Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 82,938 papers

Logical Gene Ontology Annotations (GOAL): exploring gene ontology annotations with OWL.

  • Simon Jupp‎ et al.
  • Journal of biomedical semantics‎
  • 2012‎

Ontologies such as the Gene Ontology (GO) and their use in annotations make cross species comparisons of genes possible, along with a wide range of other analytical activities. The bio-ontologies community, in particular the Open Biomedical Ontologies (OBO) community, have provided many other ontologies and an increasingly large volume of annotations of gene products that can be exploited in query and analysis. As many annotations with different ontologies centre upon gene products, there is a possibility to explore gene products through multiple ontological perspectives at the same time. Questions could be asked that link a gene product's function, process, cellular location, phenotype and disease. Current tools, such as AmiGO, allow exploration of genes based on their GO annotations, but not through multiple ontological perspectives. In addition, the semantics of these ontology's representations should be able to, through automated reasoning, afford richer query opportunities of the gene product annotations than is currently possible.


Gene ontology: tool for the unification of biology. The Gene Ontology Consortium.

  • M Ashburner‎ et al.
  • Nature genetics‎
  • 2000‎

Genomic sequencing has made it clear that a large fraction of the genes specifying the core biological functions are shared by all eukaryotes. Knowledge of the biological role of such shared proteins in one organism can often be transferred to other organisms. The goal of the Gene Ontology Consortium is to produce a dynamic, controlled vocabulary that can be applied to all eukaryotes even as knowledge of gene and protein roles in cells is accumulating and changing. To this end, three independent ontologies accessible on the World-Wide Web (http://www.geneontology.org) are being constructed: biological process, molecular function and cellular component.


Gene Ontology Consortium: going forward.

  • Gene Ontology Consortium‎
  • Nucleic acids research‎
  • 2015‎

The Gene Ontology (GO; http://www.geneontology.org) is a community-based bioinformatics resource that supplies information about gene product function using ontologies to represent biological knowledge. Here we describe improvements and expansions to several branches of the ontology, as well as updates that have allowed us to more efficiently disseminate the GO and capture feedback from the research community. The Gene Ontology Consortium (GOC) has expanded areas of the ontology such as cilia-related terms, cell-cycle terms and multicellular organism processes. We have also implemented new tools for generating ontology terms based on a set of logical rules making use of templates, and we have made efforts to increase our use of logical definitions. The GOC has a new and improved web site summarizing new developments and documentation, serving as a portal to GO data. Users can perform GO enrichment analysis, and search the GO for terms, annotations to gene products, and associated metadata across multiple species using the all-new AmiGO 2 browser. We encourage and welcome the input of the research community in all biological areas in our continued effort to improve the Gene Ontology.


The Neural/Immune Gene Ontology: clipping the Gene Ontology for neurological and immunological systems.

  • Nophar Geifman‎ et al.
  • BMC bioinformatics‎
  • 2010‎

The Gene Ontology (GO) is used to describe genes and gene products from many organisms. When used for functional annotation of microarray data, GO is often slimmed by editing so that only higher level terms remain. This practice is designed to improve the summarizing of experimental results by grouping high level terms and the statistical power of GO term enrichment analysis. Here, we propose a new approach to editing the gene ontology, clipping, which is the editing of GO according to biological relevance. Creation of a GO subset by clipping is achieved by removing terms (from all hierarchal levels) if they are not functionally relevant to a given domain of interest. Terms that are located in levels higher to relevant terms are kept, thus, biologically irrelevant terms are only removed if they are not parental to terms that are relevant.


Exploring autophagy with Gene Ontology.

  • Paul Denny‎ et al.
  • Autophagy‎
  • 2018‎

Autophagy is a fundamental cellular process that is well conserved among eukaryotes. It is one of the strategies that cells use to catabolize substances in a controlled way. Autophagy is used for recycling cellular components, responding to cellular stresses and ridding cells of foreign material. Perturbations in autophagy have been implicated in a number of pathological conditions such as neurodegeneration, cardiac disease and cancer. The growing knowledge about autophagic mechanisms needs to be collected in a computable and shareable format to allow its use in data representation and interpretation. The Gene Ontology (GO) is a freely available resource that describes how and where gene products function in biological systems. It consists of 3 interrelated structured vocabularies that outline what gene products do at the biochemical level, where they act in a cell and the overall biological objectives to which their actions contribute. It also consists of 'annotations' that associate gene products with the terms. Here we describe how we represent autophagy in GO, how we create and define terms relevant to autophagy researchers and how we interrelate those terms to generate a coherent view of the process, therefore allowing an interoperable description of its biological aspects. We also describe how annotation of gene products with GO terms improves data analysis and interpretation, hence bringing a significant benefit to this field of study.


Gene Ontology annotations and resources.

  • Gene Ontology Consortium‎ et al.
  • Nucleic acids research‎
  • 2013‎

The Gene Ontology (GO) Consortium (GOC, http://www.geneontology.org) is a community-based bioinformatics resource that classifies gene product function through the use of structured, controlled vocabularies. Over the past year, the GOC has implemented several processes to increase the quantity, quality and specificity of GO annotations. First, the number of manual, literature-based annotations has grown at an increasing rate. Second, as a result of a new 'phylogenetic annotation' process, manually reviewed, homology-based annotations are becoming available for a broad range of species. Third, the quality of GO annotations has been improved through a streamlined process for, and automated quality checks of, GO annotations deposited by different annotation groups. Fourth, the consistency and correctness of the ontology itself has increased by using automated reasoning tools. Finally, the GO has been expanded not only to cover new areas of biology through focused interaction with experts, but also to capture greater specificity in all areas of the ontology using tools for adding new combinatorial terms. The GOC works closely with other ontology developers to support integrated use of terminologies. The GOC supports its user community through the use of e-mail lists, social media and web-based resources.


The Gene Ontology: enhancements for 2011.

  • Gene Ontology Consortium‎
  • Nucleic acids research‎
  • 2012‎

The Gene Ontology (GO) (http://www.geneontology.org) is a community bioinformatics resource that represents gene product function through the use of structured, controlled vocabularies. The number of GO annotations of gene products has increased due to curation efforts among GO Consortium (GOC) groups, including focused literature-based annotation and ortholog-based functional inference. The GO ontologies continue to expand and improve as a result of targeted ontology development, including the introduction of computable logical definitions and development of new tools for the streamlined addition of terms to the ontology. The GOC continues to support its user community through the use of e-mail lists, social media and web-based resources.


The Gene Ontology project in 2008.

  • Gene Ontology Consortium‎
  • Nucleic acids research‎
  • 2008‎

The Gene Ontology (GO) project (http://www.geneontology.org/) provides a set of structured, controlled vocabularies for community use in annotating genes, gene products and sequences (also see http://www.sequenceontology.org/). The ontologies have been extended and refined for several biological areas, and improvements to the structure of the ontologies have been implemented. To improve the quantity and quality of gene product annotations available from its public repository, the GO Consortium has launched a focused effort to provide comprehensive and detailed annotation of orthologous genes across a number of 'reference' genomes, including human and several key model organisms. Software developments include two releases of the ontology-editing tool OBO-Edit, and improvements to the AmiGO browser interface.


Improvements to cardiovascular gene ontology.

  • Ruth C Lovering‎ et al.
  • Atherosclerosis‎
  • 2009‎

Gene Ontology (GO) provides a controlled vocabulary to describe the attributes of genes and gene products in any organism. Although one might initially wonder what relevance a 'controlled vocabulary' might have for cardiovascular science, such a resource is proving highly useful for researchers investigating complex cardiovascular disease phenotypes as well as those interpreting results from high-throughput methodologies. GO enables the current functional knowledge of individual genes to be used to annotate genomic or proteomic datasets. In this way, the GO data provides a very effective way of linking biological knowledge with the analysis of the large datasets of post-genomics research. Consequently, users of high-throughput methodologies such as expression arrays or proteomics will be the main beneficiaries of such annotation sets. However, as GO annotations increase in quality and quantity, groups using small-scale approaches will gradually begin to benefit too. For example, genome wide association scans for coronary heart disease are identifying novel genes, with previously unknown connections to cardiovascular processes, and the comprehensive annotation of these novel genes might provide clues to their cardiovascular link. At least 4000 genes, to date, have been implicated in cardiovascular processes and an initiative is underway to focus on annotating these genes for the benefit of the cardiovascular community. In this article we review the current uses of Gene Ontology annotation to highlight why Gene Ontology should be of interest to all those involved in cardiovascular research.


How the gene ontology evolves.

  • Sabina Leonelli‎ et al.
  • BMC bioinformatics‎
  • 2011‎

Maintaining a bio-ontology in the long term requires improving and updating its contents so that it adequately captures what is known about biological phenomena. This paper illustrates how these processes are carried out, by studying the ways in which curators at the Gene Ontology have hitherto incorporated new knowledge into their resource.


Measuring the evolution of ontology complexity: the gene ontology case study.

  • Olivier Dameron‎ et al.
  • PloS one‎
  • 2013‎

Ontologies support automatic sharing, combination and analysis of life sciences data. They undergo regular curation and enrichment. We studied the impact of an ontology evolution on its structural complexity. As a case study we used the sixty monthly releases between January 2008 and December 2012 of the Gene Ontology and its three independent branches, i.e. biological processes (BP), cellular components (CC) and molecular functions (MF). For each case, we measured complexity by computing metrics related to the size, the nodes connectivity and the hierarchical structure. The number of classes and relations increased monotonously for each branch, with different growth rates. BP and CC had similar connectivity, superior to that of MF. Connectivity increased monotonously for BP, decreased for CC and remained stable for MF, with a marked increase for the three branches in November and December 2012. Hierarchy-related measures showed that CC and MF had similar proportions of leaves, average depths and average heights. BP had a lower proportion of leaves, and a higher average depth and average height. For BP and MF, the late 2012 increase of connectivity resulted in an increase of the average depth and average height and a decrease of the proportion of leaves, indicating that a major enrichment effort of the intermediate-level hierarchy occurred. The variation of the number of classes and relations in an ontology does not provide enough information about the evolution of its complexity. However, connectivity and hierarchy-related metrics revealed different patterns of values as well as of evolution for the three branches of the Gene Ontology. CC was similar to BP in terms of connectivity, and similar to MF in terms of hierarchy. Overall, BP complexity increased, CC was refined with the addition of leaves providing a finer level of annotations but decreasing slightly its complexity, and MF complexity remained stable.


The Gene Ontology (GO) Cellular Component Ontology: integration with SAO (Subcellular Anatomy Ontology) and other recent developments.

  • Paola Roncaglia‎ et al.
  • Journal of biomedical semantics‎
  • 2013‎

The Gene Ontology (GO) (http://www.geneontology.org/) contains a set of terms for describing the activity and actions of gene products across all kingdoms of life. Each of these activities is executed in a location within a cell or in the vicinity of a cell. In order to capture this context, the GO includes a sub-ontology called the Cellular Component (CC) ontology (GO-CCO). The primary use of this ontology is for GO annotation, but it has also been used for phenotype annotation, and for the annotation of images. Another ontology with similar scope to the GO-CCO is the Subcellular Anatomy Ontology (SAO), part of the Neuroscience Information Framework Standard (NIFSTD) suite of ontologies. The SAO also covers cell components, but in the domain of neuroscience.


The Gene Ontology knowledgebase in 2023.

  • Gene Ontology Consortium‎ et al.
  • Genetics‎
  • 2023‎

The Gene Ontology (GO) knowledgebase (http://geneontology.org) is a comprehensive resource concerning the functions of genes and gene products (proteins and noncoding RNAs). GO annotations cover genes from organisms across the tree of life as well as viruses, though most gene function knowledge currently derives from experiments carried out in a relatively small number of model organisms. Here, we provide an updated overview of the GO knowledgebase, as well as the efforts of the broad, international consortium of scientists that develops, maintains, and updates the GO knowledgebase. The GO knowledgebase consists of three components: (1) the GO-a computational knowledge structure describing the functional characteristics of genes; (2) GO annotations-evidence-supported statements asserting that a specific gene product has a particular functional characteristic; and (3) GO Causal Activity Models (GO-CAMs)-mechanistic models of molecular "pathways" (GO biological processes) created by linking multiple GO annotations using defined relations. Each of these components is continually expanded, revised, and updated in response to newly published discoveries and receives extensive QA checks, reviews, and user feedback. For each of these components, we provide a description of the current contents, recent developments to keep the knowledgebase up to date with new discoveries, and guidance on how users can best make use of the data that we provide. We conclude with future directions for the project.


The Gene Ontology (GO) project in 2006.

  • Gene Ontology Consortium‎
  • Nucleic acids research‎
  • 2006‎

The Gene Ontology (GO) project (http://www.geneontology.org) develops and uses a set of structured, controlled vocabularies for community use in annotating genes, gene products and sequences (also see http://song.sourceforge.net/). The GO Consortium continues to improve to the vocabulary content, reflecting the impact of several novel mechanisms of incorporating community input. A growing number of model organism databases and genome annotation groups contribute annotation sets using GO terms to GO's public repository. Updates to the AmiGO browser have improved access to contributed genome annotations. As the GO project continues to grow, the use of the GO vocabularies is becoming more varied as well as more widespread. The GO project provides an ontological annotation system that enables biologists to infer knowledge from large amounts of data.


Annotating the Function of the Human Genome with Gene Ontology and Disease Ontology.

  • Yang Hu‎ et al.
  • BioMed research international‎
  • 2016‎

Increasing evidences indicated that function annotation of human genome in molecular level and phenotype level is very important for systematic analysis of genes. In this study, we presented a framework named Gene2Function to annotate Gene Reference into Functions (GeneRIFs), in which each functional description of GeneRIFs could be annotated by a text mining tool Open Biomedical Annotator (OBA), and each Entrez gene could be mapped to Human Genome Organisation Gene Nomenclature Committee (HGNC) gene symbol. After annotating all the records about human genes of GeneRIFs, 288,869 associations between 13,148 mRNAs and 7,182 terms, 9,496 associations between 948 microRNAs and 533 terms, and 901 associations between 139 long noncoding RNAs (lncRNAs) and 297 terms were obtained as a comprehensive annotation resource of human genome. High consistency of term frequency of individual gene (Pearson correlation = 0.6401, p = 2.2e - 16) and gene frequency of individual term (Pearson correlation = 0.1298, p = 3.686e - 14) in GeneRIFs and GOA shows our annotation resource is very reliable.


Dovetailing biology and chemistry: integrating the Gene Ontology with the ChEBI chemical ontology.

  • David P Hill‎ et al.
  • BMC genomics‎
  • 2013‎

The Gene Ontology (GO) facilitates the description of the action of gene products in a biological context. Many GO terms refer to chemical entities that participate in biological processes. To facilitate accurate and consistent systems-wide biological representation, it is necessary to integrate the chemical view of these entities with the biological view of GO functions and processes. We describe a collaborative effort between the GO and the Chemical Entities of Biological Interest (ChEBI) ontology developers to ensure that the representation of chemicals in the GO is both internally consistent and in alignment with the chemical expertise captured in ChEBI.


The Renal Gene Ontology Annotation Initiative.

  • Yasmin Alam-Faruque‎ et al.
  • Organogenesis‎
  • 2010‎

The gene ontology (go) resource provides dynamic controlled vocabularies to aid in the description of the functional attributes and subcellular locations of gene products from all taxonomic groups (www.geneontology.org). A renal-focused curation initiative, funded by Kidney Research UK and supported by the GO Consortium, has started at the European Bioinformatics Institute and aims to provide a detailed GO resource for mammalian proteins implicated in renal development and function. This report outlines the aims of this initiative and explains how the renal community can become involved to help improve the availability, quality and quantity of GO terms and their association to specific proteins.


Gene Ontology: looking backwards and forwards.

  • Suzanna E Lewis‎
  • Genome biology‎
  • 2005‎

The Gene Ontology consortium began six years ago with a group of scientists who decided to connect our data by sharing the same language for describing it. Its most significant achievement lies in uniting many independent biological database efforts into a cooperative force.


FlyBase: enhancing Drosophila Gene Ontology annotations.

  • Susan Tweedie‎ et al.
  • Nucleic acids research‎
  • 2009‎

FlyBase (http://flybase.org) is a database of Drosophila genetic and genomic information. Gene Ontology (GO) terms are used to describe three attributes of wild-type gene products: their molecular function, the biological processes in which they play a role, and their subcellular location. This article describes recent changes to the FlyBase GO annotation strategy that are improving the quality of the GO annotation data. Many of these changes stem from our participation in the GO Reference Genome Annotation Project--a multi-database collaboration producing comprehensive GO annotation sets for 12 diverse species.


Defining functional distances over gene ontology.

  • Angela del Pozo‎ et al.
  • BMC bioinformatics‎
  • 2008‎

A fundamental problem when trying to define the functional relationships between proteins is the difficulty in quantifying functional similarities, even when well-structured ontologies exist regarding the activity of proteins (i.e. 'gene ontology' -GO-). However, functional metrics can overcome the problems in the comparing and evaluating functional assignments and predictions. As a reference of proximity, previous approaches to compare GO terms considered linkage in terms of ontology weighted by a probability distribution that balances the non-uniform 'richness' of different parts of the Direct Acyclic Graph. Here, we have followed a different approach to quantify functional similarities between GO terms.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: