Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 4,448 papers

Genetic complementation fosters evolvability in complex fitness landscapes.

  • Ernesto Segredo-Otero‎ et al.
  • Scientific reports‎
  • 2023‎

The ability of natural selection to optimize traits depends on the topology of the genotype-fitness map (fitness landscape). Epistatic interactions produce rugged fitness landscapes, where adaptation is constrained by the presence of low-fitness intermediates. Here, we used simulations to explore how evolvability in rugged fitness landscapes is influenced by genetic complementation, a process whereby different sequence variants mutually compensate for their deleterious mutations. We designed our model inspired by viral populations, in which genetic variants are known to interact frequently through coinfection. Our simulations indicate that genetic complementation enables a more efficient exploration of rugged fitness landscapes. Although this benefit may be undermined by genetic parasites, its overall effect on evolvability remains positive in populations that exhibit strong relatedness between interacting sequences. Similar processes could operate in contexts other than viral coinfection, such as in the evolution of ploidy.


Population genetic diversity and fitness in multiple environments.

  • Jeffrey A Markert‎ et al.
  • BMC evolutionary biology‎
  • 2010‎

When a large number of alleles are lost from a population, increases in individual homozygosity may reduce individual fitness through inbreeding depression. Modest losses of allelic diversity may also negatively impact long-term population viability by reducing the capacity of populations to adapt to altered environments. However, it is not clear how much genetic diversity within populations may be lost before populations are put at significant risk. Development of tools to evaluate this relationship would be a valuable contribution to conservation biology. To address these issues, we have created an experimental system that uses laboratory populations of an estuarine crustacean, Americamysis bahia with experimentally manipulated levels of genetic diversity. We created replicate cultures with five distinct levels of genetic diversity and monitored them for 16 weeks in both permissive (ambient seawater) and stressful conditions (diluted seawater). The relationship between molecular genetic diversity at presumptive neutral loci and population vulnerability was assessed by AFLP analysis.


Evolving Bacterial Fitness with an Expanded Genetic Code.

  • Drew S Tack‎ et al.
  • Scientific reports‎
  • 2018‎

Since the fixation of the genetic code, evolution has largely been confined to 20 proteinogenic amino acids. The development of orthogonal translation systems that allow for the codon-specific incorporation of noncanonical amino acids may provide a means to expand the code, but these translation systems cannot be simply superimposed on cells that have spent billions of years optimizing their genomes with the canonical code. We have therefore carried out directed evolution experiments with an orthogonal translation system that inserts 3-nitro-L-tyrosine across from amber codons, creating a 21 amino acid genetic code in which the amber stop codon ambiguously encodes either 3-nitro-L-tyrosine or stop. The 21 amino acid code is enforced through the inclusion of an addicted, essential gene, a beta-lactamase dependent upon 3-nitro-L-tyrosine incorporation. After 2000 generations of directed evolution, the fitness deficit of the original strain was largely repaired through mutations that limited the toxicity of the noncanonical. While the evolved lineages had not resolved the ambiguous coding of the amber codon, the improvements in fitness allowed new amber codons to populate protein coding sequences.


Sex-specific dominance reversal of genetic variation for fitness.

  • Karl Grieshop‎ et al.
  • PLoS biology‎
  • 2018‎

The maintenance of genetic variance in fitness represents one of the most longstanding enigmas in evolutionary biology. Sexually antagonistic (SA) selection may contribute substantially to maintaining genetic variance in fitness by maintaining alternative alleles with opposite fitness effects in the two sexes. This is especially likely if such SA loci exhibit sex-specific dominance reversal (SSDR)-wherein the allele that benefits a given sex is also dominant in that sex-which would generate balancing selection and maintain stable SA polymorphisms for fitness. However, direct empirical tests of SSDR for fitness are currently lacking. Here, we performed a full diallel cross among isogenic strains derived from a natural population of the seed beetle Callosobruchus maculatus that is known to exhibit SA genetic variance in fitness. We measured sex-specific competitive lifetime reproductive success (i.e., fitness) in >500 sex-by-genotype F1 combinations and found that segregating genetic variation in fitness exhibited pronounced contributions from dominance variance and sex-specific dominance variance. A closer inspection of the nature of dominance variance revealed that the fixed allelic variation captured within each strain tended to be dominant in one sex but recessive in the other, revealing genome-wide SSDR for SA polymorphisms underlying fitness. Our findings suggest that SA balancing selection could play an underappreciated role in maintaining fitness variance in natural populations.


Genetic Correlation between Body Fat Percentage and Cardiorespiratory Fitness Suggests Common Genetic Etiology.

  • Theresia M Schnurr‎ et al.
  • PloS one‎
  • 2016‎

It has long been discussed whether fitness or fatness is a more important determinant of health status. If the same genetic factors that promote body fat percentage (body fat%) are related to cardiorespiratory fitness (CRF), part of the concurrent associations with health outcomes could reflect a common genetic origin. In this study we aimed to 1) examine genetic correlations between body fat% and CRF; 2) determine whether CRF can be attributed to a genetic risk score (GRS) based on known body fat% increasing loci; and 3) examine whether the fat mass and obesity associated (FTO) locus associates with CRF.


Genetic determinants of Pseudomonas aeruginosa fitness during biofilm growth.

  • Silvia Schinner‎ et al.
  • Biofilm‎
  • 2020‎

Pseudomonas aeruginosa is an environmental bacterium and an opportunistic human pathogen. It is also a well-established model organism to study bacterial adaptation to stressful conditions, such as those encountered during an infection process in the human host. Advancing knowledge on P. aeruginosa adaptation to biofilm growth conditions is bound to reveal novel strategies and targets for the treatment of chronic biofilm-associated infections. Here, we generated transposon insertion libraries in three P. aeruginosa strain backgrounds and determined the relative frequency of each insertion following biofilm growth using transposon sequencing. We demonstrate that in general the SOS response, several tRNA modifying enzymes as well as adaptation to microaerophilic growth conditions play a key role in bacterial survival under biofilm growth conditions. On the other hand, presence of genes involved in motility and PQS signaling were less important during biofilm growth. Several mutants exhibiting transposon insertions in genes detected in our screen were validated for their biofilm growth capabilities and biofilm specific transcriptional responses using independently generated transposon mutants. Our results provide new insights into P. aeruginosa adaptation to biofilm growth conditions. The detection of previously unknown determinants of biofilm survival supports the use of transposon insertion sequencing as a global genomic technology for understanding the establishment of difficult to treat biofilm-associated infections.


Genomic and Fitness Consequences of Genetic Rescue in Wild Populations.

  • Sarah W Fitzpatrick‎ et al.
  • Current biology : CB‎
  • 2020‎

Gene flow is an enigmatic evolutionary force because it can limit adaptation but may also rescue small populations from inbreeding depression [1-3]. Several iconic examples of genetic rescue-increased population growth caused by gene flow [4, 5]-have reversed population declines [6, 7]. However, concerns about outbreeding depression and maladaptive gene flow limit the use of human-mediated gene flow in conservation [8, 9]. Rescue effects of immigration through demographic and/or genetic mechanisms have received theoretical and empirical support, but studies that monitor initial and long-term effects of gene flow on individuals and populations in the wild are lacking. Here, we used individual-based mark-recapture, multigenerational pedigrees, and genomics to test the demographic and evolutionary consequences of manipulating gene flow in two isolated, wild Trinidadian guppy populations. Recipient and source populations originated from environments with different predation, flow, and resource regimes [10]. We documented 10-fold increases in population size following gene flow and found that, on average, hybrids lived longer and reproduced more than residents and immigrants. Despite overall genomic homogenization, alleles potentially associated with local adaptation were not entirely swamped by gene flow. Our results suggest that genetic rescue was caused not just by increasing individual genetic diversity, rather new genomic variation from immigrants combined with alleles from the recipient population resulted in highly fit hybrids and subsequent increases in population size. Contrary to the classic view of maladaptive gene flow, our study reveals conditions under which immigration can produce long-term fitness benefits in small populations without entirely swamping adaptive variation.


COX7A2L genetic variants determine cardiorespiratory fitness in mice and human.

  • Giorgia Benegiamo‎ et al.
  • Nature metabolism‎
  • 2022‎

Mitochondrial respiratory complexes form superassembled structures called supercomplexes. COX7A2L is a supercomplex-specific assembly factor in mammals, although its implication for supercomplex formation and cellular metabolism remains controversial. Here we identify a role for COX7A2L for mitochondrial supercomplex formation in humans. By using human cis-expression quantitative trait loci data, we highlight genetic variants in the COX7A2L gene that affect its skeletal muscle expression specifically. The most significant cis-expression quantitative trait locus is a 10-bp insertion in the COX7A2L 3' untranslated region that increases messenger RNA stability and expression. Human myotubes harboring this insertion have more supercomplexes and increased respiration. Notably, increased COX7A2L expression in the muscle is associated with lower body fat and improved cardiorespiratory fitness in humans. Accordingly, specific reconstitution of Cox7a2l expression in C57BL/6J mice leads to higher maximal oxygen consumption, increased lean mass and increased energy expenditure. Furthermore, Cox7a2l expression in mice is induced specifically in the muscle upon exercise. These findings elucidate the genetic basis of mitochondrial supercomplex formation and function in humans and show that COX7A2L plays an important role in cardiorespiratory fitness, which could have broad therapeutic implications in reducing cardiovascular mortality.


Population bottlenecks constrain host microbiome diversity and genetic variation impeding fitness.

  • Michael Ørsted‎ et al.
  • PLoS genetics‎
  • 2022‎

It is becoming increasingly clear that microbial symbionts influence key aspects of their host's fitness, and vice versa. This may fundamentally change our thinking about how microbes and hosts interact in influencing fitness and adaptation to changing environments. Here we explore how reductions in population size commonly experienced by threatened species influence microbiome diversity. Consequences of such reductions are normally interpreted in terms of a loss of genetic variation, increased inbreeding and associated inbreeding depression. However, fitness effects of population bottlenecks might also be mediated through microbiome diversity, such as through loss of functionally important microbes. Here we utilise 50 Drosophila melanogaster lines with different histories of population bottlenecks to explore these questions. The lines were phenotyped for egg-to-adult viability and their genomes sequenced to estimate genetic variation. The bacterial 16S rRNA gene was amplified in these lines to investigate microbial diversity. We found that 1) host population bottlenecks constrained microbiome richness and diversity, 2) core microbiomes of hosts with low genetic variation were constituted from subsets of microbiomes found in flies with higher genetic variation, 3) both microbiome diversity and host genetic variation contributed to host population fitness, 4) connectivity and robustness of bacterial networks was low in the inbred lines regardless of host genetic variation, 5) reduced microbial diversity was associated with weaker evolutionary responses of hosts in stressful environments, and 6) these effects were unrelated to Wolbachia density. These findings suggest that population bottlenecks reduce hologenomic variation (combined host and microbial genetic variation). Thus, while the current biodiversity crisis focuses on population sizes and genetic variation of eukaryotes, an additional focal point should be the microbial diversity carried by the eukaryotes, which in turn may influence host fitness and adaptability with consequences for the persistence of populations.


Genetic drift promotes and recombination hinders speciation on holey fitness landscapes.

  • Ata Kalirad‎ et al.
  • PLoS genetics‎
  • 2024‎

Dobzhansky and Muller proposed a general mechanism through which microevolution, the substitution of alleles within populations, can cause the evolution of reproductive isolation between populations and, therefore, macroevolution. As allopatric populations diverge, many combinations of alleles differing between them have not been tested by natural selection and may thus be incompatible. Such genetic incompatibilities often cause low fitness in hybrids between species. Furthermore, the number of incompatibilities grows with the genetic distance between diverging populations. However, what determines the rate and pattern of accumulation of incompatibilities remains unclear. We investigate this question by simulating evolution on holey fitness landscapes on which genetic incompatibilities can be identified unambiguously. We find that genetic incompatibilities accumulate more slowly among genetically robust populations and identify two determinants of the accumulation rate: recombination rate and population size. In large populations with abundant genetic variation, recombination selects for increased genetic robustness and, consequently, incompatibilities accumulate more slowly. In small populations, genetic drift interferes with this process and promotes the accumulation of genetic incompatibilities. Our results suggest a novel mechanism by which genetic drift promotes and recombination hinders speciation.


Fluctuating Environments Maintain Genetic Diversity through Neutral Fitness Effects and Balancing Selection.

  • Farah Abdul-Rahman‎ et al.
  • Molecular biology and evolution‎
  • 2021‎

Genetic variation is the raw material upon which selection acts. The majority of environmental conditions change over time and therefore may result in variable selective effects. How temporally fluctuating environments impact the distribution of fitness effects and in turn population diversity is an unresolved question in evolutionary biology. Here, we employed continuous culturing using chemostats to establish environments that switch periodically between different nutrient limitations and compared the dynamics of selection to static conditions. We used the pooled Saccharomyces cerevisiae haploid gene deletion collection as a synthetic model for populations comprising thousands of unique genotypes. Using barcode sequencing, we find that static environments are uniquely characterized by a small number of high-fitness genotypes that rapidly dominate the population leading to dramatic decreases in genetic diversity. By contrast, fluctuating environments are enriched in genotypes with neutral fitness effects and an absence of extreme fitness genotypes contributing to the maintenance of genetic diversity. We also identified a unique class of genotypes whose frequencies oscillate sinusoidally with a period matching the environmental fluctuation. Oscillatory behavior corresponds to large differences in short-term fitness that are not observed across long timescales pointing to the importance of balancing selection in maintaining genetic diversity in fluctuating environments. Our results are consistent with a high degree of environmental specificity in the distribution of fitness effects and the combined effects of reduced and balancing selection in maintaining genetic diversity in the presence of variable selection.


CRISPR-mediated genetic interaction profiling identifies RNA binding proteins controlling metazoan fitness.

  • Adam D Norris‎ et al.
  • eLife‎
  • 2017‎

Genetic interaction screens have aided our understanding of complex genetic traits, diseases, and biological pathways. However, approaches for synthetic genetic analysis with null-alleles in metazoans have not been feasible. Here, we present a CRISPR/Cas9-based Synthetic Genetic Interaction (CRISPR-SGI) approach enabling systematic double-mutant generation. Applying this technique in Caenorhabditis elegans, we comprehensively screened interactions within a set of 14 conserved RNA binding protein genes, generating all possible single and double mutants. Many double mutants displayed fitness defects, revealing synthetic interactions. For one interaction between the MBNL1/2 ortholog mbl-1 and the ELAVL ortholog exc-7, double mutants displayed a severely shortened lifespan. Both genes are required for regulating hundreds of transcripts and isoforms, and both may play a critical role in lifespan extension through insulin signaling. Thus, CRISPR-SGI reveals a rich genetic interaction landscape between RNA binding proteins in maintaining organismal health, and will serve as a paradigm applicable to other biological questions.


Fur colour in the Arctic fox: genetic architecture and consequences for fitness.

  • Lukas Tietgen‎ et al.
  • Proceedings. Biological sciences‎
  • 2021‎

Genome-wide association studies provide good opportunities for studying the genetic basis of adaptive traits in wild populations. Yet, previous studies often failed to identify major effect genes. In this study, we used high-density single nucleotide polymorphism and individual fitness data from a wild non-model species. Using a whole-genome approach, we identified the MC1R gene as the sole causal gene underlying Arctic fox Vulpes lagopus fur colour. Further, we showed the adaptive importance of fur colour genotypes through measures of fitness that link ecological and evolutionary processes. We found a tendency for blue foxes that are heterozygous at the fur colour locus to have higher fitness than homozygous white foxes. The effect of genotype on fitness was independent of winter duration but varied with prey availability, with the strongest effect in years of increasing rodent populations. MC1R is located in a genomic region with high gene density, and we discuss the potential for indirect selection through linkage and pleiotropy. Our study shows that whole-genome analyses can be successfully applied to wild species and identify major effect genes underlying adaptive traits. Furthermore, we show how this approach can be used to identify knowledge gaps in our understanding of interactions between ecology and evolution.


Interactions of physical activity, muscular fitness, adiposity, and genetic risk for NAFLD.

  • Theresia M Schnurr‎ et al.
  • Hepatology communications‎
  • 2022‎

Genetic predisposition and unhealthy lifestyle are risk factors for nonalcoholic fatty liver disease (NAFLD). We investigated whether the genetic risk of NAFLD is modified by physical activity, muscular fitness, and/or adiposity. In up to 242,524 UK Biobank participants without excessive alcohol intake or known liver disease, we examined cross-sectional interactions and joint associations of physical activity, muscular fitness, body mass index (BMI), and a genetic risk score (GRS) with alanine aminotransferase (ALT) levels and the proxy definition for suspected NAFLD of ALT levels > 30 U/L in women and >40 U/L in men. Genetic predisposition to NAFLD was quantified using a GRS consisting of 68 loci known to be associated with chronically elevated ALT. Physical activity was assessed using accelerometry, and muscular fitness was estimated by measuring handgrip strength. We found that increased physical activity and grip strength modestly attenuate genetic predisposition to elevation in ALT levels, whereas higher BMI markedly amplifies it (all p values < 0.001). Among those with normal weight and high level of physical activity, the odds of suspected NAFLD were 1.6-fold higher in those with high versus low genetic risk (reference group). In those with high genetic risk, the odds of suspected NAFLD were 12-fold higher in obese participants with low physical activity versus those with normal weight and high physical activity (odds ratio for NAFLD = 19.2 and 1.6, respectively, vs. reference group). Conclusion: In individuals with high genetic predisposition for NAFLD, maintaining a normal body weight and increased physical activity may reduce the risk of NAFLD.


Bacteriophages use an expanded genetic code on evolutionary paths to higher fitness.

  • Michael J Hammerling‎ et al.
  • Nature chemical biology‎
  • 2014‎

Bioengineering advances have made it possible to fundamentally alter the genetic codes of organisms. However, the evolutionary consequences of expanding an organism's genetic code with a noncanonical amino acid are poorly understood. Here we show that bacteriophages evolved on a host that incorporates 3-iodotyrosine at the amber stop codon acquire neutral and beneficial mutations to this new amino acid in their proteins, demonstrating that an expanded genetic code increases evolvability.


Reproductive fitness and genetic risk of psychiatric disorders in the general population.

  • Niamh Mullins‎ et al.
  • Nature communications‎
  • 2017‎

The persistence of common, heritable psychiatric disorders that reduce reproductive fitness is an evolutionary paradox. Here, we investigate the selection pressures on sequence variants that predispose to schizophrenia, autism, bipolar disorder, major depression and attention deficit hyperactivity disorder (ADHD) using genomic data from 150,656 Icelanders, excluding those diagnosed with these psychiatric diseases. Polygenic risk of autism and ADHD is associated with number of children. Higher polygenic risk of autism is associated with fewer children and older age at first child whereas higher polygenic risk of ADHD is associated with having more children. We find no evidence for a selective advantage of a high polygenic risk of schizophrenia or bipolar disorder. Rare copy-number variants conferring moderate to high risk of psychiatric illness are associated with having fewer children and are under stronger negative selection pressure than common sequence variants.


Rapid evolution of the intersexual genetic correlation for fitness in Drosophila melanogaster.

  • Julie M Collet‎ et al.
  • Evolution; international journal of organic evolution‎
  • 2016‎

Sexual antagonism (SA) arises when male and female phenotypes are under opposing selection, yet genetically correlated. Until resolved, antagonism limits evolution toward optimal sex-specific phenotypes. Despite its importance for sex-specific adaptation and existing theory, the dynamics of SA resolution are not well understood empirically. Here, we present data from Drosophila melanogaster, compatible with a resolution of SA. We compared two independent replicates of the "LHM " population in which SA had previously been described. Both had been maintained under identical, controlled conditions, and separated for around 200 generations. Although heritabilities of male and female fitness were similar, the intersexual genetic correlation differed significantly, being negative in one replicate (indicating SA) but close to zero in the other. Using population sequencing, we show that phenotypic differences were associated with population divergence in allele frequencies at nonrandom loci across the genome. Large frequency changes were more prevalent in the population without SA and were enriched at loci mapping to genes previously shown to have sexually antagonistic relationships between expression and fitness. Our data suggest that rapid evolution toward SA resolution has occurred in one of the populations and open avenues toward studying the genetics of SA and its resolution.


Genetic analysis of a rat model of aerobic capacity and metabolic fitness.

  • Yu-Yu Ren‎ et al.
  • PloS one‎
  • 2013‎

Aerobic capacity is a strong predictor of all-cause mortality and can influence many complex traits. To explore the biological basis underlying this connection, we developed via artificial selection two rat lines that diverge for intrinsic (i.e. inborn) aerobic capacity and differ in risk for complex disease traits. Here we conduct the first in-depth pedigree and molecular genetic analysis of these lines, the high capacity runners (HCR) and low capacity runners (LCR). Our results show that both HCR and LCR lines maintain considerable narrow-sense heritability (h(2)) for the running capacity phenotype over 28 generations (h(2) = 0.47 ± 0.02 and 0.43 ± 0.02, respectively). To minimize inbreeding, the lines were maintained by rotational mating. Pedigree records predict that the inbreeding coefficient increases at a rate of <1% per generation, ~37-38% slower than expected for random mating. Genome-wide 10K SNP genotype data for generations 5, 14, and 26 demonstrate substantial genomic evolution: between-line differentiation increased progressively, while within-line diversity deceased. Genome-wide average heterozygosity decreased at a rate of <1% per generation, consistent with pedigree-based predictions and confirming the effectiveness of rotational breeding. Linkage disequilibrium index r(2) decreases to 0.3 at ~3 Mb, suggesting that the resolution for mapping quantitative trait loci (QTL) can be as high as 2-3 cM. To establish a test population for QTL mapping, we conducted an HCR-LCR intercross. Running capacity of the F1 population (n=176) was intermediate of the HCR and LCR parentals (28 pairs); and the F2 population (n=645) showed a wider range of phenotypic distribution. Importantly, heritability in the F0-F2 pedigree remained high (h(2)~0.6). These results suggest that the HCR-LCR lines can serve as a valuable system for studying genomic evolution, and a powerful resource for mapping QTL for a host of characters relevant to human health.


Genetic and potential non-genetic benefits increase offspring fitness of polyandrous females in non-resource based mating system.

  • Jukka Kekäläinen‎ et al.
  • BMC evolutionary biology‎
  • 2010‎

The adaptive significance of female polyandry is currently under considerable debate. In non-resource based mating systems, indirect, i.e. genetic benefits have been proposed to be responsible for the fitness gain from polyandry. We studied the benefits of polyandry in the Arctic charr (Salvelinus alpinus) using an experimental design in which the material investments by the sires and maternal environmental effects were controlled.


Genetic stability, genetic variation, and fitness performance of the genetic sexing Salaya1 strain for Bactrocera dorsalis, under long-term mass rearing conditions.

  • Nidchaya Aketarawong‎ et al.
  • BMC genetics‎
  • 2020‎

A genetic sexing strain (GSS) is an essential component for pest control using the sterile insect technique (SIT). A GSS is developed using a combination of Y-autosome translocation and a selectable marker such as pupal color, resulting in heterozygous males and homozygous females that possess wild-type brown pupae (wp+) and mutant white pupae (wp) alleles, respectively. The genetic sexing Salaya1 strain developed for Bactrocera dorsalis was evaluated using a clean stream and scaled-up for subsequent production lines (e.g., initiation, injection, and release). Colony management under small- and large-scale conditions for long-term rearing may affect the sexing system, genetic background, and fitness performance of the strain. Routine monitoring was applied to study genetic stability, genetic variation, and male mating competitiveness.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: