Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 87 papers

Accuracy and stability of an arterial sensor for glucose monitoring in a porcine model using glucose clamp technique.

  • Felix Aberer‎ et al.
  • Scientific reports‎
  • 2020‎

Intravascular glucose sensors have the potential to improve and facilitate glycemic control in critically ill patients and might overcome measurement delay and accuracy issues. This study investigated the accuracy and stability of a biosensor for arterial glucose monitoring tested in a hypo- and hyperglycemic clamp experiment in pigs. 12 sensors were tested over 5 consecutive days in 6 different pigs. Samples of sensor and reference measurement pairs were obtained every 15 minutes. 1337 pairs of glucose values (range 37-458 mg/dl) were available for analysis. The systems met ISO 15197:2013 criteria in 99.2% in total, 100% for glucose <100 mg/dl (n = 414) and 98.8% for glucose ≥100 mg/dl (n = 923). The mean absolute relative difference (MARD) during the entire glycemic range of all sensors was 4.3%. The MARDs within the hypoglycemic (<70 mg/dl), euglycemic (≥70-180 mg/dl) and hyperglycemic glucose ranges (≥180 mg/dl) were 6.1%, 3.6% and 4.7%, respectively. Sensors indicated comparable performance on all days investigated (day 1, 3 and 5). None of the systems showed premature failures. In a porcine model, the performance of the biosensor revealed a promising performance. The transfer of these results into a human setting is the logical next step.


Bezafibrate improves insulin resistance evaluated using the glucose clamp technique in patients with type 2 diabetes mellitus: a small-scale clinical study.

  • Hideki Shiochi‎ et al.
  • Diabetology & metabolic syndrome‎
  • 2014‎

Bezafibrate is mainly used to treat hypertriglyceridemia. Studies have reported that bezafibrate also improves type 2 diabetes mellitus, but the mechanism has not been fully elucidated. We performed euglycemic hyperinsulinemic clamps (glucose clamp) and meal tolerance tests (MTT) to examine the effects of bezafibrate on insulin resistance in patients with type 2 diabetes mellitus.


Artificial neural networks based controller for glucose monitoring during clamp test.

  • Merav Catalogna‎ et al.
  • PloS one‎
  • 2012‎

Insulin resistance (IR) is one of the most widespread health problems in modern times. The gold standard for quantification of IR is the hyperinsulinemic-euglycemic glucose clamp technique. During the test, a regulated glucose infusion is delivered intravenously to maintain a constant blood glucose concentration. Current control algorithms for regulating this glucose infusion are based on feedback control. These models require frequent sampling of blood, and can only partly capture the complexity associated with regulation of glucose. Here we present an improved clamp control algorithm which is motivated by the stochastic nature of glucose kinetics, while using the minimal need in blood samples required for evaluation of IR. A glucose pump control algorithm, based on artificial neural networks model was developed. The system was trained with a data base collected from 62 rat model experiments, using a back-propagation Levenberg-Marquardt optimization. Genetic algorithm was used to optimize network topology and learning features. The predictive value of the proposed algorithm during the temporal period of interest was significantly improved relative to a feedback control applied at an equivalent low sampling interval. Robustness to noise analysis demonstrates the applicability of the algorithm in realistic situations.


Hyperpolarized [1-13 C]pyruvate combined with the hyperinsulinaemic euglycaemic and hypoglycaemic clamp technique in skeletal muscle in a large animal model.

  • Mads Bisgaard Bengtsen‎ et al.
  • Experimental physiology‎
  • 2021‎

What is the central question of this study? Is it possible to combine the hyperpolarized magnetic resonance technique and the hyperinsulinaemic clamp method in order to evaluate skeletal muscle metabolism in a large animal model? What is the main finding and its importance? The logistical set-up is possible, and we found substantial increments in glucose infusion rates representing skeletal muscle glucose uptake but no differences in ratios of [1-13 C]lactate to [1-13 C]pyruvate, [1-13 C]alanine to [1-13 C]pyruvate, and 13 C-bicarbonate to [1-13 C]pyruvate, implying that the hyperpolarization technique might not be optimal for detecting effects of insulin in skeletal muscle of anaesthetized animals, which is of significance for future studies.


Computer modeling of whole-cell voltage-clamp analyses to delineate guidelines for good practice of manual and automated patch-clamp.

  • Jérôme Montnach‎ et al.
  • Scientific reports‎
  • 2021‎

The patch-clamp technique and more recently the high throughput patch-clamp technique have contributed to major advances in the characterization of ion channels. However, the whole-cell voltage-clamp technique presents certain limits that need to be considered for robust data generation. One major caveat is that increasing current amplitude profoundly impacts the accuracy of the biophysical analyses of macroscopic ion currents under study. Using mathematical kinetic models of a cardiac voltage-gated sodium channel and a cardiac voltage-gated potassium channel, we demonstrated how large current amplitude and series resistance artefacts induce an undetected alteration in the actual membrane potential and affect the characterization of voltage-dependent activation and inactivation processes. We also computed how dose-response curves are hindered by high current amplitudes. This is of high interest since stable cell lines frequently demonstrating high current amplitudes are used for safety pharmacology using the high throughput patch-clamp technique. It is therefore critical to set experimental limits for current amplitude recordings to prevent inaccuracy in the characterization of channel properties or drug activity, such limits being different from one channel type to another. Based on the predictions generated by the kinetic models, we draw simple guidelines for good practice of whole-cell voltage-clamp recordings.


Effect of porcine somatotropin on the response of growing pigs to acute challenges of glucose, insulin and epinephrine and during a hyperinsulinemic-euglycemic clamp.

  • D Wray-Cahen‎ et al.
  • Domestic animal endocrinology‎
  • 1993‎

Response of tissues to homeostatic signals may play a role in the mediation of nutrient partitioning effects of somatotropin. To investigate this, the effects of exogenous porcine somatotropin (pST) on the metabolic responses to a series of intravenous challenges with dextrose, insulin and epinephrine were examined in twelve crossbred barrows (65 kg). In addition, the hyperinsulinemic-euglycemic clamp technique was used to further explore effects of pST on insulin resistance in eight of these animals. Pigs received daily sc injections of either pituitary-derived pST (120 micrograms/kg bw) or an equivalent volume of excipient for 28 d. Treatment with pST resulted in a chronic elevation of plasma glucose, insulin and non-esterified fatty acid concentrations and lowered glucagon concentrations. Acute iv challenges of dextrose (100 mg/kg bw), insulin (1.0 micrograms/kg bw), and epinephrine (2.2 micrograms/kg bw) were administered on days 21, 22, and 23 of the treatment period, respectively. Hyperinsulinemic-euglycemic clamps were carried out on day 28. Effects of pST were most dramatic for responses associated with insulin. In pST-treated pigs, insulin response to dextrose infusion was enhanced, while glucose response to insulin was attenuated and glucose clearance rate was reduced. During the hyperinsulinemic-euglycemic clamp, dextrose infusion rate required to maintain euglycemia during physiologic elevations of insulin was reduced in pST-treated pigs to 28% of control. In pST-treated pigs, glucose response to epinephrine challenge was halved, while insulin response was increased three-fold. Therefore, one mechanism by which pST shifts the nutrient partition is by altering metabolic responses to homeostatic signals. In growing pigs, this is especially evident for glucose response to insulin.


Mechanism of peptide-induced mast cell degranulation. Translocation and patch-clamp studies.

  • D Lorenz‎ et al.
  • The Journal of general physiology‎
  • 1998‎

Substance P and other polycationic peptides are thought to stimulate mast cell degranulation via direct activation of G proteins. We investigated the ability of extracellularly applied substance P to translocate into mast cells and the ability of intracellularly applied substance P to stimulate degranulation. In addition, we studied by reverse transcription--PCR whether substance P-specific receptors are present in the mast cell membrane. To study translocation, a biologically active and enzymatically stable fluorescent analogue of substance P was synthesized. A rapid, substance P receptor- and energy-independent uptake of this peptide into pertussis toxin-treated and -untreated mast cells was demonstrated using confocal laser scanning microscopy. The peptide was shown to localize preferentially on or inside the mast cell granules using electron microscopic autoradiography with 125I-labeled all-D substance P and 3H-labeled substance P. Cell membrane capacitance measurements using the patch-clamp technique demonstrated that intracellularly applied substance P induced calcium transients and activated mast cell exocytosis with a time delay that depended on peptide concentration (delay of 100-500 s at concentrations of substance P from 50 to 5 microM). Degranulation in response to intracellularly applied substance P was inhibited by GDPbetaS and pertussis toxin, suggesting that substance P acts via G protein activation. These results support the recently proposed model of a receptor-independent mechanism of peptide-induced mast cell degranulation, which assumes a direct interaction of peptides with G protein alpha subunits subsequent to their translocation across the plasma membrane.


ARCGHR Neurons Regulate Muscle Glucose Uptake.

  • Juliana Bezerra Medeiros de Lima‎ et al.
  • Cells‎
  • 2021‎

The growth hormone receptor (GHR) is expressed in brain regions that are known to participate in the regulation of energy homeostasis and glucose metabolism. We generated a novel transgenic mouse line (GHRcre) to characterize GHR-expressing neurons specifically in the arcuate nucleus of the hypothalamus (ARC). Here, we demonstrate that ARCGHR+ neurons are co-localized with agouti-related peptide (AgRP), growth hormone releasing hormone (GHRH), and somatostatin neurons, which are activated by GH stimulation. Using the designer receptors exclusively activated by designer drugs (DREADD) technique to control the ARCGHR+ neuronal activity, we demonstrate that the activation of ARCGHR+ neurons elevates a respiratory exchange ratio (RER) under both fed and fasted conditions. However, while the activation of ARCGHR+ promotes feeding, under fasting conditions, the activation of ARCGHR+ neurons promotes glucose over fat utilization in the body. This effect was accompanied by significant improvements in glucose tolerance, and was specific to GHR+ versus GHRH+ neurons. The activation of ARCGHR+ neurons increased glucose turnover and whole-body glycolysis, as revealed by hyperinsulinemic-euglycemic clamp studies. Remarkably, the increased insulin sensitivity upon the activation of ARCGHR+ neurons was tissue-specific, as the insulin-stimulated glucose uptake was specifically elevated in the skeletal muscle, in parallel with the increased expression of muscle glycolytic genes. Overall, our results identify the GHR-expressing neuronal population in the ARC as a major regulator of glycolysis and muscle insulin sensitivity in vivo.


Homeostatic model assessment of adiponectin (HOMA-Adiponectin) as a surrogate measure of insulin resistance in adolescents: Comparison with the hyperglycaemic clamp and homeostatic model assessment of insulin resistance.

  • Cleliani de Cassia da Silva‎ et al.
  • PloS one‎
  • 2019‎

Studies on adults have reported inverse association between the homeostatic model assessment (HOMA) of adiponectin (HOMA-Adiponectin) and the insulin resistance assessed by the glucose clamp technique. To our knowledge, in the pediatric population this association has not been previously investigated.


Hypothalamic sensing of circulating lactate regulates glucose production.

  • Andrea Kokorovic‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2009‎

Emerging studies indicate that hypothalamic hormonal signalling pathways and nutrient metabolism regulate glucose homeostasis in rodents. Although hypothalamic lactate-sensing mechanisms have been described to lower glucose production (GP), it is currently unknown whether the hypothalamus senses lactate in the blood circulation to regulate GP and maintain glucose homeostasis in vivo. To examine whether hypothalamic sensing of circulating lactate is required to regulate GP, we infused intravenous (i.v.) lactate in the absence or presence of inhibition of central/hypothalamic lactate-sensing mechanisms in normal rodents. Inhibition of central/hypothalamic lactate-sensing mechanisms was achieved by three independent approaches. Tracer-dilution methodology in combination with the pancreatic clamp technique was used to assess the effect of i.v. and central/hypothalamic administrations on glucose metabolism in vivo. In the presence of physiologically relevant increases in the levels of plasma lactate, inhibition of central lactate-sensing mechanisms by lactate dehydrogenase inhibitor oxamate (OXA) or ATP-sensitive potassium channels blocker glibenclamide increased GP. Furthermore, direct administration of OXA into the mediobasal hypothalamus increased GP in the presence of similar elevation of circulating lactate. Together, these data indicate that hypothalamic sensing of circulating lactate regulates GP and is required to maintain glucose homeostasis.


Central endocannabinoid signaling regulates hepatic glucose production and systemic lipolysis.

  • James D O'Hare‎ et al.
  • Diabetes‎
  • 2011‎

The endocannabinoid (EC) system has been implicated as an important regulator of energy homeostasis. In obesity and type 2 diabetes, EC tone is elevated in peripheral tissues including liver, muscle, fat, and also centrally, particularly in the hypothalamus. Cannabinoid receptor type 1 (CB₁) blockade with the centrally and peripherally acting rimonabant induces weight loss and improves glucose homeostasis while also causing psychiatric adverse effects. The relative contributions of peripheral versus central EC signaling on glucose homeostasis remain to be elucidated. The aim of this study was to test whether the central EC system regulates systemic glucose fluxes.


Structural Basis of the Selective Sugar Transport in Sodium-Glucose Cotransporters.

  • Kazuyo Kamitori‎ et al.
  • Journal of molecular biology‎
  • 2022‎

Sodium-glucose cotransporters (SGLTs) are responsible for sugar absorption in small intestine and renal tubule epithelial cells. These proteins have attracted clinical attention as a cause of malabsorption and as a target for diabetes drugs. Each SGLT isoform has strict selectivity for its monosaccharide substrate. Few studies have attempted to elucidate the structural basis of sugar selectivity by allowing generating SGLT mutants that bind substrates not normally transported or by reproducing the substrate specificity of other isoforms. In this study, we built a structural homology model for the substrate binding states of human SGLT1 (hSGLT1), which primarily transports glucose and galactose. We also performed electrophysiological analysis of hSGLT1 using various natural sugars and mutants. By mutating the K321 residue, which forms hydrophilic interactions in the sugar binding pocket, we induced mannose and allose transport. We also changed the glucose/galactose transport ratio, which reproduces the substrate specificity of the prokaryotic galactose transporter. By adding mutations one-by-one to the residues in the binding pocket, we were able to reproduce the substrate specificity of SGLT4, which transports fructose. This suggests that fructose, which exhibits various structures in equilibrium, binds to SGLT in a pyranose conformation. These results reveal one state of the structural basis that determines selective transport by SGLT. These findings will be useful for predicting the substrates of other glucose transporters and to design effective inhibitors.


Glucose challenge metabolomics implicates medium-chain acylcarnitines in insulin resistance.

  • Christoph Nowak‎ et al.
  • Scientific reports‎
  • 2018‎

Insulin resistance (IR) predisposes to type 2 diabetes and cardiovascular disease but its causes are incompletely understood. Metabolic challenges like the oral glucose tolerance test (OGTT) can reveal pathogenic mechanisms. We aimed to discover associations of IR with metabolite trajectories during OGTT. In 470 non-diabetic men (age 70.6 ± 0.6 years), plasma samples obtained at 0, 30 and 120 minutes during an OGTT were analyzed by untargeted liquid chromatography-mass spectrometry metabolomics. IR was assessed with the hyperinsulinemic-euglycemic clamp method. We applied age-adjusted linear regression to identify metabolites whose concentration change was related to IR. Nine trajectories, including monounsaturated fatty acids, lysophosphatidylethanolamines and a bile acid, were significantly associated with IR, with the strongest associations observed for medium-chain acylcarnitines C10 and C12, and no associations with L-carnitine or C2-, C8-, C14- or C16-carnitine. Concentrations of C10- and C12-carnitine decreased during OGTT with a blunted decline in participants with worse insulin resistance. Associations persisted after adjustment for obesity, fasting insulin and fasting glucose. In mouse 3T3-L1 adipocytes exposed to different acylcarnitines, we observed blunted insulin-stimulated glucose uptake after treatment with C10- or C12-carnitine. In conclusion, our results identify medium-chain acylcarnitines as possible contributors to IR.


Aldosterone Disrupts the Intercellular Flow of Glucose in Cardiac Muscle.

  • Walmor C De Mello‎
  • Frontiers in endocrinology‎
  • 2015‎

The activation of the renin-angiotensin system is known to impair intercellular communication in the heart, but the role of aldosterone on the process of chemical communication and particularly the intercellular diffusion of glucose between cardiomyocytes is not known. This problem was investigated in cell pairs isolated from the left ventricle of adult Wistar Kyoto rats. For this, fluorescent glucose was dialyzed into one cell of the pair using the whole cell clamp technique, and its diffusion from cell-to-cell through gap junctions was followed by measuring the fluorescence intensity in the dialyzed as well as in non-dialyzed cell as a function of time. The results indicated that (1) in cell pairs exposed to aldosterone (100 nM) for 24 h, the intercellular flow of glucose through gap junctions was disrupted; (2) although the mechanism by which aldosterone disrupts the cell-to-cell flow of glucose is multifactorial, two major factors are involved: oxidative stress and PKC activation; (3) the effect of aldosterone was significantly reduced by spironolactone (100 nM); and (4) calculation of gap junction permeability (Pj) indicated an average values of 0.3 ± 0.001 × 10(-4) cm/s (n = 31) (four animals) for controls and 24 ± 0.03 × 10(-6) cm/s (n = 34) (four animals) (P < 0.05) for cell pairs exposed to aldosterone (100 nM) for 24 h. Bis-1 (10(-9)M), which is a selective PKC inhibitor, added to the aldosterone solution, improved the value of Pj to 0.21 ± 0.001 × 10(-4) cm/s (n = 24) (P < 0.05), whereas spironolactone (100 nM) added to aldosterone solution, reduced significantly the effect of the hormone on junctional permeability to glucose.


Effects of simvastatin on glucose metabolism in mouse MIN6 cells.

  • Jieqiong Zhou‎ et al.
  • Journal of diabetes research‎
  • 2014‎

The aim of this study was to investigate the effects of simvastatin on insulin secretion in mouse MIN6 cells and the possible mechanism. MIN6 cells were, respectively, treated with 0  μ M, 2  μ M, 5  μ M, and 10  μ M simvastatin for 48 h. Radio immunoassay was performed to measure the effect of simvastatin on insulin secretion in MIN6 cells. Luciferase method was used to examine the content of ATP in MIN6 cells. Real-time PCR and western blotting were performed to measure the mRNA and protein levels of inward rectifier potassium channel 6.2 (Kir6.2), voltage-dependent calcium channel 1.2 (Cav1.2), and glucose transporter-2 (GLUT2), respectively. ATP-sensitive potassium current and L-type calcium current were recorded by whole-cell patch-clamp technique. The results showed that high concentrations of simvastatin (5  μ M and 10  μ M) significantly reduced the synthesis and secretion of insulin compared to control groups in MIN6 cells (P < 0.05). ATP content in simvastatin-treated cells was lower than in control cells (P < 0.05). Compared with control group, the mRNA and protein expression of Kir6.2 increased with treatment of simvastatin (P < 0.05), and mRNA and protein expression of Cav1.2 and GLUT2 decreased in response to simvastatin (P < 0.05). Moreover, simvastatin increased the ATP-sensitive potassium current and reduced the L-type calcium current. These results suggest that simvastatin inhibits the synthesis and secretion of insulin through a reduction in saccharometabolism in MIN6 cells.


Coixol amplifies glucose-stimulated insulin secretion via cAMP mediated signaling pathway.

  • Abdul Hameed‎ et al.
  • European journal of pharmacology‎
  • 2019‎

Recently, we reported the role of coixol (6-methoxy-2(3H)-benzoxazolone), an alkaloid from Scoparia dulcis, in glucose-dependent insulin secretion; however, its insulin secretory mechanism(s) remained unknown. Here, we explored the insulinotropic mechanism(s) of coixol in vitro and in vivo. Mice islets were batch incubated, perifused with coixol in the presence of agonists/antagonists, and insulin secretion was measured by ELISA. Intracellular cAMP levels were measured using enzyme immunoassay. K+- and Ca2+-currents were recorded in MIN6 cells using whole-cell patch-clamp technique. The in vivo glucose tolerance and the insulinogenic index were evaluated in diabetic rats treated with coixol at 25 and 50 mg/kg, respectively. Coixol, unlike sulfonylurea, enhanced insulin secretion in batch incubated and perifused islets at high glucose, with no effect at basal glucose concentrations. Coixol showed no pronounced effect on the inward rectifying K+- and Ca2+-currents in whole-cell patch recordings. Moreover, coixol-induced insulin secretion was further amplified in the depolarized islets. Coixol showed an additive effect with forskolin (10 μM)-induced cAMP level, and in insulin secretion; however, no additive effect was observed with isobutylmethylxanthine (IBMX, 100 μM)-induced cAMP level, nor in insulin secretion. The PKA inhibitor H-89 (50 μM), and Epac2 inhibitor MAY0132 (50 μM) significantly inhibited the coixol-induced insulin secretion (P < 0.01). Furthermore, insulin secretory kinetics revealed that coixol potentiates insulin secretion in both early and late phases of insulin secretion. In diabetic animals, coixol showed significant improvement in glucose tolerance and on fasting blood glucose levels. These data suggest that coixol amplifies glucose-stimulated insulin secretion by cAMP-mediated signaling pathways.


Hyperinsulinaemic-hypoglycaemic glucose clamps in human research: a systematic review of the literature.

  • Therese W Fabricius‎ et al.
  • Diabetologia‎
  • 2021‎

The hyperinsulinaemic-hypoglycaemic glucose clamp technique has been developed and applied to assess effects of and responses to hypoglycaemia under standardised conditions. However, the degree to which the methodology of clamp studies is standardised is unclear. This systematic review examines how hyperinsulinaemic-hypoglycaemic clamps have been performed and elucidates potential important differences.


Glucose deprivation regulates KATP channel trafficking via AMP-activated protein kinase in pancreatic beta-cells.

  • Ajin Lim‎ et al.
  • Diabetes‎
  • 2009‎

AMP-activated protein kinase (AMPK) and the ATP-sensitive K(+) (K(ATP)) channel are metabolic sensors that become activated during metabolic stress. AMPK is an important regulator of metabolism, whereas the K(ATP) channel is a regulator of cellular excitability. Cross talk between these systems is poorly understood.


Glucose fluctuations promote vascular BK channels dysfunction via PKCα/NF-κB/MuRF1 signaling.

  • Zhen-Ye Zhang‎ et al.
  • Journal of molecular and cellular cardiology‎
  • 2020‎

Glucose fluctuations may contribute to large conductance calcium activated potassium (BK) channel dysfunction. However, the underlying mechanisms remain elusive. The aim of this study was to investigate the molecular mechanisms involved in BK channel dysfunction as a result of glucose fluctuations. A rat diabetic model was established through the injection of streptozotocin. Glucose fluctuations in diabetic rats were induced via consumption and starvation. Rat coronary arteries were isolated and coronary vascular tensions were measured after three weeks. Rat coronary artery smooth muscle cells were isolated and whole-cell BK channel currents were recorded using a patch clamp technique. Human coronary artery smooth muscle cells in vitro were used to explore the underlying mechanisms. After incubation with iberiotoxin (IBTX), the Δ tensions (% Max) of rat coronary arteries in the controlled diabetes mellitus (C-DM), the uncontrolled DM (U-DM) and the DM with glucose fluctuation (GF-DM) groups were found to be 84.46 ± 5.75, 61.89 ± 10.20 and 14.77 ± 5.90, respectively (P < .05), while the current densities of the BK channels in the three groups were 43.09 ± 4.35 pA/pF, 34.23 ± 6.07 pA/pF and 17.87 ± 4.33 pA/pF, respectively (P < .05). The Δ tensions (% Max) of rat coronary arteries after applying IBTX in the GF-DM rats injected with 0.9% sodium chloride (NaCl) (GF-DM + NaCl) and the GF-DM rats injected with N-acetyl-L-cysteine (NAC) (GF-DM + NAC) groups were found to be 8.86 ± 1.09 and 48.90 ± 10.85, respectively (P < .05). Excessive oxidative stress and the activation of protein kinase C (PKC) α and nuclear factor (NF)-κB induced by glucose fluctuations promoted the decrease of BK-β1 expression, while the inhibition of reactive oxygen species (ROS), PKCα, NF-κB and muscle ring finger protein 1 (MuRF1) reversed this effect. Glucose fluctuations aggravate BK channel dysfunction via the ROS overproduction and the PKCα/NF-κB/MuRF1 signaling pathway.


Loss of LAMTOR1 in pancreatic β‑cells increases glucose‑stimulated insulin secretion in mice.

  • Qiong Huang‎ et al.
  • International journal of molecular medicine‎
  • 2020‎

Insulin secretion from pancreatic β‑cells regulates glucose metabolism and is related to various diseases including diabetes. The late endosomal/lysosomal adaptor MAPK and mTOR activator 1 (LAMTOR1) is one of the subunits of the 'Ragulator' complex and plays an important role in energy metabolism including glucose metabolism. The present study was designed to explore the role of LAMTOR1 in murine pancreatic β‑cell function. A murine model with β cell‑specific deficiency (βLamtor1‑KO) was generated to assess β‑cell function (insulin sensitivity paired with β‑cell responses) by hyperglycemic clamp in vivo. Islet perfusion and mitochondrial functional analyses were performed to investigate the individual steps in the insulin secretion pathway. Results showed that glucose tolerance in vivo as well as glucose‑stimulated insulin secretion in the hyperglycemic clamp and islet perfusion were higher in βLamtor1‑KO mice compared to the control models. Although mitochondrial dysfunction was present, the deletion of Lamtor1 increased glutamate content in the mouse insulin granules as well as acetyl‑CoA carboxylase 1 (ACC1) activity thus enhancing insulin secretion. Together, our data indicate that LAMTOR1 is important for maintaining mitochondrial function in mouse pancreatic β‑cells, however deletion of Lamtor1 increases the amplification pathway induced by glutamate and ACC1, ultimately leading to increased insulin secretion. These findings suggest that knockout of Lamtor1 is a potential technique for improving pancreatic β‑cell function and treating diabetes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: