Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,360 papers

Translational Regulation of Clock Genes BMAL1 and REV-ERBα by Polyamines.

  • Akihiko Sakamoto‎ et al.
  • International journal of molecular sciences‎
  • 2021‎

Polyamines stimulate the synthesis of specific proteins at the level of translation, and the genes encoding these proteins are termed as the "polyamine modulon". The circadian clock generates daily rhythms in mammalian physiology and behavior. We investigated the role of polyamines in the circadian rhythm using control and polyamine-reduced NIH3T3 cells. The intracellular polyamines exhibited a rhythm with a period of about 24 h. In the polyamine-reduced NIH3T3 cells, the circadian period of circadian clock genes was lengthened and the synthesis of BMAL1 and REV-ERBα was significantly reduced at the translation level. Thus, the mechanism of polyamine stimulation of these protein syntheses was analyzed using NIH3T3 cells transiently transfected with genes encoding enhanced green fluorescent protein (EGFP) fusion mRNA with normal or mutated 5'-untranslated region (5'-UTR) of Bmal1 or Rev-erbα mRNA. It was found that polyamines stimulated BMAL1 and REV-ERBα synthesis through the enhancement of ribosomal shunting during the ribosome shunting within the 5'-UTR of mRNAs. Accordingly, the genes encoding Bmal1 and Rev-erbα were identified as the members of "polyamine modulon", and these two proteins are significantly involved in the circadian rhythm control.


Rev-erb-α regulates atrophy-related genes to control skeletal muscle mass.

  • Alicia Mayeuf-Louchart‎ et al.
  • Scientific reports‎
  • 2017‎

The nuclear receptor Rev-erb-α modulates hepatic lipid and glucose metabolism, adipogenesis and thermogenesis. We have previously demonstrated that Rev-erb-α is also an important regulator of skeletal muscle mitochondrial biogenesis and function, and autophagy. As such, Rev-erb-α over-expression in skeletal muscle or its pharmacological activation improved mitochondrial respiration and enhanced exercise capacity. Here, in gain- and loss-of function studies, we show that Rev-erb-α also controls muscle mass. Rev-erb-α-deficiency in skeletal muscle leads to increased expression of the atrophy-related genes (atrogenes), associated with reduced muscle mass and decreased fiber size. By contrast, in vivo and in vitro Rev-erb-α over-expression results in reduced atrogenes expression and increased fiber size. Finally, Rev-erb-α pharmacological activation blocks dexamethasone-induced upregulation of atrogenes and muscle atrophy. This study identifies Rev-erb-α as a promising pharmacological target to preserve muscle mass.


REV-ERBα and REV-ERBβ function as key factors regulating Mammalian Circadian Output.

  • Ryosuke Ikeda‎ et al.
  • Scientific reports‎
  • 2019‎

The circadian clock regulates behavioural and physiological processes in a 24-h cycle. The nuclear receptors REV-ERBα and REV-ERBβ are involved in the cell-autonomous circadian transcriptional/translational feedback loops as transcriptional repressors. A number of studies have also demonstrated a pivotal role of REV-ERBs in regulation of metabolic, neuronal, and inflammatory functions including bile acid metabolism, lipid metabolism, and production of inflammatory cytokines. Given the multifunctional role of REV-ERBs, it is important to elucidate the mechanism through which REV-ERBs exert their functions. To this end, we established a Rev-erbα/Rev-erbβ double-knockout mouse embryonic stem (ES) cell model and analyzed the circadian clock and clock-controlled output gene expressions. A comprehensive mRNA-seq analysis revealed that the double knockout of both Rev-erbα and Rev-erbβ does not abrogate expression rhythms of E-box-regulated core clock genes but drastically changes a diverse set of other rhythmically-expressed output genes. Of note, REV-ERBα/β deficiency does not compromise circadian expression rhythms of PER2, while REV-ERB target genes, Bmal1 and Npas2, are significantly upregulated. This study highlight the relevance of REV-ERBs as pivotal output mediators of the mammalian circadian clock.


Regulation of circadian behaviour and metabolism by REV-ERB-α and REV-ERB-β.

  • Han Cho‎ et al.
  • Nature‎
  • 2012‎

The circadian clock acts at the genomic level to coordinate internal behavioural and physiological rhythms via the CLOCK-BMAL1 transcriptional heterodimer. Although the nuclear receptors REV-ERB-α and REV-ERB-β have been proposed to form an accessory feedback loop that contributes to clock function, their precise roles and importance remain unresolved. To establish their regulatory potential, we determined the genome-wide cis-acting targets (cistromes) of both REV-ERB isoforms in murine liver, which revealed shared recognition at over 50% of their total DNA binding sites and extensive overlap with the master circadian regulator BMAL1. Although REV-ERB-α has been shown to regulate Bmal1 expression directly, our cistromic analysis reveals a more profound connection between BMAL1 and the REV-ERB-α and REV-ERB-β genomic regulatory circuits than was previously suspected. Genes within the intersection of the BMAL1, REV-ERB-α and REV-ERB-β cistromes are highly enriched for both clock and metabolic functions. As predicted by the cistromic analysis, dual depletion of Rev-erb-α and Rev-erb-β function by creating double-knockout mice profoundly disrupted circadian expression of core circadian clock and lipid homeostatic gene networks. As a result, double-knockout mice show markedly altered circadian wheel-running behaviour and deregulated lipid metabolism. These data now unite REV-ERB-α and REV-ERB-β with PER, CRY and other components of the principal feedback loop that drives circadian expression and indicate a more integral mechanism for the coordination of circadian rhythm and metabolism.


Modifier genes as therapeutics: the nuclear hormone receptor Rev Erb alpha (Nr1d1) rescues Nr2e3 associated retinal disease.

  • Nelly M Cruz‎ et al.
  • PloS one‎
  • 2014‎

Nuclear hormone receptors play a major role in many important biological processes. Most nuclear hormone receptors are ubiquitously expressed and regulate processes such as metabolism, circadian function, and development. They function in these processes to maintain homeostasis through modulation of transcriptional gene networks. In this study we evaluate the effectiveness of a nuclear hormone receptor gene to modulate retinal degeneration and restore the integrity of the retina. Currently, there are no effective treatment options for retinal degenerative diseases leading to progressive and irreversible blindness. In this study we demonstrate that the nuclear hormone receptor gene Nr1d1 (Rev-Erbα) rescues Nr2e3-associated retinal degeneration in the rd7 mouse, which lacks a functional Nr2e3 gene. Mutations in human NR2E3 are associated with several retinal degenerations including enhanced S cone syndrome and retinitis pigmentosa. The rd7 mouse, lacking Nr2e3, exhibits an increase in S cones and slow, progressive retinal degeneration. A traditional genetic mapping approach previously identified candidate modifier loci. Here, we demonstrate that in vivo delivery of the candidate modifier gene, Nr1d1 rescues Nr2e3 associated retinal degeneration. We observed clinical, histological, functional, and molecular restoration of the rd7 retina. Furthermore, we demonstrate that the mechanism of rescue at the molecular and functional level is through the re-regulation of key genes within the Nr2e3-directed transcriptional network. Together, these findings reveal the potency of nuclear receptors as modulators of disease and specifically of NR1D1 as a novel therapeutic for retinal degenerations.


Distinct roles for REV-ERBα and REV-ERBβ in oxidative capacity and mitochondrial biogenesis in skeletal muscle.

  • Ariadna Amador‎ et al.
  • PloS one‎
  • 2018‎

The nuclear receptors REV-ERBα and REV-ERBβ have been demonstrated to be core members of the circadian clock and participate in the regulation of a diverse set of metabolic functions. Due to their overlapping tissue expression patterns and gene expression profiles, REV-ERBβ is thought to be redundant to REV-ERBα. Recent work has highlighted REV-ERBα's role in the regulation of skeletal muscle oxidative capacity and mitochondrial biogenesis. Considering the similarity between the REV-ERBs and the hypothesized overlap in function, we sought to determine whether REV-ERBβ-deficiency presented with a similar skeletal muscle phenotype as REV-ERBα-deficiency. Ectopic overexpression in C2C12 cells demonstrated that REV-ERBβ drives mitochondrial biogenesis and the expression of genes involved in fatty acid oxidation. Intriguingly, knock down of REV-ERBβ in C2C12 cultures also resulted in mitochondrial biogenesis and increased expression of genes involved in fatty acid β-oxidation. To determine whether these effects occurred in vivo, we examined REV-ERBβ-deficient mice and observed a similar increase in expression of genes involved in mitochondrial biogenesis and fatty acid β-oxidation. Consistent with these results, REV-ERBβ-deficient mice exhibited an altered metabolic phenotype compared to wild-type littermate controls when measured by indirect calorimetry. This likely compensated for the increased food consumption that occurred, possibly aiding in the maintenance of their weight over time. Since feeding behaviors are a direct circadian output, this study suggests that REV-ERBβ may have more subtle effects on circadian behaviors than originally identified. Furthermore, these data implicate REV-ERBβ in the control of skeletal muscle metabolism and energy expenditure and suggest that development of REV-ERBα versus REV-ERBβ selective ligands may have therapeutic utility in the treatment of metabolic syndrome.


Rev-dependent lentiviral expression vector.

  • Yuntao Wu‎ et al.
  • Retrovirology‎
  • 2007‎

HIV-responsive expression vectors are all based on the HIV promoter, the long terminal repeat (LTR). While responsive to an early HIV protein, Tat, the LTR is also responsive to cellular activation states and to the local chromatin activity where the integration has occurred. This can result in high HIV-independent activity, and has restricted the use of LTR-based reporter vectors to cloned cells, where aberrantly high expressing (HIV-negative) cells can be eliminated. Enhancements in specificity would increase opportunities for expression vector use in detection of HIV as well as in experimental gene expression in HIV-infected cells.


Functional Characterization of Circadian Nuclear Receptors REV-ERBα and REV-ERBβ in Human Osteosarcoma Cell Cultures.

  • Hana Cho‎ et al.
  • International journal of molecular sciences‎
  • 2024‎

REV-ERBα and its paralog, REV-ERBβ, encoded by NR1D1 and NR1D2 genes, are key nuclear receptors that link the circadian timing system and metabolic homeostasis. Since heme is an endogenous ligand, REV-ERBs have been considered key components of the circadian molecular clock and can be pharmacologically targeted to treat various circadian rhythm-related diseases, such as cardiometabolic, inflammatory, and neuropsychiatric diseases, as well as cancer. REV-ERBs are believed to be functionally redundant and compensatory, although they often affect the expression of gene subsets in an isoform-specific manner. Therefore, this study aimed to identify the redundant and distinct roles of each isoform in controlling its target genes by comparing the transcriptome profiles of a panel of mutant U2OS human osteosarcoma cells in which either NR1D1 or NR1D2 was ablated. Indeed, our transcriptomic analyses revealed that most REV-ERB-regulated genes are controlled by redundant or even additive actions. However, the RNA expression profiles of each single mutant cell line also provide strong evidence for isoform-dependent actions. For example, REV-ERBα is more responsible for regulating the NF-κΒ signaling pathway, whereas a group of extracellular matrix components requires REV-ERBβ to maintain their expression. We found that REV-ERBs have isoform-selective functions in the regulation of certain circadian output pathways despite their overlapping roles in the circadian molecular clock. Thus, the development of isoform-selective REV-ERB modulators can help treat metabolic disturbances and certain types of cancer.


Circadian Clock Genes REV-ERBs Inhibits Granulosa Cells Apoptosis by Regulating Mitochondrial Biogenesis and Autophagy in Polycystic Ovary Syndrome.

  • Lihua Sun‎ et al.
  • Frontiers in cell and developmental biology‎
  • 2021‎

Polycystic ovary syndrome (PCOS) is an endocrinopathy with complex pathophysiology that is a common cause of anovulatory infertility in women. Although the disruption of circadian rhythms is indicated in PCOS, the role of the clock in the etiology of these pathologies has yet to be appreciated. The nuclear receptors REV-ERBα and REV-ERBβ are core modulators of the circadian clock and participate in the regulation of a diverse set of biological functions. However, in PCOS, the expression of REV-ERBs and their effects remain unclear. Here, we demonstrate that the levels of REV-ERBα and REV-ERBβ expression were lower in the granulosa cells of PCOS patients than in control subjects. In vitro, we found that the overexpression of REV-ERBα and REV-ERBβ, and their agonist SR9009, promoted the expression of mitochondrial biosynthesis genes PGC-1α, NRF1, and TFAM and inhibited autophagy in KGN cells. Our results also indicate that REV-ERBα and REV-ERBβ can inhibit apoptosis in granulosa cells and promote proliferation. Importantly, the REV-ERB agonist SR9009 ameliorates abnormal follicular development by promoting mitochondrial biosynthesis and inhibiting autophagy in a mouse PCOS model. This allows us to speculate that SR9009 has potential as a therapeutic agent for the treatment of PCOS.


Exercise alters the circadian rhythm of REV-ERB-α and downregulates autophagy-related genes in peripheral and central tissues.

  • Alisson L da Rocha‎ et al.
  • Scientific reports‎
  • 2022‎

The transcriptional repressor REV-ERB-α, encoded by Nuclear Receptor Subfamily 1 Group D Member 1 (Nr1d1), has been considered to play an essential role in the skeletal muscle oxidative capacity adaptation and muscle mass control. Also, this molecule regulates autophagy via the repression of autophagy-related genes both in skeletal muscle and brain regions. Classically, training programs based on endurance or strength characteristics enhance skeletal muscle mass content and/or oxidative capacity, leading to autophagy activation in several tissues. Thus, it seems that REV-ERB-α regulates similar responses induced by exercise. However, how this molecule responds to different exercise models/intensities in different tissues is still unclear. Therefore, the main aim was to characterize the responses of REV-ERB-α and autophagy-related genes to different exercise protocols (endurance/interval run/strength) in distinct tissues (gastrocnemius, soleus and hippocampus). Since REV-ERB-α presents a circadian rhythm, the analyses were performed in a time-course manner. The endurance and strength groups attenuated REV-ERB-α transcriptional response during the time course in gastrocnemius and soleus. Conversely, the interval group enhanced the Nr1d1 expression in the hippocampus. All protocols downregulated the REV-ERB-α protein levels in gastrocnemius following the exercise session with concomitant nuclear exclusion. The major autophagy-related genes presented downregulation after the exercise session in all analyzed tissues. Altogether, these results highlight that REV-ERB-α is extremely sensitive to physical exercise stimuli, including different models and intensities in skeletal muscle and the hippocampus.


Sex-dependent relationship of polymorphisms in CLOCK and REV-ERBα genes with body mass index and lipid levels in children.

  • Claudia Vales-Villamarín‎ et al.
  • Scientific reports‎
  • 2023‎

Circadian rhythms, which are governed by a circadian clock, regulate important biological processes associated with obesity. SNPs in circadian clock genes have been linked to energy and lipid homeostasis. The aim of our study was to evaluate the associations of CLOCK and REV-ERBα SNPs with BMI and plasma lipid levels in pre-pubertal boys and girls. The study sample population comprised 1268 children aged 6-8 years. Information regarding anthropometric parameters and plasma lipid concentrations was available. Genotyping of CLOCK SNPs rs1801260, rs4580704, rs3749474, rs3736544 and rs4864548 and REV-ERBα SNPs rs2017427, rs20711570 and rs2314339 was performed by RT-PCR. The CLOCK SNPs rs3749474 and rs4864548 were significantly associated with BMI in girls but no in boys. Female carriers of the minor alleles for these SNPs presented lower BMI compared to non-carriers. A significant association of the REV-ERBα SNP rs2071570 with plasma total cholesterol, LDL-cholesterol and Apo B in males was also observed. Male AA carriers showed lower plasma levels of total cholesterol, LDL-cholesterol and Apo B levels as compared with carriers of the C allele. No significant associations between any of the studied REV-ERBα SNPs and plasma lipid levels were observed in females. In summary, CLOCK and REV-ERBα SNPs were associated with BMI and plasma lipid levels respectively in a sex-dependent manner. Our findings suggest that sex-related factors may interact with Clock genes SNPs conditioning the effects of these polymorphisms on circadian alterations.


The nuclear receptor REV-ERBα represses the transcription of growth/differentiation factor 10 and 15 genes in rat endometrium stromal cells.

  • Lijia Zhao‎ et al.
  • Physiological reports‎
  • 2016‎

Cellular oscillators in the uterus play critical roles in the gestation processes of mammals through entraining of the clock proteins to numerous downstream genes, including growth/differentiation factor (Gdf)10 and Gdf15. The expression of Gdf10 and Gdf15 is significantly increased in the uterus during decidualization, but the mechanism underlying the regulation of Gdf gene expression in the uterus is poorly understood. Here, we focused on the function of the cellular oscillators in the expression of Gdf family by using uterine endometrial stromal cells (UESCs) isolated from pregnant Per2-dLuc transgenic rats. A significant decline of Per2-dLuc bioluminescence activity was induced in in vitro decidualized UESCs, and concomitantly the expression of canonical clock genes was downregulated. Conversely, the expression of Gdf10 and Gdf15 of the Gdf was upregulated. In UESCs transfected with Bmal1-specific siRNA, in which Rev-erbα expression was downregulated, Gdf10 and Gdf15 were upregulated. However, Gdf5, Gdf7, and Gdf11 were not significantly affected by Bmal1 silencing. The expression of Gdf10 and Gdf15 was enhanced after treatment with a REV-ERBα antagonist in the presence or absence of progesterone. Chromatin immunoprecipitation-PCR analysis revealed the inhibitory effect of REV-ERBα on the expression of Gdf10 and Gdf15 in UESCs by recognizing their gene promoters. Collectively, our findings indicate that the attenuation of REV-ERBα leads to an upregulation of Gdf10 and Gdf15 in decidual cells, in which cellular oscillators are impaired. Our results provide novel evidence regarding the functions of cellular oscillators regulating the expression of downstream genes during the differentiation of UESCs.


Direct regulation of CLOCK expression by REV-ERB.

  • Christine Crumbley‎ et al.
  • PloS one‎
  • 2011‎

Circadian rhythms are regulated at the cellular level by transcriptional feedback loops leading to oscillations in expression of key proteins including CLOCK, BMAL1, PERIOD (PER), and CRYPTOCHROME (CRY). The CLOCK and BMAL1 proteins are members of the bHLH class of transcription factors and form a heterodimer that regulates the expression of the PER and CRY genes. The nuclear receptor REV-ERBα plays a key role in regulation of oscillations in BMAL1 expression by directly binding to the BMAL1 promoter and suppressing its expression at certain times of day when REV-ERBα expression levels are elevated. We recently demonstrated that REV-ERBα also regulates the expression of NPAS2, a heterodimer partner of BMAL1. Here, we show that REV-ERBα also regulates the expression another heterodimer partner of BMAL1, CLOCK. We identified a REV-ERBα binding site within the 1(st) intron of the CLOCK gene using a chromatin immunoprecipitation - microarray screen. Suppression of REV-ERBα expression resulted in elevated CLOCK mRNA expression consistent with REV-ERBα's role as a transcriptional repressor. A REV-ERB response element (RevRE) was identified within this region of the CLOCK gene and was conserved between humans and mice. Additionally, the CLOCK RevRE conferred REV-ERB responsiveness to a heterologous reporter gene. Our data suggests that REV-ERBα plays a dual role in regulation of the activity of the BMAL1/CLOCK heterodimer by regulation of expression of both the BMAL1 and CLOCK genes.


REV-ERBα Regulates TH17 Cell Development and Autoimmunity.

  • Mohammed Amir‎ et al.
  • Cell reports‎
  • 2018‎

RORγt is well recognized as the lineage-defining transcription factor for T helper 17 (TH17) cell development. However, the cell-intrinsic mechanisms that negatively regulate TH17 cell development and autoimmunity remain poorly understood. Here, we demonstrate that the transcriptional repressor REV-ERBα is exclusively expressed in TH17 cells, competes with RORγt for their shared DNA consensus sequence, and negatively regulates TH17 cell development via repression of genes traditionally characterized as RORγt dependent, including Il17a. Deletion of REV-ERBα enhanced TH17-mediated pro-inflammatory cytokine expression, exacerbating experimental autoimmune encephalomyelitis (EAE) and colitis. Treatment with REV-ERB-specific synthetic ligands, which have similar phenotypic properties as RORγ modulators, suppressed TH17 cell development, was effective in colitis intervention studies, and significantly decreased the onset, severity, and relapse rate in several models of EAE without affecting thymic cellularity. Our results establish that REV-ERBα negatively regulates pro-inflammatory TH17 responses in vivo and identifies the REV-ERBs as potential targets for the treatment of TH17-mediated autoimmune diseases.


Analysis of the influence of subcellular localization of the HIV Rev protein on Rev-dependent gene expression by multi-fluorescence live-cell imaging.

  • Horst Wolff‎ et al.
  • Experimental cell research‎
  • 2006‎

The human immunodeficiency virus Rev protein is a post-transcriptional activator of HIV gene expression. Rev is a nucleocytoplasmic shuttle protein that displays characteristic nuclear/nucleolar subcellular localization in various cell lines. Cytoplasmic localization of Rev occurs under various conditions disrupting Rev function. The goal of this study was to investigate the relationship between localization of Rev and its functional activity in living cells. A triple-fluorescent imaging assay, called AQ-FIND, was established for automatic quantitative evaluation of nucleocytoplasmic distribution of fluorescently tagged proteins. This assay was used to screen 500 rev genes generated by error-prone PCR for Rev mutants with different localization phenotypes. Activities of the Rev mutants were determined with a second quantitative, dual-fluorescent reporter assay. In HeLa cells, the majority of nuclear Rev mutants had activities similar to wild-type Rev. The activities of Rev mutants with abnormal cytoplasmic localization ranged from moderately impaired to nonfunctional. There was no linear correlation between subcellular distribution and levels of Rev activity. In astrocytes, nuclear Rev mutants showed similar impaired activities as the cytoplasmic wild-type Rev. Our data suggest that steady-state subcellular localization is not a primary regulator of Rev activity but may change as a secondary consequence of altered Rev function. The methodologies described here have potential for studying the significance of subcellular localization for functions of other regulatory factors.


Development of Lentiviral Vectors Simultaneously Expressing Multiple siRNAs Against CCR5, vif and tat/rev Genes for an HIV-1 Gene Therapy Approach.

  • Francesca Spanevello‎ et al.
  • Molecular therapy. Nucleic acids‎
  • 2016‎

Gene therapy holds considerable promise for the functional cure of HIV-1 infection and, in this context, RNA interference (RNAi)-based approaches represent powerful strategies. Stable expression of small interfering RNAs (siRNAs) targeting HIV genes or cellular cofactors has the potential to render HIV-1 susceptible cells resistant to infection. To inhibit different steps of virus life cycle, self-inactivating lentiviral vectors expressing multiple siRNAs targeting the CCR5 cellular gene as well as vif and tat/rev viral transcripts, under the control of different RNA polymerase III promoters (U6, 7SK, H1) were developed. The use of a single RNA polymerase III promoter driving the expression of a sequence giving rise to three siRNAs directed against the selected targets (e-shRNA) was also investigated. Luciferase assay and inhibition of HIV-1 replication in human Jurkat T-cell line were adopted to select the best combination of promoter/siRNA. The efficacy of selected developed combinatorial vectors in interfering with viral replication was evaluated in human primary CD4(+) T lymphocytes. We identified two effective anti-HIV combinatorial vectors that conferred protection against R5- and X4- tropic viruses. Overall, our results showed that the antiviral effect is influenced by different factors, including the promoter used to express the RNAi molecules and the selected cassette combination. These findings contribute to gain further insights in the design of RNAi-based gene therapy approaches against HIV-1 for clinical application.


Circadian Amplitude Regulation via FBXW7-Targeted REV-ERBα Degradation.

  • Xuan Zhao‎ et al.
  • Cell‎
  • 2016‎

Defects in circadian rhythm influence physiology and behavior with implications for the treatment of sleep disorders, metabolic disease, and cancer. Although core regulatory components of clock rhythmicity have been defined, insight into the mechanisms underpinning amplitude is limited. Here, we show that REV-ERBα, a core inhibitory component of clock transcription, is targeted for ubiquitination and subsequent degradation by the F-box protein FBXW7. By relieving REV-ERBα-dependent repression, FBXW7 provides an unrecognized mechanism for enhancing the amplitude of clock gene transcription. Cyclin-dependent kinase 1 (CDK1)-mediated phosphorylation of REV-ERBα is necessary for FBXW7 recognition. Moreover, targeted hepatic disruption of FBXW7 alters circadian expression of core clock genes and perturbs whole-body lipid and glucose levels. This CDK1-FBXW7 pathway controlling REV-ERBα repression defines an unexpected molecular mechanism for re-engaging the positive transcriptional arm of the clock, as well as a potential route to manipulate clock amplitude via small molecule CDK1 inhibition.


CDK9 modulates circadian clock by attenuating REV-ERBα activity.

  • Jiali Ou‎ et al.
  • Biochemical and biophysical research communications‎
  • 2019‎

Circadian clock and cell cycle are vital cellular programs acting in a timely-regulated, cyclic manner. The two cellular oscillators are coupled in various ways to facilitate biological processes. Here we report CDK9, a kinase belongs to the CDK family in regulating cell cycle and RNA Pol II activity, can serve as a modulator for circadian clock. We identified CDK inhibitor LY2857785 potently blocked PER2:LUC expression in MEFs from a screen of 17 commonly-used CDK inhibitors. We further analyzed the possible targets of LY2857785 by siRNA approach, and confirmed CDK9 as the main effector. LY2857785 treatment, as well as Cdk9 knock-down, led to lowered expression of Bmal1 in accordance with elevated expression of Rev-Erbα. CDK9 associated with REV-ERBα thus attenuated REV-ERBα binding to the RORE for Bmal1 suppression. To conform the circadian-modulating activity of CDK9 in vivo, we knocked down CDK9 in mice at the anterior hypothalamus covering the central oscillator SCN, and found the respiratory exchange ratio, daily activity and circadian period were altered in the Cdk9-knockdown mice. Together, our finding designated CDK9 as a novel modulator in circadian clock. CDK9 may serve as a vital basis to understand circadian- and cell cycle-misregulated ailments such as cancer.


The Nuclear Receptor and Clock Repressor Rev-erbα Suppresses Myogenesis.

  • Somik Chatterjee‎ et al.
  • Scientific reports‎
  • 2019‎

Rev-erbα is a ligand-dependent nuclear receptor and a key repressor of the molecular clock transcription network. Accumulating evidence indicate that the circadian clock machinery governs diverse biological processes in skeletal muscle, including muscle growth, repair and mass maintenance. The physiological function of Rev-erbα in myogenic regulation remains largely unknown. Here we show that Rev-erbα exerts cell-autonomous inhibitory effects on proliferation and differentiation of myogenic precursor cells, and these actions concertedly inhibit muscle regeneration in vivo. Mechanistic studies reveal Rev-erbα direct transcriptional control of two major myogenic mechanisms, proliferative pathway and the Wnt signaling cascade. Consistent with this finding, primary myoblasts lacking Rev-erbα display significantly enhanced proliferative growth and myogenic progression. Furthermore, pharmacological activation of Rev-erbα activity attenuates, whereas its inhibition by an antagonist promotes these processes. Notably, upon muscle injury, the loss-of-function of Rev-erbα in vivo augmented satellite cell proliferative expansion and regenerative progression during regeneration. Collectively, our study identifies Rev-erbα as a novel inhibitory regulator of myogenic progenitor cell properties that suppresses postnatal myogenesis. Pharmacological interventions to dampen Rev-erbα activity may have potential utilities to enhance regenerative capacity in muscle diseases.


REV-ERB in GABAergic neurons controls diurnal hepatic insulin sensitivity.

  • Guolian Ding‎ et al.
  • Nature‎
  • 2021‎

Systemic insulin sensitivity shows a diurnal rhythm with a peak upon waking1,2. The molecular mechanism that underlies this temporal pattern is unclear. Here we show that the nuclear receptors REV-ERB-α and REV-ERB-β (referred to here as 'REV-ERB') in the GABAergic (γ-aminobutyric acid-producing) neurons in the suprachiasmatic nucleus (SCN) (SCNGABA neurons) control the diurnal rhythm of insulin-mediated suppression of hepatic glucose production in mice, without affecting diurnal eating or locomotor behaviours during regular light-dark cycles. REV-ERB regulates the rhythmic expression of genes that are involved in neurotransmission in the SCN, and modulates the oscillatory firing activity of SCNGABA neurons. Chemogenetic stimulation of SCNGABA neurons at waking leads to glucose intolerance, whereas restoration of the temporal pattern of either SCNGABA neuron firing or REV-ERB expression rescues the time-dependent glucose metabolic phenotype caused by REV-ERB depletion. In individuals with diabetes, an increased level of blood glucose after waking is a defining feature of the 'extended dawn phenomenon'3,4. Patients with type 2 diabetes with the extended dawn phenomenon exhibit a differential temporal pattern of expression of REV-ERB genes compared to patients with type 2 diabetes who do not have the extended dawn phenomenon. These findings provide mechanistic insights into how the central circadian clock regulates the diurnal rhythm of hepatic insulin sensitivity, with implications for our understanding of the extended dawn phenomenon in type 2 diabetes.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: