the surface localization of GAPDH in GBS. By addressing the question of GAPDH export to the cell surface of GBS strain NEM316 and isogenic mutant derivatives of our collection, we found that impaired GAPDH presence in the surface and supernatant of GBS was associated with a lower level of bacterial lysis. We also found that following GBS lysis, GAPDH can associate to the surface of many living bacteria. Finally, we provide evidence for a novel function of the secreted GAPDH as an inducer of apoptosis of murine macrophages.


The Bacillus subtilis monothiol bacilliredoxin BrxC (YtxJ) and the Bdr (YpdA) disulfide reductase reduce S-bacillithiolated proteins.

  • Ahmed Gaballa‎ et al.
  • Redox biology‎
  • 2021‎

The bacterial cytosol is generally a reducing environment with protein cysteine residues maintained in their thiol form. The low molecular weight thiol bacillithiol (BSH) serves as a general thiol reductant, analogous to glutathione, in a wide range of bacterial species. Proteins modified by disulfide bond formation with BSH (S-bacillithiolation) are reduced by the action of bacilliredoxins, BrxA and BrxB. Here, the YtxJ protein is identified as a monothiol bacilliredoxin, renamed BrxC, and is implicated in BSH removal from oxidized cytosolic proteins, including the glyceraldehyde 3-phosphate dehydrogenases GapA and GapB. BrxC can also debacillithiolate the mixed disulfide form of the bacilliredoxin BrxB. Bdr is a thioredoxin reductase-like flavoprotein with bacillithiol-disulfide (BSSB) reductase activity. Here, Bdr is shown to additionally function as a bacilliredoxin reductase. Bdr and BrxB function cooperatively to debacillithiolate OhrR, a transcription factor regulated by S-bacillithiolation on its sole cysteine residue. Collectively, these results expand our understanding of the BSH redox network comprised of three bacilliredoxins and a BSSB reductase that serve to counter the widespread protein S-bacillithiolation that results from conditions of disulfide stress.


The potential of the newly isolated thermotolerant yeast Pichia kudriavzevii RZ8-1 for high-temperature ethanol production.

  • Nuttaporn Chamnipa‎ et al.
  • Brazilian journal of microbiology : [publication of the Brazilian Society for Microbiology]‎
  • 2018‎

High potential, thermotolerant, ethanol-producing yeasts were successfully isolated in this study. Based on molecular identification and phylogenetic analysis, the isolated thermotolerant yeasts were clustered in the genera of Pichia kudriavzevii, Candida tropicalis, Candida orthopsilosis, Candida glabrata and Kodamea ohmeri. A comparative study of ethanol production using 160g/L glucose as a substrate revealed several yeast strains that could produce high ethanol concentrations at high temperatures. When sugarcane bagasse (SCB) hydrolysate containing 85g/L glucose was used as a substrate, the yeast strain designated P. kudriavzevii RZ8-1 exhibited the highest ethanol concentrations of 35.51g/L and 33.84g/L at 37°C and 40°C, respectively. It also exhibited multi-stress tolerance, such as heat, ethanol and acetic acid tolerance. During ethanol fermentation at high temperature (42°C), genes encoding heat shock proteins (ssq1 and hsp90), alcohol dehydrogenases (adh1, adh2, adh3 and adh4) and glyceraldehyde-3-phosphate dehydrogenase (tdh2) were up-regulated, suggesting that these genes might play a crucial role in the thermotolerance ability of P. kudriavzevii RZ8-1 under heat stress. These findings suggest that the growth and ethanol fermentation activities of this organism under heat stress were restricted to the expression of genes involved not only in heat shock response but also in the ethanol production pathway.


Exploring the Bile Stress Response of Lactobacillus mucosae LM1 through Exoproteome Analysis.

  • Bernadette B Bagon‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2021‎

Lactobacillus sp. have long been studied for their great potential in probiotic applications. Recently, proteomics analysis has become a useful tool for studies on potential lactobacilli probiotics. Specifically, proteomics has helped determine and describe the physiological changes that lactic acid bacteria undergo in specific conditions, especially in the host gut. In particular, the extracellular proteome, or exoproteome, of lactobacilli contains proteins specific to host- or environment-microbe interactions. Using gel-free, label-free ultra-high performance liquid chromatography tandem mass spectrometry, we explored the exoproteome of the probiotic candidate Lactobacillus mucosae LM1 subjected to bile treatment, to determine the proteins it may use against bile stress in the gut. Bile stress increased the size of the LM1 exoproteome, secreting ribosomal proteins (50S ribosomal protein L27 and L16) and metabolic proteins (lactate dehydrogenase, phosphoglycerate kinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate dehydrogenases, among others) that might have moonlighting functions in the LM1 bile stress response. Interestingly, membrane-associated proteins (transporters, peptidase, ligase and cell division protein ftsH) were among the key proteins whose secretion were induced by the LM1 bile stress response. These specific proteins from LM1 exoproteome will be useful in observing the proposed bile response mechanisms via in vitro experiments. Our data also reveal the possible beneficial effects of LM1 to the host gut.


11β-HSD Types 1 and 2 in the Songbird Brain.

  • Michelle A Rensel‎ et al.
  • Frontiers in endocrinology‎
  • 2018‎

Glucocorticoid (GC) hormones act on the brain to regulate diverse functions, from behavior and homeostasis to the activity of the hypothalamic-pituitary-adrenal axis. Local regeneration and metabolism of GCs can occur in target tissues through the actions of the 11β-hydroxysteroid dehydrogenases [11 beta-hydroxysteroid dehydrogenase type 1 (11β-HSD1) and 11 beta-hydroxysteroid dehydrogenase type 2 (11β-HSD2), respectively] to regulate access to GC receptors. Songbirds have become especially important model organisms for studies of stress hormone action; however, there has been little focus on neural GC metabolism. Therefore, we tested the hypothesis that 11β-HSD1 and 11β-HSD2 are expressed in GC-sensitive regions of the songbird brain. Localization of 11β-HSD expression in these regions could provide precise temporal and spatial control over GC actions. We quantified GC sensitivity in zebra finch (Taeniopygia guttata) brain by measuring glucocorticoid receptor (GR) and mineralocorticoid receptor (MR) expression across six regions, followed by quantification of 11β-HSD1 and 11β-HSD2 expression. We detected GR, MR, and 11β-HSD2 mRNA expression throughout the adult brain. Whereas 11β-HSD1 expression was undetectable in the adult brain, we detected low levels of expression in the brain of developing finches. Across several adult brain regions, expression of 11β-HSD2 covaried with GR and MR, with the exception of the cerebellum and hippocampus. It is possible that receptors in these latter two regions require direct access to systemic GC levels. Overall, these results suggest that 11β-HSD2 expression protects the adult songbird brain by rapid metabolism of GCs in a context and region-specific manner.


A metaproteomic-based gut microbiota profiling in children affected by autism spectrum disorders.

  • Stefano Levi Mortera‎ et al.
  • Journal of proteomics‎
  • 2022‎

During the last decade, the evidences on the relationship between neurodevelopmental disorders and the microbial communities of the intestinal tract have considerably grown. Particularly, the role of gut microbiota (GM) ecology and predicted functions in Autism Spectrum Disorders (ASD) has been especially investigated by 16S rRNA targeted and shotgun metagenomics, trying to assess disease signature and their correlation with cognitive impairment or gastrointestinal (GI) manifestations of the disease. Herein we present a metaproteomic approach to point out the microbial gene expression profiles, their functional annotations, and the taxonomic distribution of gut microbial communities in ASD children. We pursued a LC-MS/MS based investigation, to compare the GM profiles of patients with those of their respective relatives and aged-matched controls, providing a quantitative evaluation of bacterial metaproteins by SWATH analysis. All data were managed by a multiple step bioinformatic pipeline, including network analysis. In particular, comparing ASD subjects with CTRLs, up-regulation was found for some metaproteins associated with Clostridia and with carbohydrate metabolism (glyceraldehyde-3-phosphate and glutamate dehydrogenases), while down-regulation was observed for others associated with Bacteroidia (SusC and SusD family together with the TonB dependent receptor). Moreover, network analysis highlighted specific microbial correlations among ASD subgroups characterized by different functioning levels and GI symptoms. SIGNIFICANCE: To the best of our knowledge, this study represents the first metaproteomic investigation on the gut microbiota of ASD children compared with relatives and age-matched CTRLs. Remarkably, the applied SWATH methodology allowed the attribution of differentially regulated functions to specific microbial taxa, offering a novel and complementary point of view with respect to previous studies.


Antioxidant-Conjugated Peptide Attenuated Metabolic Reprogramming in Pulmonary Hypertension.

  • Mathews Valuparampil Varghese‎ et al.
  • Antioxidants (Basel, Switzerland)‎
  • 2020‎

Pulmonary arterial hypertension (PAH) is a chronic cardiopulmonary disorder instigated by pulmonary vascular cell proliferation. Activation of Akt was previously reported to promote vascular remodeling. Also, the irreversible nitration of Y350 residue in Akt results in its activation. NitroAkt was increased in PAH patients and the SU5416/Hypoxia (SU/Hx) PAH model. This study investigated whether the prevention of Akt nitration in PAH by Akt targeted nitroxide-conjugated peptide (NP) could reverse vascular remodeling and metabolic reprogramming. Treatment of the SU/Hx model with NP significantly decreased nitration of Akt in lungs, attenuated right ventricle (RV) hypertrophy, and reduced RV systolic pressure. In the PAH model, Akt-nitration induces glycolysis by activation of the glucose transporter Glut4 and lactate dehydrogenase-A (LDHA). Decreased G6PD and increased GSK3β in SU/Hx additionally shunted intracellular glucose via glycolysis. The increased glycolytic rate upregulated anaplerosis due to activation of pyruvate carboxylase in a nitroAkt-dependent manner. NP treatment resolved glycolytic switch and activated collateral pentose phosphate and glycogenesis pathways. Prevention of Akt-nitration significantly controlled pyruvate in oxidative phosphorylation by decreasing lactate and increasing pyruvate dehydrogenases activities. Histopathological studies showed significantly reduced pulmonary vascular proliferation. Based on our current observation, preventing Akt-nitration by using an Akt-targeted nitroxide-conjugated peptide could be a useful treatment option for controlling vascular proliferation in PAH.


LDH-A Promotes Metabolic Rewiring in Leucocytes from the Intestine of Rats Treated with TNBS.

  • Belen Mendoza-Arroyo‎ et al.
  • Metabolites‎
  • 2023‎

Although the aetiology of inflammatory bowel diseases (IBDs) is still unknown, one of their main characteristics is that the immune system chronically affects the permeability of the intestinal lamina propria, in turn altering the composition of the microbiota. In this study, the TNBS rat model of colitis was used because it contains a complex inflammatory milieu of polymorphonuclear cells (PMN) and lymphocytes infiltrating the lamina propria. The aim of the present study was to investigate six dehydrogenases and their respective adaptations in the tissue microenvironment by quantifying enzymatic activities measured under substrate saturation conditions in epithelial cells and leukocytes from the lamina propria of rats exposed to TNBS. Our results show that in the TNBS group, an increased DAI score was observed due to the presence of haemorrhagic and necrotic areas in the colon. In addition, the activities of G6PDH and GADH enzymes were significantly decreased in the epithelium in contrast to the increased activity of these enzymes and increased lactate mediated by the LDH-A enzyme in leukocytes in the lamina propria of the colon. Over the past years, evidence has emerged illustrating how metabolism supports aspect of cellular function and how a metabolic reprogramming can drive cell differentiation and fate. Our findings show a metabolic reprogramming in colonic lamina propria leukocytes that could be supported by increased superoxide anion.


Retinoic acid synthesis by ALDH1A proteins is dispensable for meiosis initiation in the mouse fetal ovary.

  • Anne-Amandine Chassot‎ et al.
  • Science advances‎
  • 2020‎

In mammals, the timing of meiosis entry is regulated by signals from the gonadal environment. All-trans retinoic acid (ATRA) signaling is considered the key pathway that promotes Stra8 (stimulated by retinoic acid 8) expression and, in turn, meiosis entry. This model, however, is debated because it is based on analyzing the effects of exogenous ATRA on ex vivo gonadal cultures, which not accurately reflects the role of endogenous ATRA. Aldh1a1 and Aldh1a2, two retinaldehyde dehydrogenases synthesizing ATRA, are expressed in the mouse ovaries when meiosis initiates. Contrary to the present view, here, we demonstrate that ATRA-responsive cells are scarce in the ovary. Using three distinct gene deletion models for Aldh1a1;Aldh1a2;Aldh1a3, we show that Stra8 expression is independent of ATRA production by ALDH1A proteins and that germ cells progress through meiosis. Together, these data demonstrate that ATRA signaling is dispensable for instructing meiosis initiation in female germ cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: