Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 100 papers

Effects of Naturally Occurring Mutations in Bovine Leukemia Virus 5'-LTR and Tax Gene on Viral Transcriptional Activity.

  • Aneta Pluta‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2020‎

Bovine leukemia virus (BLV) is a deltaretrovirus infecting bovine B cells and causing enzootic bovine leucosis (EBL). The long terminal repeat (LTR) plays an indispensable role in viral gene expression. The BLV Tax protein acts as the main transactivator of LTR-driven transcription of BLV viral genes. The aim of this study was to analyze mutations in the BLV LTR region and tax gene to determine their association with transcriptional activity. LTRs were obtained from one hundred and six BLV isolates and analyzed for their genetic variability. Fifteen variants were selected and characterized based on mutations in LTR regulatory elements, and further used for in vitro transcription assays. Reporter vectors containing the luciferase gene under the control of each variant BLV promoter sequence, in addition to variant Tax expression vectors, were constructed. Both types of plasmids were used for cotransfection of HeLa cells and the level of luciferase activity was measured as a proxy of transcriptional activity. Marked differences in LTR promoter activity and Tax transactivation activity were observed amongst BLV variants. These results demonstrate that mutations in both the BLV LTR and tax gene can affect the promoter activity, which may have important consequences on proviral load, viral fitness, and transmissibility in BLV-infected cattle.


The HTLV-1 viral oncoproteins Tax and HBZ reprogram the cellular mRNA splicing landscape.

  • Charlotte Vandermeulen‎ et al.
  • PLoS pathogens‎
  • 2021‎

Viral infections are known to hijack the transcription and translation of the host cell. However, the extent to which viral proteins coordinate these perturbations remains unclear. Here we used a model system, the human T-cell leukemia virus type 1 (HTLV-1), and systematically analyzed the transcriptome and interactome of key effectors oncoviral proteins Tax and HBZ. We showed that Tax and HBZ target distinct but also common transcription factors. Unexpectedly, we also uncovered a large set of interactions with RNA-binding proteins, including the U2 auxiliary factor large subunit (U2AF2), a key cellular regulator of pre-mRNA splicing. We discovered that Tax and HBZ perturb the splicing landscape by altering cassette exons in opposing manners, with Tax inducing exon inclusion while HBZ induces exon exclusion. Among Tax- and HBZ-dependent splicing changes, we identify events that are also altered in Adult T cell leukemia/lymphoma (ATLL) samples from two independent patient cohorts, and in well-known cancer census genes. Our interactome mapping approach, applicable to other viral oncogenes, has identified spliceosome perturbation as a novel mechanism coordinated by Tax and HBZ to reprogram the transcriptome.


Human T-cell leukemia virus type-I Tax induces the expression of CD83 on T cells.

  • Yuetsu Tanaka‎ et al.
  • Retrovirology‎
  • 2015‎

CD83, a cell surface glycoprotein that is stably expressed on mature dendritic cells, can be transiently induced on other hematopoietic cell lineages upon cell activation. In contrast to the membrane form of CD83, soluble CD83 appears to be immunosuppressive. In an analysis of the phenotype of leukemic CD4(+) T cells from patients with adult T-cell leukemia (ATL), we found that a number of primary CD4(+) T cells became positive for cell surface CD83 after short-term culture, and that most of these CD83(+) CD4(+) T cells were positive for human T-cell leukemia virus type-I (HTLV-I) Tax (Tax1). We hypothesized that Tax1 is involved in the induction of CD83.


Intragenic recruitment of NF-κB drives splicing modifications upon activation by the oncogene Tax of HTLV-1.

  • Lamya Ben Ameur‎ et al.
  • Nature communications‎
  • 2020‎

Chronic NF-κB activation in inflammation and cancer has long been linked to persistent activation of NF-κB-responsive gene promoters. However, NF-κB factors also massively bind to gene bodies. Here, we demonstrate that recruitment of the NF-κB factor RELA to intragenic regions regulates alternative splicing upon NF-κB activation by the viral oncogene Tax of HTLV-1. Integrative analyses of RNA splicing and chromatin occupancy, combined with chromatin tethering assays, demonstrate that DNA-bound RELA interacts with and recruits the splicing regulator DDX17, in an NF-κB activation-dependent manner. This leads to alternative splicing of target exons due to the RNA helicase activity of DDX17. Similar results were obtained upon Tax-independent NF-κB activation, indicating that Tax likely exacerbates a physiological process where RELA provides splice target specificity. Collectively, our results demonstrate a physical and direct involvement of NF-κB in alternative splicing regulation, which significantly revisits our knowledge of HTLV-1 pathogenesis and other NF-κB-related diseases.


Comparative transcriptome analysis of a taxol-producing endophytic fungus, Aspergillus aculeatinus Tax-6, and its mutant strain.

  • Weichuan Qiao‎ et al.
  • Scientific reports‎
  • 2020‎

Taxol is a rare but extremely effective antitumor agent extracted from Taxus yew barks. Taxus plants are valuable and rare species, and the production of taxol from them is a complex process. Therefore, taxol-producing endophytic fungi seem to be a promising alternative because of their high practical value and convenient progress. In this study, the transcriptome of an endophytic fungus, Aspergillus aculeatinus Tax-6 was analyzed in order to understand the molecular mechanisms of producing fungal taxol. The results showed that genes involved in the mevalonate (MVA) pathway and non-mevalonate (MEP) pathway were expressed, including isopentenyl pyrophosphate transferase, geranyl pyrophosphate transferase, and geranylgeranyl pyrophosphate synthetase. However, those downstream genes involved in the conversion of taxa-4(5)-11(12)-diene from geranylgeranyl pyrophosphate were not expressed except for taxane 10-beta-hydroxylase. Additionally, a mutant strain, A. aculeatinus BT-2 was obtained from the original strain, A. aculeatinus Tax-6, using fungicidin as the mutagenic agent. The taxol yield of BT-2 was 560 µg L-1, which was higher than that of Tax-6. To identify the mechanism of the difference in taxol production, we compared the transcriptomes of the two fungi and explored the changes in the gene expression between them. When compared with the original strain, Tax-6, most genes related to the MVA pathway in the mutant strain BT-2 showed upregulation, including GGPPS. Moreover, most of the downstream genes were not expressed in the mutant fungi as well. Overall, the results revealed the pathway and mechanism of taxol synthesis in endophytic fungi and the potential for the construction of taxol-producing genetic engineering strains.


HTLV-1 Tax-1 interacts with SNX27 to regulate cellular localization of the HTLV-1 receptor molecule, GLUT1.

  • Jacob Al-Saleem‎ et al.
  • PloS one‎
  • 2019‎

An estimated 10-20 million people worldwide are infected with human T cell leukemia virus type 1 (HTLV-1), with endemic areas of infection in Japan, Australia, the Caribbean, and Africa. HTLV-1 is the causative agent of adult T cell leukemia (ATL) and HTLV-1 associated myopathy/tropic spastic paraparesis (HAM/TSP). HTLV-1 expresses several regulatory and accessory genes that function at different stages of the virus life cycle. The regulatory gene Tax-1 is required for efficient virus replication, as it drives transcription of viral gene products, and has also been demonstrated to play a key role in the pathogenesis of the virus. Several studies have identified a PDZ binding motif (PBM) at the carboxyl terminus of Tax-1 and demonstrated the importance of this domain for HTLV-1 induced cellular transformation. Using a mass spectrometry-based proteomics approach we identified sorting nexin 27 (SNX27) as a novel interacting partner of Tax-1. Further, we demonstrated that their interaction is mediated by the Tax-1 PBM and SNX27 PDZ domains. SNX27 has been shown to promote the plasma membrane localization of glucose transport 1 (GLUT1), one of the receptor molecules of the HTLV-1 virus, and the receptor molecule required for HTLV-1 fusion and entry. We postulated that Tax-1 alters GLUT1 localization via its interaction with SNX27. We demonstrate that over expression of Tax-1 in cells causes a reduction of GLUT1 on the plasma membrane. Furthermore, we show that knockdown of SNX27 results in increased virion release and decreased HTLV-1 infectivity. Collectively, we demonstrate the first known mechanism by which HTLV-1 regulates a receptor molecule post-infection.


HDAC inhibitors Panobinostat and Romidepsin enhance tax transcription in HTLV-1-infected cell lines and freshly isolated patients' T-cells.

  • Annika P Schnell‎ et al.
  • Frontiers in immunology‎
  • 2022‎

The viral transactivator Tax plays a key role in HTLV-1 reactivation and de novo infection. Previous approaches focused on the histone deacetylase inhibitor (HDACi) Valproate as a latency-reversing agent to boost Tax expression and expose infected cells to the host's immune response. However, following treatment with Valproate proviral load decreases in patients with HAM/TSP were only transient. Here, we hypothesize that other compounds, including more potent and selective HDACi, might prove superior to Valproate in manipulating Tax expression. Thus, a panel of HDACi (Vorinostat/SAHA/Zolinza, Panobinostat/LBH589/Farydak, Belinostat/PXD101/Beleodaq, Valproate, Entinostat/MS-275, Romidepsin/FK228/Istodax, and MC1568) was selected and tested for toxicity and potency in enhancing Tax expression. The impact of the compounds was evaluated in different model systems, including transiently transfected T-cells, chronically HTLV-1-infected T-cell lines, and freshly isolated PBMCs from HTLV-1 carriers ex vivo. We identified the pan-HDACi Panobinostat and class I HDACi Romidepsin as particularly potent agents at raising Tax expression. qRT-PCR analysis revealed that these inhibitors considerably boost tax and Tax-target gene transcription. However, despite this significant increase in tax transcription and histone acetylation, protein levels of Tax were only moderately enhanced. In conclusion, these data demonstrate the ability of Panobinostat and Romidepsin to manipulate Tax expression and provide a foundation for further research into eliminating latently infected cells. These findings also contribute to a better understanding of conditions limiting transcription and translation of viral gene products.


Sporadic on/off switching of HTLV-1 Tax expression is crucial to maintain the whole population of virus-induced leukemic cells.

  • Mohamed Mahgoub‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2018‎

Viruses causing chronic infection artfully manipulate infected cells to enable viral persistence in vivo under the pressure of immunity. Human T-cell leukemia virus type 1 (HTLV-1) establishes persistent infection mainly in CD4+ T cells in vivo and induces leukemia in this subset. HTLV-1-encoded Tax is a critical transactivator of viral replication and a potent oncoprotein, but its significance in pathogenesis remains obscure due to its very low level of expression in vivo. Here, we show that Tax is expressed in a minor fraction of leukemic cells at any given time, and importantly, its expression spontaneously switches between on and off states. Live cell imaging revealed that the average duration of one episode of Tax expression is ∼19 hours. Knockdown of Tax rapidly induced apoptosis in most cells, indicating that Tax is critical for maintaining the population, even if its short-term expression is limited to a small subpopulation. Single-cell analysis and computational simulation suggest that transient Tax expression triggers antiapoptotic machinery, and this effect continues even after Tax expression is diminished; this activation of the antiapoptotic machinery is the critical event for maintaining the population. In addition, Tax is induced by various cytotoxic stresses and also promotes HTLV-1 replication. Thus, it seems that Tax protects infected cells from apoptosis and increases the chance of viral transmission at a critical moment. Keeping the expression of Tax minimal but inducible on demand is, therefore, a fundamental strategy of HTLV-1 to promote persistent infection and leukemogenesis.


The transcription elongation factor ELL2 is specifically upregulated in HTLV-1-infected T-cells and is dependent on the viral oncoprotein Tax.

  • Melanie C Mann‎ et al.
  • Virology‎
  • 2014‎

The oncoprotein Tax of human T-cell leukemia virus type 1 (HTLV-1) is a potent transactivator of viral and cellular transcription. Here, we identified ELL2 as the sole transcription elongation factor to be specifically upregulated in HTLV-1-/Tax-transformed T-cells. Tax contributes to regulation of ELL2, since transient transfection of Tax increases ELL2 mRNA, Tax transactivates the ELL2 promoter, and repression of Tax results in decrease of ELL2 in transformed T-lymphocytes. However, we also measured upregulation of ELL2 in HTLV-1-transformed cells exhibiting undetectable amounts of Tax, suggesting that ELL2 can still be maintained independent of continuous Tax expression. We further show that Tax and ELL2 synergistically activate the HTLV-1 promoter, indicating that ELL2 cooperates with Tax in viral transactivation. This is supported by our findings that Tax and ELL2 accumulate in nuclear fractions and that they co-precipitate upon co-expression in transiently-transfected cells. Thus, upregulation of ELL2 could contribute to HTLV-1 gene regulation.


Analysis of Nucleotide Sequence of Tax, miRNA and LTR of Bovine Leukemia Virus in Cattle with Different Levels of Persistent Lymphocytosis in Russia.

  • Aneta Pluta‎ et al.
  • Pathogens (Basel, Switzerland)‎
  • 2021‎

Bovine Leukemia Virus (BLV) is the etiological agent of enzootic bovine leucosis (EBL), a lymphoproliferative disease of the bovine species. In BLV-infected cells, the long terminal repeat (LTR), the viral Tax protein and viral miRNAs promote viral and cell proliferation as well as tumorigenesis. Although their respective roles are decisive in BLV biology, little is known about the genetic sequence variation of these parts of the BLV genome and their impact on disease outcome. Therefore, the objective of this study was to assess the relationship between disease progression and sequence variation of the BLV Tax, miRNA and LTR regions in infected animals displaying either low or high levels of persistent lymphocytosis (PL). A statistically significant association was observed between the A(+187)C polymorphism in the downstream activator sequence (DAS) region in LTR (p-value = 0.00737) and high lymphocytosis. Our study also showed that the mutation A(-4)G in the CAP site occurred in 70% of isolates with low PL and was not found in the high PL group. Conversely, the mutations G(-133)A/C in CRE2 (46.7%), C(+160)T in DAS (30%) and A(310)del in BLV-mir-B4-5p, A(357)G in BLV-mir-B4-3p, A(462)G in BLV-mir-B5-5p, and GA(497-498)AG in BLV-mir-B5-3p (26.5%) were often seen in isolates with high PL and did not occur in the low PL group. In conclusion, we found several significant polymorphisms among BLV genomic sequences in Russia that would explain a progression towards higher or lower lymphoproliferation. The data presented in this article enabled the classification between two different genotypes; however, clear association between genotypes and the PL development was not found.


The Expression of Tax and HBZ Genes in Serum-Derived Extracellular Vesicles From HTLV-1 Carriers Correlates to Proviral Load and Inflammatory Markers.

  • Debora Glenda Lima de La-Roque‎ et al.
  • Frontiers in microbiology‎
  • 2022‎

Human T-lymphotropic virus 1 (HTLV-1) is the etiologic agent of adult cell leukemia/lymphoma (ATL) and HTLV-1 associated myelopathy/tropical spastic paraparesis (HAM/TSP). One of the major questions in HTLV-1 studies is related to the understanding of causes that lead to different clinical manifestations. However, it is well known that the viral genes tax and HTLV-1 basic leucine zipper factor (HBZ) are related to viral infectivity and the development of neurological and hematological diseases. Currently, there is evidence that HTLV-1 infected cells can release small extracellular vesicles (sEVs) involved in the mechanisms of viral particles spreading. Therefore, we evaluated the expression levels of tax and HBZ viral transcripts in serum-derived sEVs from HTLV-1 carriers, as well as the role of these vesicles in the modulation of the immune response. Three HAM/TSP carriers presented detectable levels of tax and HBZ transcripts in sEVs and were positively correlated to the proviral load (PVL) in peripheral blood mononuclear cells (PBMCs). The viral transcripts were only detectable in individuals with a PVL higher than 6,000/105 PBMCs. Additionally, it was observed that HBZ presented a 2-12-folds increase over tax expression units. Gene expression and secretory protein analysis indicated that PBMCs from blood donors and HTLV-1 carriers exposed to increasing doses of tax+ HBZ+ sEVs showed a dose-dependent increase in interferon (IFN)-γ and interleukin (IL)-8 transcripts and proteins. Interestingly, the increase in IL-8 levels was close to those seen in HTLV-1-infected PBMCs with high PVL. Taken together, these findings indicate that the expression of viral transcripts in serum-derived sEVs of HTLV-1 carriers is related to the PVL presented by the infected individual. Additionally, tax+ HBZ+ sEVs can induce the production of inflammatory cytokines in patients with low PVL, which may be related to the development of symptoms in HTLV-1 infection.


The Tax-Inducible Actin-Bundling Protein Fascin Is Crucial for Release and Cell-to-Cell Transmission of Human T-Cell Leukemia Virus Type 1 (HTLV-1).

  • Christine Gross‎ et al.
  • PLoS pathogens‎
  • 2016‎

The delta-retrovirus Human T-cell leukemia virus type 1 (HTLV-1) preferentially infects CD4+ T-cells via cell-to-cell transmission. Viruses are transmitted by polarized budding and by transfer of viral biofilms at the virological synapse (VS). Formation of the VS requires the viral Tax protein and polarization of the host cytoskeleton, however, molecular mechanisms of HTLV-1 cell-to-cell transmission remain incompletely understood. Recently, we could show Tax-dependent upregulation of the actin-bundling protein Fascin (FSCN-1) in HTLV-1-infected T-cells. Here, we report that Fascin contributes to HTLV-1 transmission. Using single-cycle replication-dependent HTLV-1 reporter vectors, we found that repression of endogenous Fascin by short hairpin RNAs and by Fascin-specific nanobodies impaired gag p19 release and cell-to-cell transmission in 293T cells. In Jurkat T-cells, Tax-induced Fascin expression enhanced virus release and Fascin-dependently augmented cell-to-cell transmission to Raji/CD4+ B-cells. Repression of Fascin in HTLV-1-infected T-cells diminished virus release and gag p19 transfer to co-cultured T-cells. Spotting the mechanism, flow cytometry and automatic image analysis showed that Tax-induced T-cell conjugate formation occurred Fascin-independently. However, adhesion of HTLV-1-infected MT-2 cells in co-culture with Jurkat T-cells was reduced upon knockdown of Fascin, suggesting that Fascin contributes to dissemination of infected T-cells. Imaging of chronically infected MS-9 T-cells in co-culture with Jurkat T-cells revealed that Fascin's localization at tight cell-cell contacts is accompanied by gag polarization suggesting that Fascin directly affects the distribution of gag to budding sites, and therefore, indirectly viral transmission. In detail, we found gag clusters that are interspersed with Fascin clusters, suggesting that Fascin makes room for gag in viral biofilms. Moreover, we observed short, Fascin-containing membrane extensions surrounding gag clusters and clutching uninfected T-cells. Finally, we detected Fascin and gag in long-distance cellular protrusions. Taken together, we show for the first time that HTLV-1 usurps the host cell factor Fascin to foster virus release and cell-to-cell transmission.


Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

  • Yang Hu‎ et al.
  • BioMed research international‎
  • 2016‎

Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable.


RNA stability regulates human T cell leukemia virus type 1 gene expression in chronically-infected CD4 T cells.

  • Hsin-Ching Lin‎ et al.
  • Virology‎
  • 2017‎

Regulation of expression of HTLV-1 gene products from integrated proviruses plays an important role in HTLV-1-associated disease pathogenesis. Previous studies have shown that T cell receptor (TCR)- and phorbol ester (PMA) stimulation of chronically infected CD4 T cells increases the expression of integrated HTLV-1 proviruses in latently infected cells, however the mechanism remains unknown. Analysis of HTLV-1 RNA and protein species following PMA treatment of the latently HTLV-1-infected, FS and SP T cell lines demonstrated rapid induction of tax/rex mRNA. This rapid increase in tax/rex mRNA was associated with markedly enhanced tax/rex mRNA stability while the stability of unspliced or singly spliced HTLV-1 RNAs did not increase. Tax/rex mRNA in the HTLV-1 constitutively expressing cell lines exhibited high basal stability even without PMA treatment. Our data support a model whereby T cell activation leads to increased HTLV-1 gene expression at least in part through increased tax/rex mRNA stability.


PRMT5 Is Upregulated in HTLV-1-Mediated T-Cell Transformation and Selective Inhibition Alters Viral Gene Expression and Infected Cell Survival.

  • Amanda R Panfil‎ et al.
  • Viruses‎
  • 2015‎

Human T-cell leukemia virus type-1 (HTLV-1) is a tumorigenic retrovirus responsible for development of adult T-cell leukemia/lymphoma (ATLL). This disease manifests after a long clinical latency period of up to 2-3 decades. Two viral gene products, Tax and HBZ, have transforming properties and play a role in the pathogenic process. Genetic and epigenetic cellular changes also occur in HTLV-1-infected cells, which contribute to transformation and disease development. However, the role of cellular factors in transformation is not completely understood. Herein, we examined the role of protein arginine methyltransferase 5 (PRMT5) on HTLV-1-mediated cellular transformation and viral gene expression. We found PRMT5 expression was upregulated during HTLV-1-mediated T-cell transformation, as well as in established lymphocytic leukemia/lymphoma cell lines and ATLL patient PBMCs. shRNA-mediated reduction in PRMT5 protein levels or its inhibition by a small molecule inhibitor (PRMT5i) in HTLV-1-infected lymphocytes resulted in increased viral gene expression and decreased cellular proliferation. PRMT5i also had selective toxicity in HTLV-1-transformed T-cells. Finally, we demonstrated that PRMT5 and the HTLV-1 p30 protein had an additive inhibitory effect on HTLV-1 gene expression. Our study provides evidence for PRMT5 as a host cell factor important in HTLV-1-mediated T-cell transformation, and a potential target for ATLL treatment.


Setting the pace: host rhythmic behaviour and gene expression patterns in the facultatively symbiotic cnidarian Aiptasia are determined largely by Symbiodinium.

  • Michal Sorek‎ et al.
  • Microbiome‎
  • 2018‎

All organisms employ biological clocks to anticipate physical changes in the environment; however, the integration of biological clocks in symbiotic systems has received limited attention. In corals, the interpretation of rhythmic behaviours is complicated by the daily oscillations in tissue oxygen tension resulting from the photosynthetic and respiratory activities of the associated algal endosymbiont Symbiodinium. In order to better understand the integration of biological clocks in cnidarian hosts of Symbiodinium, daily rhythms of behaviour and gene expression were studied in symbiotic and aposymbiotic morphs of the sea-anemone Aiptasia diaphana.


Diet: Cause or Consequence of the Microbial Profile of Cholelithiasis Disease?

  • Isabel Gutiérrez-Díaz‎ et al.
  • Nutrients‎
  • 2018‎

Recent dietary habits and lifestyle could explain the shaping of the gut microbiota composition and, in consequence, the increasing prevalence of certain pathologies. However, little attention has been paid to the influence of diet on microbiotas, other than the gut microbiota. This is important in cholelithiasis, given that changes in the production of bile acids may affect gallbladder microbial communities. Our aim was to assess the association between regular dietary intake and gallbladder microbial composition. Fourteen adults with cholelithiasis and 14 controls, sex‒age-matched and without gastrointestinal pathology, were included. Diet was assessed through a food frequency questionnaire and quantification of gallbladder microbiota sequences by Illumina 16S rRNA gene-based analysis. The cholelithiasic patients showed greater intake of potatoes and lower consumption of vegetables, non-alcoholic drinks, and sauces, which resulted in a lower intake of energy, lipids, digestible polysaccharides, folate, calcium, magnesium, vitamin C, and some phenolic compounds. Regarding the altered bile microorganisms in cholelithiasic patients, dairy product intake was negatively associated with the proportions of Bacteroidaceae and Bacteroides, and several types of fiber, phenolics, and fatty acids were linked to the abundance of Bacteroidaceae, Chitinophagaceae, Propionibacteraceae, Bacteroides, and Escherichia‒Shigella. These results support a link between diet, biliary microbiota, and cholelithiasis.


Impact of the SCF signaling pathway on leukemia stem cell-mediated ATL initiation and progression in an HBZ transgenic mouse model.

  • Wakako Kuribayashi‎ et al.
  • Oncotarget‎
  • 2016‎

Adult T-cell leukemia (ATL) is a malignant disease caused by human T-lymphotropic virus type 1. In aggressive ATL, the response to chemotherapy is extremely poor. We hypothesized that this poor response is due to the existence of chemotherapy-resistant cells, such as leukemic stem cells. Previously, we successfully identified an ATL stem cell (ATLSC) candidate as the c-kit+/CD38-/CD71- cells in an ATL mouse model using Tax transgenic mice. Here, with a new ATL mouse model using HBZ-transgenic mice, we further discovered that the functional ATLSC candidate, which commonly expresses c-kit, is drug-resistant and has the ability to initiate tumors and reconstitute lymphomatous cells. We characterized the ATLSCs as c-kit+/CD4-/CD8- cells and found that they have a similar gene expression profile as T cell progenitors. Additionally, we found that AP-1 gene family members, including Junb, Jund, and Fosb, were up-regulated in the ATLSC fraction. The results of an in vitro assay showed that ATLSCs cultured with cytokines known to promote stem cell expansion, such as stem cell factor (SCF), showed highly proliferative activity and maintained their stem cell fraction. Inhibition of c-kit-SCF signaling with the neutralizing antibody ACK2 affected ATLSC self-renewal and proliferation. Experiments in Sl/Sld mice, which have a mutation in the membrane-bound c-kit ligand, found that ATL development was completely blocked in these mice. These results clearly suggest that the c-kit-SCF signal plays a key role in ATLSC self-renewal and in ATL initiation and disease progression.


Redefining genomic privacy: trust and empowerment.

  • Yaniv Erlich‎ et al.
  • PLoS biology‎
  • 2014‎

Fulfilling the promise of the genetic revolution requires the analysis of large datasets containing information from thousands to millions of participants. However, sharing human genomic data requires protecting subjects from potential harm. Current models rely on de-identification techniques in which privacy versus data utility becomes a zero-sum game. Instead, we propose the use of trust-enabling techniques to create a solution in which researchers and participants both win. To do so we introduce three principles that facilitate trust in genetic research and outline one possible framework built upon those principles. Our hope is that such trust-centric frameworks provide a sustainable solution that reconciles genetic privacy with data sharing and facilitates genetic research.


Molecular profiling of prostate cancer derived exosomes may reveal a predictive signature for response to docetaxel.

  • Pedram Kharaziha‎ et al.
  • Oncotarget‎
  • 2015‎

Docetaxel is a cornerstone treatment for metastatic, castration resistant prostate cancer (CRPC) which remains a leading cause of cancer-related deaths, worldwide. The clinical usage of docetaxel has resulted in modest gains in survival, primarily due to the development of resistance. There are currently no clinical biomarkers available that predict whether a CRPC patient will respond or acquire resistance to this therapy. Comparative proteomics analysis of exosomes secreted from DU145 prostate cancer cells that are sensitive (DU145 Tax-Sen) or have acquired resistance (DU145 Tax-Res) to docetaxel, demonstrated significant differences in the amount of exosomes secreted and in their molecular composition. A panel of proteins was identified by proteomics to be differentially enriched in DU145 Tax-Res compared to DU145 Tax-Sen exosomes and was validated by western blotting. Importantly, we identified MDR-1, MDR-3, Endophilin-A2 and PABP4 that were enriched only in DU145 Tax-Res exosomes. We validated the presence of these proteins in the serum of a small cohort of patients. DU145 cells that have uptaken DU145 Tax-Res exosomes show properties of increased matrix degradation. In summary, exosomes derived from DU145 Tax-Res cells may be a valuable source of biomarkers for response to therapy.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: