Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,456 papers

SLC37A1 and SLC37A2 are phosphate-linked, glucose-6-phosphate antiporters.

  • Chi-Jiunn Pan‎ et al.
  • PloS one‎
  • 2011‎

Blood glucose homeostasis between meals depends upon production of glucose within the endoplasmic reticulum (ER) of the liver and kidney by hydrolysis of glucose-6-phosphate (G6P) into glucose and phosphate (P(i)). This reaction depends on coupling the G6P transporter (G6PT) with glucose-6-phosphatase-α (G6Pase-α). Only one G6PT, also known as SLC37A4, has been characterized, and it acts as a P(i)-linked G6P antiporter. The other three SLC37 family members, predicted to be sugar-phosphate:P(i) exchangers, have not been characterized functionally. Using reconstituted proteoliposomes, we examine the antiporter activity of the other SLC37 members along with their ability to couple with G6Pase-α. G6PT- and mock-proteoliposomes are used as positive and negative controls, respectively. We show that SLC37A1 and SLC37A2 are ER-associated, P(i)-linked antiporters, that can transport G6P. Unlike G6PT, neither is sensitive to chlorogenic acid, a competitive inhibitor of physiological ER G6P transport, and neither couples to G6Pase-α. We conclude that three of the four SLC37 family members are functional sugar-phosphate antiporters. However, only G6PT/SLC37A4 matches the characteristics of the physiological ER G6P transporter, suggesting the other SLC37 proteins have roles independent of blood glucose homeostasis.


Glucose-6-phosphate dehydrogenase regulation during hypometabolism.

  • Christopher J Ramnanan‎ et al.
  • Biochemical and biophysical research communications‎
  • 2006‎

Glucose-6-phosphate dehydrogenase (G6PDH) from hepatopancreas of the land snail, Otala lactea, shows distinct changes in properties between active and estivating (dormant) states, providing the first evidence of pentose phosphate cycle regulation during hypometabolism. Compared with active snails, G6PDH Vmax increased by 50%, Km for glucose-6-phosphate decreased by 50%, Ka Mg x citrate decreased by 35%, and activation energy (from Arrhenius plots) decreased by 35% during estivation. DEAE-Sephadex chromatography separated two peaks of activity and in vitro incubations stimulating protein kinases or phosphatases showed that peak I (low phosphate) G6PDH was higher in active snails (57% of activity) whereas peak II (high phosphate) G6PDH dominated during estivation (71% of total). Kinetic properties of peaks I and II forms mirrored the enzyme from active and estivated states, respectively. Peak II G6PDH also showed reduced sensitivity to urea inhibition of activity and greater stability to thermolysin protease treatment. The interconversion of G6PDH between active and estivating forms was linked to protein kinase G and protein phosphatase 1. Estivation-induced phosphorylation of G6PDH may enhance relative carbon flow through the pentose phosphate cycle, compared with glycolysis, to help maintain NADPH production for use in antioxidant defense.


Glucose-6-phosphate as a probe for the glucosamine-6-phosphate N-acetyltransferase Michaelis complex.

  • Ramon Hurtado-Guerrero‎ et al.
  • FEBS letters‎
  • 2007‎

Glucosamine-6-phosphate N-acetyltransferase (GNA1) catalyses the N-acetylation of d-glucosamine-6-phosphate (GlcN-6P), using acetyl-CoA as an acetyl donor. The product GlcNAc-6P is an intermediate in the biosynthesis UDP-GlcNAc. GNA1 is part of the GCN5-related acetyl transferase family (GNATs), which employ a wide range of acceptor substrates. GNA1 has been genetically validated as an antifungal drug target. Detailed knowledge of the Michaelis complex and trajectory towards the transition state would facilitate rational design of inhibitors of GNA1 and other GNAT enzymes. Using the pseudo-substrate glucose-6-phosphate (Glc-6P) as a probe with GNA1 crystals, we have trapped the first GNAT (pseudo-)Michaelis complex, providing direct evidence for the nucleophilic attack of the substrate amine, and giving insight into the protonation of the thiolate leaving group.


Evaluation of a Novel Quantitative Test for Glucose-6-Phosphate Dehydrogenase Deficiency: Bringing Quantitative Testing for Glucose-6-Phosphate Dehydrogenase Deficiency Closer to the Patient.

  • Sampa Pal‎ et al.
  • The American journal of tropical medicine and hygiene‎
  • 2019‎

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, a common genetic blood condition, can result in kernicterus at birth, and later in life as severe hemolysis on exposure to certain infections, foods, and drugs. The unavailability of point-of-care tests for G6PD deficiency is a barrier to routine curative treatment of Plasmodium vivax malaria with 8-aminoquinolines, such as primaquine. Two quantitative reference tests (Trinity Biotech, Bray, Ireland and Pointe Scientific, Canton, MI; Cat No. G7583) and the point-of-care STANDARD™ G6PD test (SD Biosensor, Suwon, South Korea) were evaluated. The STANDARD G6PD test was evaluated at multiple temperatures, in anticoagulated venous and capillary samples, including 79 G6PD-deficient and 66 intermediate samples and across two laboratories, one in the United States and one in Thailand. The STANDARD test performed equivalently to a reference assay for its ability to diagnose G6PD deficiency (< 30% normal) with a sensitivity of 100% (0.95 confidence interval [CI]: 95.7-100) and specificity of 97% (0.95 CI: 94.5-98.5), and could reliably identify females with less than 70% normal G6PD activity with a sensitivity of 95.5% (0.95 CI: 89.7-98.5) and specificity of 97% (0.95 CI: 94.5-98.6). The STANDARD G6PD product represents an opportunity to diagnose G6PD deficiency equally for males and females in basic clinical laboratories in high- and low-resource settings. This quantitative point-of-care diagnostic test for G6PD deficiency can provide equal access to safe radical cure of P. vivax cases in high- and low-resource settings, for males and females and may support malaria elimination, in countries where P. vivax is endemic.


Glucose-6-Phosphate Upregulates Txnip Expression by Interacting With MondoA.

  • Xueyun Zhang‎ et al.
  • Frontiers in molecular biosciences‎
  • 2019‎

The major metabolic fates of glucose in cells are glycolysis and the pentose phosphate pathway, and they share the first step: converting glucose to glucose-6-phosphate (G6P). Here, we show that G6P can be sensed by the transcription factor MondoA/Mlx to modulate Txnip expression. Endogenous knockdown and EMSA (gel migration assay) analyses both confirmed that G6P is the metabolic intermediate that activates the heterocomplex MondoA/Mlx to elicit the expression of Txnip. Additionally, the three-dimensional structure of MondoA is modeled, and the binding mode of G6P to MondoA is also predicted by in silico molecular docking and binding free energy calculation. Finally, free energy decomposition and mutational analyses suggest that certain residues in MondoA, GKL139-141 in particular, mediate its binding with G6P to activate MondoA, which signals the upregulation of the expression of Txnip.


Genetic determinants of glucose-6-phosphate dehydrogenase activity in Kenya.

  • Shivang S Shah‎ et al.
  • BMC medical genetics‎
  • 2014‎

The relationship between glucose-6-phosphate dehydrogenase (G6PD) deficiency and clinical phenomena such as primaquine-sensitivity and protection from severe malaria remains poorly defined, with past association studies yielding inconsistent and conflicting results. One possibility is that examination of a single genetic variant might underestimate the presence of true effects in the presence of unrecognized functional allelic diversity.


Glucose-6-Phosphate Regulates Hepatic Bile Acid Synthesis in Mice.

  • Joanne A Hoogerland‎ et al.
  • Hepatology (Baltimore, Md.)‎
  • 2019‎

It is well established that, besides facilitating lipid absorption, bile acids act as signaling molecules that modulate glucose and lipid metabolism. Bile acid metabolism, in turn, is controlled by several nutrient-sensitive transcription factors. Altered intrahepatic glucose signaling in type 2 diabetes associates with perturbed bile acid synthesis. We aimed to characterize the regulatory role of the primary intracellular metabolite of glucose, glucose-6-phosphate (G6P), on bile acid metabolism. Hepatic gene expression patterns and bile acid composition were analyzed in mice that accumulate G6P in the liver, that is, liver-specific glucose-6-phosphatase knockout (L-G6pc-/- ) mice, and mice treated with a pharmacological inhibitor of the G6P transporter. Hepatic G6P accumulation induces sterol 12α-hydroxylase (Cyp8b1) expression, which is mediated by the major glucose-sensitive transcription factor, carbohydrate response element-binding protein (ChREBP). Activation of the G6P-ChREBP-CYP8B1 axis increases the relative abundance of cholic-acid-derived bile acids and induces physiologically relevant shifts in bile composition. The G6P-ChREBP-dependent change in bile acid hydrophobicity associates with elevated plasma campesterol/cholesterol ratio and reduced fecal neutral sterol loss, compatible with enhanced intestinal cholesterol absorption. Conclusion: We report that G6P, the primary intracellular metabolite of glucose, controls hepatic bile acid synthesis. Our work identifies hepatic G6P-ChREBP-CYP8B1 signaling as a regulatory axis in control of bile acid and cholesterol metabolism.


Glucose-6-phosphate dehydrogenase contributes to the regulation of glucose uptake in skeletal muscle.

  • Robert S Lee-Young‎ et al.
  • Molecular metabolism‎
  • 2016‎

The development of skeletal muscle insulin resistance is an early physiological defect, yet the intracellular mechanisms accounting for this metabolic defect remained unresolved. Here, we have examined the role of glucose-6-phosphate dehydrogenase (G6PDH) activity in the pathogenesis of insulin resistance in skeletal muscle.


Multiple independent fusions of glucose-6-phosphate dehydrogenase with enzymes in the pentose phosphate pathway.

  • Nicholas A Stover‎ et al.
  • PloS one‎
  • 2011‎

Fusions of the first two enzymes in the pentose phosphate pathway, glucose-6-phosphate dehydrogenase (G6PD) and 6-phosphogluconolactonase (6PGL), have been previously described in two distant clades, chordates and species of the malarial parasite Plasmodium. We have analyzed genome and expressed sequence data from a variety of organisms to identify the origins of these gene fusion events. Based on the orientation of the domains and range of species in which homologs can be found, the fusions appear to have occurred independently, near the base of the metazoan and apicomplexan lineages. Only one of the two metazoan paralogs of G6PD is fused, showing that the fusion occurred after a duplication event, which we have traced back to an ancestor of choanoflagellates and metazoans. The Plasmodium genes are known to contain a functionally important insertion that is not seen in the other apicomplexan fusions, highlighting this as a unique characteristic of this group. Surprisingly, our search revealed two additional fusion events, one that combined 6PGL and G6PD in an ancestor of the protozoan parasites Trichomonas and Giardia, and another fusing G6PD with phosphogluconate dehydrogenase (6PGD) in a species of diatoms. This study extends the range of species known to contain fusions in the pentose phosphate pathway to many new medically and economically important organisms.


TKTL1 Knockdown Impairs Hypoxia-Induced Glucose-6-phosphate Dehydrogenase and Glyceraldehyde-3-phosphate Dehydrogenase Overexpression.

  • Inês Baptista‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

Increased expression of transketolase (TKT) and its isoform transketolase-like-1 (TKTL1) has been related to the malignant leukemia phenotype through promoting an increase in the non-oxidative branch of the pentose phosphate pathway (PPP). Recently, it has also been described that TKTL1 can have a role in survival under hypoxic conditions and in the acquisition of radio resistance. However, TKTL1's role in triggering metabolic reprogramming under hypoxia in leukemia cells has never been characterized. Using THP-1 AML cells, and by combining metabolomics and transcriptomics techniques, we characterized the impact of TKTL1 knockdown on the metabolic reprogramming triggered by hypoxia. Results demonstrated that TKTL1 knockdown results in a decrease in TKT, glucose-6-phosphate dehydrogenase (G6PD) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) activities and impairs the hypoxia-induced overexpression of G6PD and GAPDH, all having significant impacts on the redox capacity of NADPH- and NADH-related cells. Moreover, TKTL1 knockdown impedes hypoxia-induced transcription of genes encoding key enzymes and transporters involved in glucose, PPP and amino acid metabolism, rendering cells unable to switch to enhanced glycolysis under hypoxia. Altogether, our results show that TKTL1 plays a key role in the metabolic adaptation to hypoxia in THP-1 AML cells through modulation of G6PD and GAPDH activities, both regulating glucose/glutamine consumption and the transcriptomic overexpression of key players of PPP, glucose and amino acids metabolism.


Arthritogenic T cell epitope in glucose-6-phosphate isomerase-induced arthritis.

  • Keiichi Iwanami‎ et al.
  • Arthritis research & therapy‎
  • 2008‎

Arthritis induced by immunisation with glucose-6-phosphate isomerase (GPI) in DBA/1 mice was proven to be T helper (Th) 17 dependent. We undertook this study to identify GPI-specific T cell epitopes in DBA/1 mice (H-2q) and investigate the mechanisms of arthritis generation.


Genetic Profiles of Korean Patients With Glucose-6-Phosphate Dehydrogenase Deficiency.

  • Jaewoong Lee‎ et al.
  • Annals of laboratory medicine‎
  • 2017‎

We describe the genetic profiles of Korean patients with glucose-6-phosphate dehydrogenase (G6PD) deficiencies and the effects of G6PD mutations on protein stability and enzyme activity on the basis of in silico analysis.


Glucose-6-phosphate reduces calcium accumulation in rat brain endoplasmic reticulum.

  • Jeffrey T Cole‎ et al.
  • Frontiers in molecular neuroscience‎
  • 2012‎

Brain cells expend large amounts of energy sequestering calcium (Ca(2+)), while loss of Ca(2+) compartmentalization leads to cell damage or death. Upon cell entry, glucose is converted to glucose-6-phosphate (G6P), a parent substrate to several metabolic major pathways, including glycolysis. In several tissues, G6P alters the ability of the endoplasmic reticulum (ER) to sequester Ca(2+). This led to the hypothesis that G6P regulates Ca(2+) accumulation by acting as an endogenous ligand for sarco-endoplasmic reticulum calcium ATPase (SERCA). Whole brain ER microsomes were pooled from adult male Sprague-Dawley rats. Using radio-isotopic assays, (45)Ca(2+) accumulation was quantified following incubation with increasing amounts of G6P, in the presence or absence of thapsigargin, a potent SERCA inhibitor. To qualitatively assess SERCA activity, the simultaneous release of inorganic phosphate (Pi) coupled with Ca(2+) accumulation was quantified. Addition of G6P significantly and decreased Ca(2+) accumulation in a dose-dependent fashion (1-10 mM). The reduction in Ca(2+) accumulation was not significantly different that seen with addition of thapsigargin. Addition of glucose-1-phosphate or fructose-6-phosphate, or other glucose metabolic pathway intermediates, had no effect on Ca(2+) accumulation. Further, the release of Pi was markedly decreased, indicating G6P-mediated SERCA inhibition as the responsible mechanism for reduced Ca(2+) uptake. Simultaneous addition of thapsigargin and G6P did decrease inorganic phosphate in comparison to either treatment alone, which suggests that the two treatments have different mechanisms of action. Therefore, G6P may be a novel, endogenous regulator of SERCA activity. Additionally, pathological conditions observed during disease states that disrupt glucose homeostasis, may be attributable to Ca(2+) dystasis caused by altered G6P regulation of SERCA activity.


Incidence of Glucose-6-Phosphate Dehydrogenase Deficiency among Swedish Newborn Infants.

  • Annika Ohlsson‎ et al.
  • International journal of neonatal screening‎
  • 2019‎

Sweden has 10.2 million inhabitants and more than 2.4 million have a foreign background. A substantial number of immigrants come from countries where glucose-6-phosphate dehydrogenase deficiency (G6PDD) is frequent. The total birth rate annually in Sweden is approximately 117,000 and newborn screening is centralized to one laboratory. We determined glucose-6-phosphate dehydrogenase (G6PD) activity in 10,098 dried blood spot samples (DBS) from the whole country with a fluorometric assay (LabSystems Diagnostics Oy, Finland). The first 5451 samples were anonymised and run as singletons, whilst the following 4647 samples were coded. Enzyme activity ≤40% of the mean of the day was found in 58 samples (1/170) and among these, 29 had activities ≤10% (1/350). Twenty-nine samples with residual activities between 2-39% in the coded cohort were subjected to Sanger sequencing. Disease-causing variants were identified in 26 out of 29 infants, of which six were girls. In three patients, we did not find any disease-causing variants, although two patients were hemizygous for the known polymorphisms c.1311T>C and c.1365-13C>T. The most common disease-causing variant found in 15 of the 29 samples (12 hemizygotes, two heterozygotes, one homozygote) was the Mediterranean mutation, c.563C>T (p.(Ser188Phe)) in exon 6. G6PDD is thus a surprisingly prevalent disorder in Sweden.


Correcting glucose-6-phosphate dehydrogenase deficiency with a small-molecule activator.

  • Sunhee Hwang‎ et al.
  • Nature communications‎
  • 2018‎

Glucose-6-phosphate dehydrogenase (G6PD) deficiency, one of the most common human genetic enzymopathies, is caused by over 160 different point mutations and contributes to the severity of many acute and chronic diseases associated with oxidative stress, including hemolytic anemia and bilirubin-induced neurological damage particularly in newborns. As no medications are available to treat G6PD deficiency, here we seek to identify a small molecule that corrects it. Crystallographic study and mutagenesis analysis identify the structural and functional defect of one common mutant (Canton, R459L). Using high-throughput screening, we subsequently identify AG1, a small molecule that increases the activity of the wild-type, the Canton mutant and several other common G6PD mutants. AG1 reduces oxidative stress in cells and zebrafish. Furthermore, AG1 decreases chloroquine- or diamide-induced oxidative stress in human erythrocytes. Our study suggests that a pharmacological agent, of which AG1 may be a lead, will likely alleviate the challenges associated with G6PD deficiency.


Glucose 6-phosphate dehydrogenase inhibition sensitizes melanoma cells to metformin treatment.

  • María Florencia Arbe‎ et al.
  • Translational oncology‎
  • 2020‎

Most cancer cells exacerbate the pentose phosphate pathway (PPP) to enhance biosynthetic precursors and antioxidant defenses. Metformin, which is used as a first-line oral drug for the treatment of type 2 diabetes, has been proposed to inhibit the malignant progression of different types of cancers. However, metformin has shown poor efficacy as single agent in several clinical trials. Thus, the aim of the present work was to investigate whether the pharmacological inhibition of G6PDH, the first and rate-limiting enzyme of the PPP, by 6-amino nicotinamide (6-AN) potentiates the antitumoral activity of metformin on different human melanoma cell lines. Our results showed that 6-AN has sensitizing properties to metformin cytotoxicity. The combination of metformin and 6-AN decreased glucose consumption and lactate production, altered the mitochondrial potential and redox balance, and thereby blocked melanoma cell progression, directing cells to apoptosis and necrosis. To our knowledge, this is the first study describing the effect of this combination. Future preclinical studies should be performed to reveal the biological relevance of this finding.


Glucose-6-phosphate dehydrogenase deficiency accelerates pancreatic acinar-to-ductal metaplasia.

  • Megan D Radyk‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2023‎

Activating mutations in KRAS extensively reprogram cellular metabolism to support the continuous growth, proliferation, and survival of pancreatic tumors. Targeting these metabolic dependencies are promising approaches for the treatment of established tumors. However, metabolic reprogramming is required early during tumorigenesis to provide transformed cells selective advantage towards malignancy. Acinar cells can give rise to pancreatic tumors through acinar-to-ductal metaplasia (ADM). Dysregulation of pathways that maintain acinar homeostasis accelerate tumorigenesis. During ADM, acinar cells transdifferentiate to duct-like cells, a process driven by oncogenic KRAS. The metabolic reprogramming that is required for the transdifferentiation in ADM is unclear. We performed transcriptomic analysis on mouse acinar cells undergoing ADM and found metabolic programs are globally enhanced, consistent with the transition of a specialized cell to a less differentiated phenotype with proliferative potential. Indeed, we and others have demonstrated how inhibiting metabolic pathways necessary for ADM can prevent transdifferentiation and tumorigenesis. Here, we also find NRF2-target genes are differentially expressed during ADM. Among these, we focused on the increase in the gene coding for NADPH-producing enzyme, Glucose-6-phosphate dehydrogenase (G6PD). Using established mouse models of KrasG12D-driven pancreatic tumorigenesis and G6PD-deficiency, we find that mutant G6pd accelerates ADM and pancreatic intraepithelial neoplasia. Acceleration of cancer initiation with G6PD-deficiency is dependent on its NADPH-generating function in reactive oxygen species (ROS) management, as opposed to other outputs of the pentose phosphate pathway. Together, this work provides new insights into the function of metabolic pathways during early tumorigenesis.


Metformin lowers glucose 6-phosphate in hepatocytes by activation of glycolysis downstream of glucose phosphorylation.

  • Tabassum Moonira‎ et al.
  • The Journal of biological chemistry‎
  • 2020‎

The chronic effects of metformin on liver gluconeogenesis involve repression of the G6pc gene, which is regulated by the carbohydrate-response element-binding protein through raised cellular intermediates of glucose metabolism. In this study we determined the candidate mechanisms by which metformin lowers glucose 6-phosphate (G6P) in mouse and rat hepatocytes challenged with high glucose or gluconeogenic precursors. Cell metformin loads in the therapeutic range lowered cell G6P but not ATP and decreased G6pc mRNA at high glucose. The G6P lowering by metformin was mimicked by a complex 1 inhibitor (rotenone) and an uncoupler (dinitrophenol) and by overexpression of mGPDH, which lowers glycerol 3-phosphate and G6P and also mimics the G6pc repression by metformin. In contrast, direct allosteric activators of AMPK (A-769662, 991, and C-13) had opposite effects from metformin on glycolysis, gluconeogenesis, and cell G6P. The G6P lowering by metformin, which also occurs in hepatocytes from AMPK knockout mice, is best explained by allosteric regulation of phosphofructokinase-1 and/or fructose bisphosphatase-1, as supported by increased metabolism of [3-3H]glucose relative to [2-3H]glucose; by an increase in the lactate m2/m1 isotopolog ratio from [1,2-13C2]glucose; by lowering of glycerol 3-phosphate an allosteric inhibitor of phosphofructokinase-1; and by marked G6P elevation by selective inhibition of phosphofructokinase-1; but not by a more reduced cytoplasmic NADH/NAD redox state. We conclude that therapeutically relevant doses of metformin lower G6P in hepatocytes challenged with high glucose by stimulation of glycolysis by an AMP-activated protein kinase-independent mechanism through changes in allosteric effectors of phosphofructokinase-1 and fructose bisphosphatase-1, including AMP, Pi, and glycerol 3-phosphate.


Glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase: characterization of the Plasmodium vivax enzyme and inhibitor studies.

  • Kristina Haeussler‎ et al.
  • Malaria journal‎
  • 2019‎

Since malaria parasites highly depend on ribose 5-phosphate for DNA and RNA synthesis and on NADPH as a source of reducing equivalents, the pentose phosphate pathway (PPP) is considered an excellent anti-malarial drug target. In Plasmodium, a bifunctional enzyme named glucose 6-phosphate dehydrogenase 6-phosphogluconolactonase (GluPho) catalyzes the first two steps of the PPP. PfGluPho has been shown to be essential for the growth of blood stage Plasmodium falciparum parasites.


Five novel glucose-6-phosphate dehydrogenase deficiency haplotypes correlating with disease severity.

  • Ashraf Dallol‎ et al.
  • Journal of translational medicine‎
  • 2012‎

Glucose-6-phosphate dehydrogenase (G6PD, EC 1.1.1.49) deficiency is caused by one or more mutations in the G6PD gene on chromosome X. An association between enzyme levels and gene haplotypes remains to be established.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: