Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,486 papers

Equine glucagon-like peptide-1 receptor physiology.

  • Murad H Kheder‎ et al.
  • PeerJ‎
  • 2018‎

Equine metabolic syndrome (EMS) is associated with insulin dysregulation, which often manifests as post-prandial hyperinsulinemia. Circulating concentrations of the incretin hormone, glucagon-like peptide-1 (GLP-1) correlate with an increased insulin response to carbohydrate intake in animals with EMS. However, little is known about the equine GLP-1 receptor (eGLP-1R), or whether GLP-1 concentrations can be manipulated. The objectives were to determine (1) the tissue localisation of the eGLP-1R, (2) the GLP-1 secretory capacity of equine intestine in response to glucose and (3) whether GLP-1 stimulated insulin secretion from isolated pancreatic islets can be attenuated.


Association of glucagon-like peptide-1 receptor-targeted imaging probe with in vivo glucagon-like peptide-1 receptor agonist glucose-lowering effects.

  • Takaaki Murakami‎ et al.
  • Journal of diabetes investigation‎
  • 2020‎

Glucagon-like peptide-1 receptor agonists (GLP-1RA) are used for treatment of type 2 diabetes mellitus worldwide. However, some patients do not respond well to the therapy, and caution must be taken for certain patients, including those with reduced insulin secretory capacity. Thus, it is clinically important to predict the efficacy of GLP-1RA therapy. GLP-1R-targeted imaging has recently emerged to visualize and quantify β-cells. We investigated whether GLP-1R-targeted imaging can predict the efficacy of GLP-1RA treatment.


Crystal structure of glucagon-like peptide-1 in complex with the extracellular domain of the glucagon-like peptide-1 receptor.

  • Christina Rye Underwood‎ et al.
  • The Journal of biological chemistry‎
  • 2010‎

GLP-1 (glucagon-like peptide-1) is an incretin released from intestinal L-cells in response to food intake. Activation of the GLP-1 receptor potentiates the synthesis and release of insulin from pancreatic beta-cells in a glucose-dependent manner. The GLP-1 receptor belongs to class B of the G-protein-coupled receptors, a subfamily characterized by a large N-terminal extracellular ligand binding domain. Exendin-4 and GLP-1 are 50% identical, and exendin-4 is a full agonist with similar affinity and potency for the GLP-1 receptor. We recently solved the crystal structure of the GLP-1 receptor extracellular domain in complex with the competitive antagonist exendin-4(9-39). Interestingly, the isolated extracellular domain binds exendin-4 with much higher affinity than the endogenous agonist GLP-1. Here, we have solved the crystal structure of the extracellular domain in complex with GLP-1 to 2.1 Aresolution. The structure shows that important hydrophobic ligand-receptor interactions are conserved in agonist- and antagonist-bound forms of the extracellular domain, but certain residues in the ligand-binding site adopt a GLP-1-specific conformation. GLP-1 is a kinked but continuous alpha-helix from Thr(13) to Val(33) when bound to the extracellular domain. We supplemented the crystal structure with site-directed mutagenesis to link the structural information of the isolated extracellular domain with the binding properties of the full-length receptor. The data support the existence of differences in the binding modes of GLP-1 and exendin-4 on the full-length GLP-1 receptor.


Glucagon-like peptide 1/glucagon receptor dual agonism reverses obesity in mice.

  • Alessandro Pocai‎ et al.
  • Diabetes‎
  • 2009‎

Oxyntomodulin (OXM) is a glucagon-like peptide 1 (GLP-1) receptor (GLP1R)/glucagon receptor (GCGR) dual agonist peptide that reduces body weight in obese subjects through increased energy expenditure and decreased energy intake. The metabolic effects of OXM have been attributed primarily to GLP1R agonism. We examined whether a long acting GLP1R/GCGR dual agonist peptide exerts metabolic effects in diet-induced obese mice that are distinct from those obtained with a GLP1R-selective agonist.


Cardiovascular Effects of Glucagon-Like Peptide-1 Receptor Agonists.

  • Yu Mi Kang‎ et al.
  • Endocrinology and metabolism (Seoul, Korea)‎
  • 2016‎

Glucagon-like peptide-1 (GLP-1) is a member of the proglucagon incretin family, and GLP-1 receptor agonists (RAs) have been introduced as a new class of antidiabetic medications in the past decade. The benefits of GLP-1 RAs are derived from their pleiotropic effects, which include glucose-dependent insulin secretion, suppressed glucagon secretion, and reduced appetite. Moreover, GLP-1 RAs also exert beneficial roles on multiple organ systems in which the GLP-1 receptors exist, including the cardiovascular system. Cardiovascular effects of GLP-1 RAs have been of great interest since the burden from cardiovascular diseases (CVD) has been unbearably increasing in a diabetic population worldwide, despite strict glycemic control and advanced therapeutic techniques to treat CVD. Preclinical studies have already demonstrated the beneficial effects of GLP-1 on myocardium and vascular endothelium, and many clinical studies evaluating changes in surrogate markers of CVD have suggested potential benefits from the use of GLP-1 RAs. Data from numerous clinical trials primarily evaluating the antihyperglycemic effects of multiple GLP-1 RAs have also revealed that changes in most CVD risk markers reported as secondary outcomes have been in favor of GLP-1 RAs treatment. However, to date, there is only one randomized clinical trial of GLP-1 RAs (the ELIXA study) evaluating major cardiovascular events as their primary outcomes, and in this study, a neutral cardiovascular effect of lixisenatide was observed in high-risk diabetic subjects. Therefore, the results of ongoing CVD outcome trials with the use of GLP-1 RAs should be awaited to elucidate the translation of benefits previously seen in CVD risk marker studies into large clinical trials with primary cardiovascular outcomes.


Cardiovascular effects of glucagon-like peptide 1 (GLP-1) receptor agonists.

  • Francisco Kerr Saraiva‎ et al.
  • Cardiovascular diabetology‎
  • 2014‎

Patients with type 2 diabetes have a several-fold increased risk of developing cardiovascular disease when compared with nondiabetic controls. Myocardial infarction and stroke are responsible for 75% of all death in patients with diabetes, who present a 2-4× increased incidence of death from coronary artery disease. Patients with diabetes are considered for cardiovascular disease secondary prevention because their risk level is similar to that reported in patients without diabetes who have already suffered a myocardial infarction. More recently, with a better risk factors control, mainly in intensive LDL cholesterol targets with statins, a significant decrease in acute cardiovascular events was observed in population with diabetes. Together with other major risk factors, type 2 diabetes must be considered as an important cause of cardiovascular disease.Glucagon like peptide-1 receptor agonists represent a novel class of anti-hyperglycemic agents that have a cardiac-friendly profile, preserve neuronal cells and inhibit neuronal degeneration, an anti-inflammatory effect in liver protecting it against steatosis, increase insulin sensitivity, promote weight loss, and increase satiety or anorexia.This review is intended to rationally compile the multifactorial cardiovascular effects of glucagon-like peptide-1 receptor agonists available for the treatment of patients with type 2 diabetes.


Role of Glucagon-Like Peptide-1 (GLP-1) Receptor Agonists in Hypoglycemia.

  • Daria Ja'arah‎ et al.
  • Clinical medicine insights. Endocrinology and diabetes‎
  • 2021‎

A relatively recent addition to the arsenal of antidiabetic drugs used for the treatment of type 2 diabetes mellitus (T2DM) has been the "incretin mimetics," a group of drugs that work on the glucagon-like peptide-1 (GLP-1) receptor and enhance insulin secretion from the pancreatic β-cells in a glucose-dependent manner, more potently in hyperglycemic conditions, while suppressing glucagon secretion at the same time. Therefore, it was assumed that this class of drugs would have a lower risk of hypoglycemia than insulin secretagogues like sulphonylureas. However, GLP-1 receptor agonists have been proposed to cause hypoglycemia in healthy normoglycemic subjects implying that their action is not as glucose-dependent as once thought. Other studies concluded that they might not induce hypoglycemia and the risk is dependent on other individual factors. However, the FDA announced that the 12 GLP-1 receptor agonists currently available on the market had potential safety signs and evaluated the need for regulatory action. This review provides an overview of the studies that investigated the possible hypoglycemic effect of GLP-1 receptor agonists. In addition, the current review describes other adverse effects of GLP-1 receptor agonist treatment.


Inhibitory effects of glucagon-like peptide-1 receptor on epilepsy.

  • Yuetao Wen‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Glucagon-like peptide-1 (GLP-1) and its receptor, GLP-1R, are valuable tools in the therapy of type 2 diabetes mellitus. Although GLP-1R stimulation is also potentially applicable to neurological disorders, few investigators have evaluated its beneficial effects in neurological disease models. Thus, we aimed to look into the antiepileptic effects of GLP-1R on epilepsy and its underlying mechanisms. The cerebral cortex of 22 patients with temporal lobe epilepsy (TLE) and 16 patients with trauma were collected to the epilepsy and control groups, respectively. Seizures were induced by pentylenetetrazole (PTZ) in rats. Liraglutide was used to up-regulate GLP-1R, and exendin fragment 9-39 (ex9-39) was used to down-regulate GLP-1R. The motor responses and scalp electroencephalograms of rats were recorded, and the interaction between GLP-1R and neuronal receptors (GABAARβ2/3, GluA1-4, GluNR1, GluN2A and GluN2B) was evaluated by coimmunoprecipitation. GLP-1R expression was investigated by immunohistochemistry and immunofluorescence staining, and the levels of GLP-1R and neuronal receptors were evaluated by western blotting. The results indicated that GLP-1R was decreased in patients with TLE and in PTZ-treated rats and the administration of liraglutide decreased seizure severity, which indicates that liraglutide exerts antiepileptic effects. Moreover, liraglutide significantly up-regulated GLP-1R and GABAARβ2/3 and down-regulated GluA1-4, GluNR1, GluN2A and GluN2B. In addition, ex9-39 exerted adverse effects and weakened the effects of liraglutide. Therefore, GLP-1R might suppress seizures by regulating the levels of neuronal receptors.


Central glucagon-like peptide 1 receptor activation inhibits Toll-like receptor agonist-induced inflammation.

  • Chi Kin Wong‎ et al.
  • Cell metabolism‎
  • 2024‎

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) exert anti-inflammatory effects relevant to the chronic complications of type 2 diabetes. Although GLP-1RAs attenuate T cell-mediated gut and systemic inflammation directly through the gut intraepithelial lymphocyte GLP-1R, how GLP-1RAs inhibit systemic inflammation in the absence of widespread immune expression of the GLP-1R remains uncertain. Here, we show that GLP-1R activation attenuates the induction of plasma tumor necrosis factor alpha (TNF-α) by multiple Toll-like receptor agonists. These actions are not mediated by hematopoietic or endothelial GLP-1Rs but require central neuronal GLP-1Rs. In a cecal slurry model of polymicrobial sepsis, GLP-1RAs similarly require neuronal GLP-1Rs to attenuate detrimental responses associated with sepsis, including sickness, hypothermia, systemic inflammation, and lung injury. Mechanistically, GLP-1R activation leads to reduced TNF-α via α1-adrenergic, δ-opioid, and κ-opioid receptor signaling. These data extend emerging concepts of brain-immune networks and posit a new gut-brain GLP-1R axis for suppression of peripheral inflammation.


Receptor-Targeted Photodynamic Therapy of Glucagon-Like Peptide 1 Receptor-Positive Lesions.

  • Marti Boss‎ et al.
  • Journal of nuclear medicine : official publication, Society of Nuclear Medicine‎
  • 2020‎

Treatment of hyperinsulinemic hypoglycemia is challenging. Surgical treatment of insulinomas and focal lesions in congenital hyperinsulinism is invasive and carries major risks of morbidity. Medication to treat nesidioblastosis and diffuse congenital hyperinsulinism has varying efficacy and causes significant side effects. Here, we describe a novel method for therapy of hyperinsulinemic hyperglycemia, highly selectively killing β-cells by receptor-targeted photodynamic therapy (rtPDT) with exendin-4-IRDye700DX, targeting the glucagon-like peptide 1 receptor (GLP-1R). Methods: A competitive binding assay was performed using Chinese hamster lung (CHL) cells transfected with the GLP-1R. The efficacy and specificity of rtPDT with exendin-4-IRDye700DX were examined in vitro in cells with different levels of GLP-1R expression. Tracer biodistribution was determined in BALB/c nude mice bearing subcutaneous CHL-GLP-1R xenografts. Induction of cellular damage and the effect on tumor growth were analyzed to determine treatment efficacy. Results: Exendin-4-IRDye700DX has a high affinity for the GLP-1R, with a half-maximal inhibitory concentration of 6.3 nM. rtPDT caused significant specific phototoxicity in GLP-1R-positive cells (2.3% ± 0.8% and 2.7% ± 0.3% remaining cell viability in CHL-GLP-1R and INS-1 cells, respectively). The tracer accumulates dose-dependently in GLP-1R-positive tumors. In vivo, rtPDT induces cellular damage in tumors, shown by strong expression of cleaved caspase-3, and leads to a prolonged median survival of the mice (36.5 vs. 22.5 d, respectively; P < 0.05). Conclusion: These data show in vitro as well as in vivo evidence of the potency of rtPDT using exendin-4-IRDye700DX. This approach might in the future provide a new, minimally invasive, highly specific treatment method for hyperinsulinemic hypoglycemia.


Computational Peptide Design Cotargeting Glucagon and Glucagon-like Peptide-1 Receptors.

  • Shubham Vishnoi‎ et al.
  • Journal of chemical information and modeling‎
  • 2023‎

Peptides are sustainable alternatives to conventional therapeutics for G protein-coupled receptor (GPCR) linked disorders, promising biocompatible and tailorable next-generation therapeutics for metabolic disorders including type-2 diabetes, as agonists of the glucagon receptor (GCGR) and the glucagon-like peptide-1 receptor (GLP-1R). However, single agonist peptides activating GLP-1R to stimulate insulin secretion also suppress obesity-linked glucagon release. Hence, bioactive peptides cotargeting GCGR and GLP-1R may remediate the blood glucose and fatty acid metabolism imbalance, tackling both diabetes and obesity to supersede current monoagonist therapy. Here, we design and model optimized peptide sequences starting from peptide sequences derived from earlier phage-displayed library screening, identifying those with predicted molecular binding profiles for dual agonism of GCGR and GLP-1R. We derive design rules from extensive molecular dynamics simulations based on peptide-receptor binding. Our newly designed coagonist peptide exhibits improved predicted coupled binding affinity for GCGR and GLP-1R relative to endogenous ligands and could in the future be tested experimentally, which may provide superior glycemic and weight loss control.


Design of novel Xenopus GLP-1-based dual glucagon-like peptide 1 (GLP-1)/glucagon receptor agonists.

  • Neng Jiang‎ et al.
  • European journal of medicinal chemistry‎
  • 2021‎

Dual activation of the glucagon receptor (GCGR) and glucagon-like peptide 1 receptor (GLP-1R) has the potential to lead to an effective therapy for the treatment of diabetes and obesity. Here, we report the discovery of a series of peptides with dual activity on GLP-1R and GCGR that were discovered by rational design. Structural elements of oxyntomodulin (OXM), glucagon or exendin-4 were engineered into the selective GLP-1R agonist Xenopus GLP-1 (xGLP-1) on the basis of sequence analysis, resulting in hybrid peptides with potent dual activity at GLP-1R and GCGR. Further modifications with fatty acid resulted in a novel metabolically stable peptide (xGLP/GCG-15) with enhanced and balanced GLP-1R and GCGR activations. This lead peptide was further explored pharmacologically in both db/db and diet-induced obesity (DIO) rodent models. Chronic administration of xGLP/GCG-15 significantly induced hypoglycemic effects and body weight loss, improved glucose tolerance, and normalized lipid metabolism, adiposity, and liver steatosis in relevant rodent models. These preclinical studies suggest that xGLP/GCG-15 has potential for development as a novel anti-obesity and/or anti-diabetic candidate. Considering the equal effects of xGLP/GCG-15 and the clinical candidate MEDI0382 on reverse hepatic steatosis, it may also be explored as a new therapy for nonalcoholic steatohepatitis (NASH) in the future.


Investigating the Glucagon Receptor and Glucagon-Like Peptide 1 Receptor Activity of Oxyntomodulin-Like Analogues in Male Wistar Rats.

  • Samantha L Price‎ et al.
  • Current therapeutic research, clinical and experimental‎
  • 2015‎

To investigate the effect of Glu-3 OXM-like analogues on food intake and bodyweight in male rats.


Patient preferences for glucagon-like peptide 1 receptor-agonist treatment attributes.

  • Vivian T Thieu‎ et al.
  • Patient preference and adherence‎
  • 2019‎

The importance of patient-centered care in the management of type 2 diabetes mellitus (T2DM) is widely advocated. Understanding the attributes of T2DM medications important to patients is thus essential for effective management, in order to limit disease progression. This literature review aimed to identify studies comparing patient preferences, based on process and outcome attributes, between GLP1-receptor agonist (RA) profiles and between GLP1 RA and insulin profiles.


Synthesis and biological evaluation of glucagon-like peptide-1 receptor agonists.

  • Yu-Juan Zhang‎ et al.
  • Archives of pharmacal research‎
  • 2014‎

In this study, a series of fused-heterocyclic derivatives were systematically designed and synthesized using an efficient route, and evaluated in terms of GLP-1R agonist activity. We employed short synthetic steps and reactions that are tolerant of the presence of various functional groups and suitable for parallel operations to enable the rapid generation of libraries of diverse and structurally complex small molecules. Of the compounds synthesized, 3-(8-chloro-6-(trifluoromethyl)imidazo[1,2-a] pyridin-2-yl)phenyl methanesulfonate (8e) was the most potent agonist with an EC50 of 7.89 μM, and thus is the compound with the greatest potential for application. These findings represent a valuable starting point for the design and discovery of small-molecule GLP-1R agonists that can be administered orally.


Metabolic responses and benefits of glucagon-like peptide-1 (GLP-1) receptor ligands.

  • Neil Tanday‎ et al.
  • British journal of pharmacology‎
  • 2022‎

Glucagon-like peptide-1 (GLP-1) is an incretin hormone that has undergone a revolutionary turnaround from discovery to clinically approved therapeutic. Rapid progress in drug design and formulation has led from initial development of short- and long-acting drugs suitable for daily or weekly parenteral administration, respectively, through to the most recent approval of an orally active GLP-1 agent. The current review outlines the biological action profile of GLP-1 including the various beneficial metabolic responses in pancreatic and extra-pancreatic tissues, including the gastrointestinal tract, liver, bone and kidney as well as the reproductive cardiovascular and CNS. We then briefly consider clinically approved GLP-1 receptor ligands and recent advances in this field. Given the sustained evolution in the area of GLP-1 drug development and excellent safety profile, as well as the plethora of metabolic benefits, clinical approval for use in diseases beyond diabetes and obesity is very much conceivable. LINKED ARTICLES: This article is part of a themed issue on GLP1 receptor ligands (BJP 75th Anniversary). To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v179.4/issuetoc.


Xenopus-derived glucagon-like peptide-1 and polyethylene-glycosylated glucagon-like peptide-1 receptor agonists: long-acting hypoglycaemic and insulinotropic activities with potential therapeutic utilities.

  • Jing Han‎ et al.
  • British journal of pharmacology‎
  • 2018‎

Incretin-based therapies based on glucagon-like peptide-1 (GLP-1) receptor agonists are effective treatments of type 2 diabetes. Abundant research has focused on the development of long-acting GLP-1 receptor agonists. However, all GLP-1 receptor agonists in clinical use or development are based on human or Gila GLP-1. We have identified a potent GLP-1 receptor agonist, xGLP-1B, based on Xenopus GLP-1.


Real-time trafficking and signaling of the glucagon-like peptide-1 receptor.

  • Sarah Noerklit Roed‎ et al.
  • Molecular and cellular endocrinology‎
  • 2014‎

The glucagon-like peptide-1 incretin receptor (GLP-1R) of family B G protein-coupled receptors (GPCRs) is a major drug target in type-2-diabetes due to its regulatory effect on post-prandial blood-glucose levels. The mechanism(s) controlling GLP-1R mediated signaling are far from fully understood. A fundamental mechanism controlling the signaling capacity of GPCRs is the post-endocytic trafficking of receptors between recycling and degradative fates. Here, we combined microscopy with novel real-time assays to monitor both receptor trafficking and signaling in living cells. We find that the human GLP-1R internalizes rapidly and with similar kinetics in response to equipotent concentrations of GLP-1 and the stable GLP-1 analogues exendin-4 and liraglutide. Receptor internalization was confirmed in mouse pancreatic islets. GLP-1R is shown to be a recycling receptor with faster recycling rates mediated by GLP-1 as compared to exendin-4 and liraglutide. Furthermore, a prolonged cycling of ligand-activated GLP-1Rs was observed and is suggested to be correlated with a prolonged cAMP signal.


miR-204 Controls Glucagon-Like Peptide 1 Receptor Expression and Agonist Function.

  • SeongHo Jo‎ et al.
  • Diabetes‎
  • 2018‎

Glucagon-like peptide 1 receptor (GLP1R) agonists are widely used to treat diabetes. However, their function is dependent on adequate GLP1R expression, which is downregulated in diabetes. GLP1R is highly expressed on pancreatic β-cells, and activation by endogenous incretin or GLP1R agonists increases cAMP generation, which stimulates glucose-induced β-cell insulin secretion and helps maintain glucose homeostasis. We now have discovered that the highly β-cell-enriched microRNA, miR-204, directly targets the 3' UTR of GLP1R and thereby downregulates its expression in the β-cell-derived rat INS-1 cell line and primary mouse and human islets. Furthermore, in vivo deletion of miR-204 promoted islet GLP1R expression and enhanced responsiveness to GLP1R agonists, resulting in improved glucose tolerance, cAMP production, and insulin secretion as well as protection against diabetes. Since we recently identified thioredoxin-interacting protein (TXNIP) as an upstream regulator of miR-204, we also assessed whether in vivo deletion of TXNIP could mimic that of miR-204. Indeed, it also enhanced islet GLP1R expression and GLP1R agonist-induced insulin secretion and glucose tolerance. Thus, the present studies show for the first time that GLP1R is under the control of a microRNA, miR-204, and uncover a previously unappreciated link between TXNIP and incretin action.


Induced Human Regulatory T Cells Express the Glucagon-like Peptide-1 Receptor.

  • Anna K O Rode‎ et al.
  • Cells‎
  • 2022‎

The glucagon-like peptide-1 receptor (GLP-1R) plays a key role in metabolism and is an important therapeutic target in diabetes and obesity. Recent studies in experimental animals have shown that certain subsets of T cells express functional GLP-1R, indicating an immune regulatory role of GLP-1. In contrast, less is known about the expression and function of the GLP-1R in human T cells. Here, we provide evidence that activated human T cells express GLP-1R. The expressed GLP-1R was functional, as stimulation with a GLP-1R agonist triggered an increase in intracellular cAMP, which was abrogated by a GLP-1R antagonist. Analysis of CD4+ T cells activated under T helper (Th) 1, Th2, Th17 and regulatory T (Treg) cell differentiation conditions indicated that GLP-1R expression was most pronounced in induced Treg (iTreg) cells. Through multimodal single-cell CITE- and TCR-sequencing, we detected GLP-1R expression in 29-34% of the FoxP3+CD25+CD127- iTreg cells. GLP-1R+ cells showed no difference in their TCR-gene usage nor CDR3 lengths. Finally, we demonstrated the presence of GLP-1R+CD4+ T cells in skin from patients with allergic contact dermatitis. Taken together, the present data demonstrate that T cell activation triggers the expression of functional GLP-1R in human CD4+ T cells. Given the high induction of GLP-1R in human iTreg cells, we hypothesize that GLP-1R+ iTreg cells play a key role in the anti-inflammatory effects ascribed to GLP-1R agonists in humans.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: