Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 33,184 papers

Meta-analysis of genetic association studies.

  • Young Ho Lee‎
  • Annals of laboratory medicine‎
  • 2015‎

The object of this review is to help readers to understand meta-analysis of genetic association study. Genetic association studies are a powerful approach to identify susceptibility genes for common diseases. However, the results of these studies are not consistently reproducible. In order to overcome the limitations of individual studies, larger sample sizes or meta-analysis is required. Meta-analysis is a statistical tool for combining results of different studies on the same topic, thus increasing statistical strength and precision. Meta-analysis of genetic association studies combines the results from independent studies, explores the sources of heterogeneity, and identifies subgroups associated with the factor of interest. Meta-analysis of genetic association studies is an effective tool for garnering a greater understanding of complex diseases and potentially provides new insights into gene-disease associations.


Using population isolates in genetic association studies.

  • Konstantinos Hatzikotoulas‎ et al.
  • Briefings in functional genomics‎
  • 2014‎

The use of genetically isolated populations can empower next-generation association studies. In this review, we discuss the advantages of this approach and review study design and analytical considerations of genetic association studies focusing on isolates. We cite successful examples of using population isolates in association studies and outline potential ways forward.


Hierarchical Naive Bayes for genetic association studies.

  • Alberto Malovini‎ et al.
  • BMC bioinformatics‎
  • 2012‎

Genome Wide Association Studies represent powerful approaches that aim at disentangling the genetic and molecular mechanisms underlying complex traits. The usual "one-SNP-at-the-time" testing strategy cannot capture the multi-factorial nature of this kind of disorders. We propose a Hierarchical Naïve Bayes classification model for taking into account associations in SNPs data characterized by Linkage Disequilibrium. Validation shows that our model reaches classification performances superior to those obtained by the standard Naïve Bayes classifier for simulated and real datasets.


Understanding genetic epidemiologic association studies Part 1: fundamentals.

  • Kaye M Reid-Lombardo‎ et al.
  • Surgery‎
  • 2010‎

No abstract available


Genetic susceptibility in Juvenile Myoclonic Epilepsy: Systematic review of genetic association studies.

  • Bruna Priscila Dos Santos‎ et al.
  • PloS one‎
  • 2017‎

Several genetic association investigations have been performed over the last three decades to identify variants underlying Juvenile Myoclonic Epilepsy (JME). Here, we evaluate the accumulating findings and provide an updated perspective of these studies.


Evolutionary triangulation: informing genetic association studies with evolutionary evidence.

  • Minjun Huang‎ et al.
  • BioData mining‎
  • 2016‎

Genetic studies of human diseases have identified many variants associated with pathogenesis and severity. However, most studies have used only statistical association to assess putative relationships to disease, and ignored other factors for evaluation. For example, evolution is a factor that has shaped disease risk, changing allele frequencies as human populations migrated into and inhabited new environments. Since many common variants differ among populations in frequency, as does disease prevalence, we hypothesized that patterns of disease and population structure, taken together, will inform association studies. Thus, the population distributions of allelic risk variants should reflect the distributions of their associated diseases. Evolutionary Triangulation (ET) exploits this evolutionary differentiation by comparing population structure among three populations with variable patterns of disease prevalence. By selecting populations based on patterns where two have similar rates of disease that differ substantially from a third, we performed a proof of principle analysis for this method. We examined three disease phenotypes, lactase persistence, melanoma, and Type 2 diabetes mellitus. We show that for lactase persistence, a phenotype with a simple genetic architecture, ET identifies the key gene, lactase. For melanoma, ET identifies several genes associated with this disease and/or phenotypes related to it, such as skin color genes. ET was less obviously successful for Type 2 diabetes mellitus, perhaps because of the small effect sizes in known risk loci and recent environmental changes that have altered disease risk. Alternatively, ET may have revealed new genes involved in conferring disease risk for diabetes that did not meet nominal GWAS significance thresholds. We also compared ET to another method used to filter for phenotype associated genes, population branch statistic (PBS), and show that ET performs better in identifying genes known to associate with diseases appropriately distributed among populations. Our results indicate that ET can filter association results to improve our ability to discover disease loci.


Multiethnic genetic association studies improve power for locus discovery.

  • Sara L Pulit‎ et al.
  • PloS one‎
  • 2010‎

To date, genome-wide association studies have focused almost exclusively on populations of European ancestry. These studies continue with the advent of next-generation sequencing, designed to systematically catalog and test low-frequency variation for a role in disease. A complementary approach would be to focus further efforts on cohorts of multiple ethnicities. This leverages the idea that population genetic drift may have elevated some variants to higher allele frequency in different populations, boosting statistical power to detect an association. Based on empirical allele frequency distributions from eleven populations represented in HapMap Phase 3 and the 1000 Genomes Project, we simulate a range of genetic models to quantify the power of association studies in multiple ethnicities relative to studies that exclusively focus on samples of European ancestry. In each of these simulations, a first phase of GWAS in exclusively European samples is followed by a second GWAS phase in any of the other populations (including a multiethnic design). We find that nontrivial power gains can be achieved by conducting future whole-genome studies in worldwide populations, where, in particular, African populations contribute the largest relative power gains for low-frequency alleles (<5%) of moderate effect that suffer from low power in samples of European descent. Our results emphasize the importance of broadening genetic studies to worldwide populations to ensure efficient discovery of genetic loci contributing to phenotypic trait variability, especially for those traits for which large numbers of samples of European ancestry have already been collected and tested.


Matching strategies for genetic association studies in structured populations.

  • David A Hinds‎ et al.
  • American journal of human genetics‎
  • 2004‎

Association studies in populations that are genetically heterogeneous can yield large numbers of spurious associations if population subgroups are unequally represented among cases and controls. This problem is particularly acute for studies involving pooled genotyping of very large numbers of single-nucleotide-polymorphism (SNP) markers, because most methods for analysis of association in structured populations require individual genotyping data. In this study, we present several strategies for matching case and control pools to have similar genetic compositions, based on ancestry information inferred from genotype data for approximately 300 SNPs tiled on an oligonucleotide-based genotyping array. We also discuss methods for measuring the impact of population stratification on an association study. Results for an admixed population and a phenotype strongly confounded with ancestry show that these simple matching strategies can effectively mitigate the impact of population stratification.


Modelling BMI trajectories in children for genetic association studies.

  • Nicole M Warrington‎ et al.
  • PloS one‎
  • 2013‎

The timing of associations between common genetic variants and changes in growth patterns over childhood may provide insight into the development of obesity in later life. To address this question, it is important to define appropriate statistical models to allow for the detection of genetic effects influencing longitudinal childhood growth.


Controlling for polygenic genetic confounding in epidemiologic association studies.

  • Zijie Zhao‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2024‎

Epidemiologic associations estimated from observational data are often confounded by genetics due to pervasive pleiotropy among complex traits. Many studies either neglect genetic confounding altogether or rely on adjusting for polygenic scores (PGS) in regression analysis. In this study, we unveil that the commonly employed PGS approach is inadequate for removing genetic confounding due to measurement error and model misspecification. To tackle this challenge, we introduce PENGUIN, a principled framework for polygenic genetic confounding control based on variance component estimation. In addition, we present extensions of this approach that can estimate genetically-unconfounded associations using GWAS summary statistics alone as input and between multiple generations of study samples. Through simulations, we demonstrate superior statistical properties of PENGUIN compared to the existing approaches. Applying our method to multiple population cohorts, we reveal and remove substantial genetic confounding in the associations of educational attainment with various complex traits and between parental and offspring education. Our results show that PENGUIN is an effective solution for genetic confounding control in observational data analysis with broad applications in future epidemiologic association studies.


Designing genetic association studies for complex traits in India.

  • Balraj Mittal‎ et al.
  • The Indian journal of medical research‎
  • 2017‎

No abstract available


Informative missingness in genetic association studies: case-parent designs.

  • Andrew S Allen‎ et al.
  • American journal of human genetics‎
  • 2003‎

We consider the effect of informative missingness on association tests that use parental genotypes as controls and that allow for missing parental data. Parental data can be informatively missing when the probability of a parent being available for study is related to that parent's genotype; when this occurs, the distribution of genotypes among observed parents is not representative of the distribution of genotypes among the missing parents. Many previously proposed procedures that allow for missing parental data assume that these distributions are the same. We propose association tests that behave well when parental data are informatively missing, under the assumption that, for a given trio of paternal, maternal, and affected offspring genotypes, the genotypes of the parents and the sex of the missing parents, but not the genotype of the affected offspring, can affect parental missingness. (This same assumption is required for validity of an analysis that ignores incomplete parent-offspring trios.) We use simulations to compare our approach with previously proposed procedures, and we show that if even small amounts of informative missingness are not taken into account, they can have large, deleterious effects on the performance of tests.


Sequence imputation of HPV16 genomes for genetic association studies.

  • Benjamin Smith‎ et al.
  • PloS one‎
  • 2011‎

Human Papillomavirus type 16 (HPV16) causes over half of all cervical cancer and some HPV16 variants are more oncogenic than others. The genetic basis for the extraordinary oncogenic properties of HPV16 compared to other HPVs is unknown. In addition, we neither know which nucleotides vary across and within HPV types and lineages, nor which of the single nucleotide polymorphisms (SNPs) determine oncogenicity.


Covariate selection for association screening in multiphenotype genetic studies.

  • Hugues Aschard‎ et al.
  • Nature genetics‎
  • 2017‎

Testing for associations in big data faces the problem of multiple comparisons, wherein true signals are difficult to detect on the background of all associations queried. This difficulty is particularly salient in human genetic association studies, in which phenotypic variation is often driven by numerous variants of small effect. The current strategy to improve power to identify these weak associations consists of applying standard marginal statistical approaches and increasing study sample sizes. Although successful, this approach does not leverage the environmental and genetic factors shared among the multiple phenotypes collected in contemporary cohorts. Here we developed covariates for multiphenotype studies (CMS), an approach that improves power when correlated phenotypes are measured on the same samples. Our analyses of real and simulated data provide direct evidence that correlated phenotypes can be used to achieve increases in power to levels often surpassing the power gained by a twofold increase in sample size.


Evaluation of the Endorsement of the STrengthening the REporting of Genetic Association Studies (STREGA) Statement on the Reporting Quality of Published Genetic Association Studies.

  • Darko Nedovic‎ et al.
  • Journal of epidemiology‎
  • 2016‎

The STrengthening the REporting of Genetic Association studies (STREGA) statement was based on the STrengthening the REporting of OBservational studies in Epidemiology (STROBE) statement, and it was published in 2009 in order to improve the reporting of genetic association (GA) studies. Our aim was to evaluate the impact of STREGA endorsement on the quality of reporting of GA studies published in journals in the field of genetics and heredity (GH). Quality of reporting was evaluated by assessing the adherence of papers to the STREGA checklist. After identifying the GH journals that endorsed STREGA in their instructions for authors, we randomly appraised papers published in 2013 from journals endorsing STREGA that published GA studies (Group A); in GH journals that never endorsed STREGA (Group B); in GH journals endorsing STREGA, but in the year preceding its endorsement (Group C); and in the same time period as Group C from GH journals that never endorsed STREGA (Group D). The STREGA statement was referenced in 29 (18.1%) of 160 GH journals, of which 18 (62.1%) journals published GA studies. Among the 18 journals endorsing STREGA, we found a significant increase in the overall adherence to the STREGA checklist over time (A vs C; P < 0.0001). Adherence to the STREGA checklist was significantly higher in journals endorsing STREGA compared to those that did not endorse the statement (A vs B; P = 0.04). No significant improvement was detected in the adherence to STREGA items in journals not endorsing STREGA over time (B vs D; P > 0.05). The endorsement of STREGA resulted in an increase in quality of reporting of GA studies over time, while no similar improvement was reported for journals that never endorsed STREGA.


SNPTrack™ : an integrated bioinformatics system for genetic association studies.

  • Joshua Xu‎ et al.
  • Human genomics‎
  • 2012‎

A genetic association study is a complicated process that involves collecting phenotypic data, generating genotypic data, analyzing associations between genotypic and phenotypic data, and interpreting genetic biomarkers identified. SNPTrack is an integrated bioinformatics system developed by the US Food and Drug Administration (FDA) to support the review and analysis of pharmacogenetics data resulting from FDA research or submitted by sponsors. The system integrates data management, analysis, and interpretation in a single platform for genetic association studies. Specifically, it stores genotyping data and single-nucleotide polymorphism (SNP) annotations along with study design data in an Oracle database. It also integrates popular genetic analysis tools, such as PLINK and Haploview. SNPTrack provides genetic analysis capabilities and captures analysis results in its database as SNP lists that can be cross-linked for biological interpretation to gene/protein annotations, Gene Ontology, and pathway analysis data. With SNPTrack, users can do the entire stream of bioinformatics jobs for genetic association studies. SNPTrack is freely available to the public at http://www.fda.gov/ScienceResearch/BioinformaticsTools/SNPTrack/default.htm.


Sample size and statistical power calculation in genetic association studies.

  • Eun Pyo Hong‎ et al.
  • Genomics & informatics‎
  • 2012‎

A sample size with sufficient statistical power is critical to the success of genetic association studies to detect causal genes of human complex diseases. Genome-wide association studies require much larger sample sizes to achieve an adequate statistical power. We estimated the statistical power with increasing numbers of markers analyzed and compared the sample sizes that were required in case-control studies and case-parent studies. We computed the effective sample size and statistical power using Genetic Power Calculator. An analysis using a larger number of markers requires a larger sample size. Testing a single-nucleotide polymorphism (SNP) marker requires 248 cases, while testing 500,000 SNPs and 1 million markers requires 1,206 cases and 1,255 cases, respectively, under the assumption of an odds ratio of 2, 5% disease prevalence, 5% minor allele frequency, complete linkage disequilibrium (LD), 1:1 case/control ratio, and a 5% error rate in an allelic test. Under a dominant model, a smaller sample size is required to achieve 80% power than other genetic models. We found that a much lower sample size was required with a strong effect size, common SNP, and increased LD. In addition, studying a common disease in a case-control study of a 1:4 case-control ratio is one way to achieve higher statistical power. We also found that case-parent studies require more samples than case-control studies. Although we have not covered all plausible cases in study design, the estimates of sample size and statistical power computed under various assumptions in this study may be useful to determine the sample size in designing a population-based genetic association study.


Discovering genetic interactions bridging pathways in genome-wide association studies.

  • Gang Fang‎ et al.
  • Nature communications‎
  • 2019‎

Genetic interactions have been reported to underlie phenotypes in a variety of systems, but the extent to which they contribute to complex disease in humans remains unclear. In principle, genome-wide association studies (GWAS) provide a platform for detecting genetic interactions, but existing methods for identifying them from GWAS data tend to focus on testing individual locus pairs, which undermines statistical power. Importantly, a global genetic network mapped for a model eukaryotic organism revealed that genetic interactions often connect genes between compensatory functional modules in a highly coherent manner. Taking advantage of this expected structure, we developed a computational approach called BridGE that identifies pathways connected by genetic interactions from GWAS data. Applying BridGE broadly, we discover significant interactions in Parkinson's disease, schizophrenia, hypertension, prostate cancer, breast cancer, and type 2 diabetes. Our novel approach provides a general framework for mapping complex genetic networks underlying human disease from genome-wide genotype data.


HAPSIMU: a genetic simulation platform for population-based association studies.

  • Feng Zhang‎ et al.
  • BMC bioinformatics‎
  • 2008‎

Population structure is an important cause leading to inconsistent results in population-based association studies (PBAS) of human diseases. Various statistical methods have been proposed to reduce the negative impact of population structure on PBAS. Due to lack of structural information in real populations, it is difficult to evaluate the impact of population structure on PBAS in real populations.


A strategy analysis for genetic association studies with known inbreeding.

  • Stefano Cabras‎ et al.
  • BMC genetics‎
  • 2011‎

Association studies consist in identifying the genetic variants which are related to a specific disease through the use of statistical multiple hypothesis testing or segregation analysis in pedigrees. This type of studies has been very successful in the case of Mendelian monogenic disorders while it has been less successful in identifying genetic variants related to complex diseases where the insurgence depends on the interactions between different genes and the environment. The current technology allows to genotype more than a million of markers and this number has been rapidly increasing in the last years with the imputation based on templates sets and whole genome sequencing. This type of data introduces a great amount of noise in the statistical analysis and usually requires a great number of samples. Current methods seldom take into account gene-gene and gene-environment interactions which are fundamental especially in complex diseases. In this paper we propose to use a non-parametric additive model to detect the genetic variants related to diseases which accounts for interactions of unknown order. Although this is not new to the current literature, we show that in an isolated population, where the most related subjects share also most of their genetic code, the use of additive models may be improved if the available genealogical tree is taken into account. Specifically, we form a sample of cases and controls with the highest inbreeding by means of the Hungarian method, and estimate the set of genes/environmental variables, associated with the disease, by means of Random Forest.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: