Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 337 papers

Plasma gelsolin levels decrease in diabetic state and increase upon treatment with F-actin depolymerizing versions of gelsolin.

  • Neeraj Khatri‎ et al.
  • Journal of diabetes research‎
  • 2014‎

The study aims to map plasma gelsolin (pGSN) levels in diabetic humans and mice models of type II diabetes and to evaluate the efficacy of gelsolin therapy in improvement of diabetes in mice. We report that pGSN values decrease by a factor of 0.45 to 0.5 in the blood of type II diabetic humans and mice models. Oral glucose tolerance test in mice models showed that subcutaneous administration of recombinant pGSN and its F-actin depolymerizing competent versions brought down blood sugar levels comparable to Sitagliptin, a drug used to manage hyperglycemic condition. Further, daily dose of pGSN or its truncated versions to diabetic mice for a week kept sugar levels close to normal values. Also, diabetic mice treated with Sitagliptin for 7 days, showed increase in their pGSN values with the decrease in blood glucose as compared to their levels at the start of treatment. Gelsolin helped in improving glycemic control in diabetic mice. We propose that gelsolin level monitoring and replacement of F-actin severing capable gelsolin(s) should be considered in diabetic care.


Chaperone nanobodies protect gelsolin against MT1-MMP degradation and alleviate amyloid burden in the gelsolin amyloidosis mouse model.

  • Wouter Van Overbeke‎ et al.
  • Molecular therapy : the journal of the American Society of Gene Therapy‎
  • 2014‎

Gelsolin amyloidosis is an autosomal dominant incurable disease caused by a point mutation in the GSN gene (G654A/T), specifically affecting secreted plasma gelsolin. Incorrect folding of the mutant (D187N/Y) second gelsolin domain leads to a pathological proteolytic cascade. D187N/Y gelsolin is first cleaved by furin in the trans-Golgi network, generating a 68 kDa fragment (C68). Upon secretion, C68 is cleaved by MT1-MMP-like proteases in the extracellular matrix, releasing 8 kDa and 5 kDa amyloidogenic peptides which aggregate in multiple tissues and cause disease-associated symptoms. We developed nanobodies that recognize the C68 fragment, but not native wild type gelsolin, and used these as molecular chaperones to mitigate gelsolin amyloid buildup in a mouse model that recapitulates the proteolytic cascade. We identified gelsolin nanobodies that potently reduce C68 proteolysis by MT1-MMP in vitro. Converting these nanobodies into an albumin-binding format drastically increased their serum half-life in mice, rendering them suitable for intraperitoneal injection. A 12-week treatment schedule of heterozygote D187N gelsolin transgenic mice with recombinant bispecific gelsolin-albumin nanobody significantly decreased gelsolin buildup in the endomysium and concomitantly improved muscle contractile properties. These findings demonstrate that nanobodies may be of considerable value in the treatment of gelsolin amyloidosis and related diseases.


Gelsolin-Like Domain 3 Plays Vital Roles in Regulating the Activities of the Lily Villin/Gelsolin/Fragmin Superfamily.

  • Dong Qian‎ et al.
  • PloS one‎
  • 2015‎

The villin/gelsolin/fragmin superfamily is a major group of Ca2+-dependent actin-binding proteins (ABPs) involved in various cellular processes. Members of this superfamily typically possess three or six tandem gelsolin-like (G) domains, and each domain plays a distinct role in actin filament dynamics. Although the activities of most G domains have been characterized, the biochemical function of the G3 domain remains poorly understood. In this study, we carefully compared the detailed biochemical activities of ABP29 (a new member of this family that contains the G1-G2 domains of lily ABP135) and ABP135G1-G3 (which contains the G1-G3 domains of lily ABP135). In the presence of high Ca2+ levels in vitro (200 and 10 μM), ABP135G1-G3 exhibited greater actin severing and/or depolymerization and nucleating activities than ABP29, and these proteins had similar actin capping activities. However, in the presence of low levels of Ca2+ (41 nM), ABP135G1-G3 had a weaker capping activity than ABP29. In addition, ABP29 inhibited F-actin depolymerization, as shown by dilution-mediated depolymerization assay, differing from the typical superfamily proteins. In contrast, ABP135G1-G3 accelerated F-actin depolymerization. All of these results demonstrate that the G3 domain plays specific roles in regulating the activities of the lily villin/gelsolin/fragmin superfamily proteins.


Gelsolin-independent podosome formation in dendritic cells.

  • Oscar Hammarfjord‎ et al.
  • PloS one‎
  • 2011‎

Podosomes, important structures for adhesion and extracellular matrix degradation, are claimed to be involved in cell migration. In addition, podosomes are also reported to be of importance in tissue remodelling, e.g., in osteoclast-mediated bone resorption. Podosomes are highly dynamic actin-filament scaffolds onto which proteins important for their function, such as matrix metallo-proteases and integrins, attach. The dynamics of the podosomes require the action of many proteins regulating actin assembly and disassembly. One such protein, gelsolin, which associates to podosomes, has been reported to be important for podosome formation and function in osteoclasts. However, podosome-like structures have been reported in gelsolin-deficient dendritic cells, but the identity of these structures was not confirmed, and their dynamics and function was not investigated. Like many other cells, dendritic cells of the immune system also form matrix degrading podosomes. In the present study, we show that dendritic cells form podosomes independently of gelsolin, that there are no major alterations in their dynamics of formation and disassembly, and that they exhibit matrix-degrading function. Furthermore, we found that gelsolin is not required for TLR4-induced podosome disassembly. Thus, the actin cytoskeleton of podosomes involved in dendritic cell extracellular matrix degradation appears to be regulated differently than the cytoskeleton in podosomes of osteoclasts mediating bone resorption.


ATP competes with PIP2 for binding to gelsolin.

  • Dávid Szatmári‎ et al.
  • PloS one‎
  • 2018‎

Gelsolin is a severing and capping protein that targets filamentous actin and regulates filament lengths near plasma membranes, contributing to cell movement and plasma membrane morphology. Gelsolin binds to the plasma membrane via phosphatidylinositol 4,5-bisphosphate (PIP2) in a state that cannot cap F-actin, and gelsolin-capped actin filaments are uncapped by PIP2 leading to filament elongation. The process by which gelsolin is removed from PIP2 at the plasma membrane is currently unknown. Gelsolin also binds ATP with unknown function. Here we characterize the role of ATP on PIP2-gelsolin complex dynamics. Fluorophore-labeled PIP2 and ATP were used to study their interactions with gelsolin using steady-state fluorescence anisotropy, and Alexa488-labeled gelsolin was utilized to reconstitute the regulation of gelsolin binding to PIP2-containing phospholipid vesicles by ATP. Under physiological salt conditions ATP competes with PIP2 for binding to gelsolin, while calcium causes the release of ATP from gelsolin. These data suggest a cycle for gelsolin activity. Firstly, calcium activates ATP-bound gelsolin allowing it to sever and cap F-actin. Secondly, PIP2-binding removes the gelsolin cap from F-actin at low calcium levels, leading to filament elongation. Finally, ATP competes with PIP2 to release the calcium-free ATP-bound gelsolin, allowing it to undergo a further round of severing.


Gelsolin activity controls efficient early HIV-1 infection.

  • Laura García-Expósito‎ et al.
  • Retrovirology‎
  • 2013‎

HIV-1 entry into target lymphocytes requires the activity of actin adaptors that stabilize and reorganize cortical F-actin, like moesin and filamin-A. These alterations are necessary for the redistribution of CD4-CXCR4/CCR5 to one pole of the cell, a process that increases the probability of HIV-1 Envelope (Env)-CD4/co-receptor interactions and that generates the tension at the plasma membrane necessary to potentiate fusion pore formation, thereby favouring early HIV-1 infection. However, it remains unclear whether the dynamic processing of F-actin and the amount of cortical actin available during the initial virus-cell contact are required to such events.


Delayed retraction of filopodia in gelsolin null mice.

  • M Lu‎ et al.
  • The Journal of cell biology‎
  • 1997‎

Growth cones extend dynamic protrusions called filopodia and lamellipodia as exploratory probes that signal the direction of neurite growth. Gelsolin, as an actin filament-severing protein, may serve an important role in the rapid shape changes associated with growth cone structures. In wild-type (wt) hippocampal neurons, antibodies against gelsolin labeled the neurite shaft and growth cone. The behavior of filopodia in cultured hippocampal neurons from embryonic day 17 wt and gelsolin null (Gsn-) mice (Witke, W., A.H. Sharpe, J.H. Hartwig, T. Azuma, T.P. Stossel, and D.J. Kwiatkowski. 1995. Cell. 81:41-51.) was recorded with time-lapse video microscopy. The number of filopodia along the neurites was significantly greater in Gsn- mice and gave the neurites a studded appearance. Dynamic studies suggested that most of these filopodia were formed from the region of the growth cone and remained as protrusions from the newly consolidated shaft after the growth cone advanced. Histories of individual filopodia in Gsn- mice revealed elongation rates that did not differ from controls but an impaired retraction phase that probably accounted for the increased number of filopodia long the neutrite shaft. Gelsolin appears to function in the initiation of filopodial retraction and in its smooth progression.


Inhibition of apoptosis by the actin-regulatory protein gelsolin.

  • M Ohtsu‎ et al.
  • The EMBO journal‎
  • 1997‎

Gelsolin is an actin-regulatory protein that modulates actin assembly and disassembly, and is believed to regulate cell motility in vivo through modulation of the actin network. In addition to its actin-regulatory function, gelsolin has also been proposed to affect cell growth. Our present experiments have tested the possible involvement of gelsolin in the regulation of apoptosis, which is significantly affected by growth. When overexpressed in Jurkat cells, gelsolin strongly inhibited apoptosis induced by anti-Fas antibody, C2-ceramide or dexamethasone, without changing the F-actin morphology or the levels of Fas or Bcl-2 family proteins. Upon the induction of apoptosis, an increase in CPP32(-like) protease activity was observed in the control vector transfectants, while it was strongly suppressed in the gelsolin transfectants. Pro-CPP32 protein, an inactive form of CPP32 protease, remained uncleaved by anti-Fas treatment in the gelsolin transfectants, indicating that gelsolin blocks upstream of this protease. The tetrapeptide inhibitor of CPP32(-like) proteases strongly inhibited Fas-mediated apoptosis, but only partially suppressed both C2-ceramide- and dexamethasone-induced apoptosis. These data suggest that the critical target responsible for the execution of apoptosis may exist upstream of CPP32(-like) proteases in Jurkat cells and that gelsolin acts on this target to inhibit the apoptotic cell death program.


Immunoreactivity of anti-gelsolin antibodies: implications for biomarker validation.

  • Nicole Haverland‎ et al.
  • Journal of translational medicine‎
  • 2010‎

Proteomic-based discovery of biomarkers for disease has recently come under scrutiny for a variety of issues; one prominent issue is the lack of orthogonal validation for biomarkers following discovery. Validation by ELISA or Western blot requires the use of antibodies, which for many potential biomarkers are under-characterized and may lead to misleading or inconclusive results. Gelsolin is one such biomarker candidate in HIV-associated neurocognitive disorders.


Loss of secreted gelsolin enhances response to anticancer therapies.

  • Kok Haw Jonathan Lim‎ et al.
  • Journal for immunotherapy of cancer‎
  • 2022‎

Type 1 conventional dendritic cells (cDC1) play a critical role in priming anticancer cytotoxic CD8+ T cells. DNGR-1 (a.k.a. CLEC9A) is a cDC1 receptor that binds to F-actin exposed on necrotic cancer and normal cells. DNGR-1 signaling enhances cross-presentation of dead-cell associated antigens, including tumor antigens. We have recently shown that secreted gelsolin (sGSN), a plasma protein, competes with DNGR-1 for binding to dead cell-exposed F-actin and dampens anticancer immunity. Here, we investigated the effects of loss of sGSN on various anticancer therapies that are thought to induce cell death and provoke an immune response to cancer. We compared WT (wildtype) with Rag1-/- , Batf3-/- , Clec9agfp/gfp , sGsn-/- or sGsn-/- Clec9agfp/gfp mice implanted with transplantable tumor cell lines, including MCA-205 fibrosarcoma, 5555 BrafV600E melanoma and B16-F10 LifeAct (LA)-ovalbumin (OVA)-mCherry melanoma. Tumor-bearing mice were treated with (1) doxorubicin (intratumoral) chemotherapy for MCA-205, (2) BRAF-inhibitor PLX4720 (oral gavage) targeted therapy for 5555 BrafV600E, and (3) X-ray radiotherapy for B16 LA-OVA-mCherry. We confirmed that efficient tumor control following each therapy requires an immunocompetent host as efficacy was markedly reduced in Rag1-/- compared with WT mice. Notably, across all the therapeutic modalities, loss of sGSN significantly enhanced tumor control compared with treated WT controls. This was an on-target effect as mice deficient in both sGSN and DNGR-1 behaved no differently from WT mice following therapy. In sum, we find that mice deficient in sGsn display enhanced DNGR-1-dependent responsiveness to chemotherapy, targeted therapy and radiotherapy. Our findings are consistent with the notion some cancer therapies induce immunogenic cell death (ICD), which mobilizes anticancer T cells. Our results point to cDC1 and DNGR-1 as decoders of ICD and to sGSN as a negative regulator of such decoding, highlighting sGSN as a possible target in cancer treatment. Further prospective studies are warranted to identify patients who may benefit most from inhibition of sGSN function.


Gelsolin restores A beta-induced alterations in choroid plexus epithelium.

  • Teo Vargas‎ et al.
  • Journal of biomedicine & biotechnology‎
  • 2010‎

Histologically, Alzheimer's disease (AD) is characterized by senile plaques and cerebrovascular amyloid deposits. In previous studies we demonstrated that in AD patients, amyloid-beta (A beta) peptide also accumulates in choroid plexus, and that this process is associated with mitochondrial dysfunction and epithelial cell death. However, the molecular mechanisms underlying A beta accumulation at the choroid plexus epithelium remain unclear. A beta clearance, from the brain to the blood, involves A beta carrier proteins that bind to megalin, including gelsolin, a protein produced specifically by the choroid plexus epithelial cells. In this study, we show that treatment with gelsolin reduces A beta-induced cytoskeletal disruption of blood-cerebrospinal fluid (CSF) barrier at the choroid plexus. Additionally, our results demonstrate that gelsolin plays an important role in decreasing A beta-induced cytotoxicity by inhibiting nitric oxide production and apoptotic mitochondrial changes. Taken together, these findings make gelsolin an appealing tool for the prophylactic treatment of AD.


Gelsolin is a downstream effector of rac for fibroblast motility.

  • T Azuma‎ et al.
  • The EMBO journal‎
  • 1998‎

Rac, a member of the rho family of GTPases, when activated transmits signals leading to actin-based membrane ruffling in fibroblasts. Compared with wild-type fibroblasts, gelsolin null (Gsn-) dermal fibroblasts have a markedly reduced ruffling response to serum or EGF stimulation, which signal through rac. Bradykinin-induced filopodial formation, attributable to activation of cdc42, is similar in both cell types. Wild-type fibroblasts exhibit typical lamellipodial extension during translational locomotion, whereas Gsn- cells move 50% slower using structures resembling filopodia. Multiple Gsn- tissues as well as Gsn- fibroblasts overexpress rac, but not cdc42 or rho, 5-fold. Re-expression of gelsolin in Gsn- fibroblasts by stable transfection or adenovirus reverts the ruffling response, translational motility and rac expression to normal. Rac migrates to the cell membrane following EGF stimulation in both cell types. Gelsolin is an essential effector of rac-mediated actin dynamics, acting downstream of rac recruitment to the membrane.


Gelsolin modulates phospholipase C activity in vivo through phospholipid binding.

  • H q Sun‎ et al.
  • The Journal of cell biology‎
  • 1997‎

Gelsolin and CapG are actin regulatory proteins that remodel the cytoskeleton in response to phosphatidylinositol 4,5-bisphosphate (PIP2) and Ca2+ during agonist stimulation. A physiologically relevant rise in Ca2+ increases their affinity for PIP2 and can promote significant interactions with PIP2 in activated cells. This may impact divergent PIP2- dependent signaling processes at the level of substrate availability. We found that CapG overexpression enhances PDGF-stimulated phospholipase Cgamma (PLCgamma) activity (Sun, H.-q., K. Kwiatkowska, D.C. Wooten, and H.L. Yin. 1995. J. Cell Biol. 129:147-156). In this paper, we examined the ability of gelsolin and CapG to compete with another PLC for PIP2 in live cells, in semiintact cells, and in vitro. We found that CapG and gelsolin overexpression profoundly inhibited bradykinin-stimulated PLCbeta. Inhibition occurred at or after the G protein activation step because overexpression also reduced the response to direct G protein activation with NaF. Bradykinin responsiveness was restored after cytosolic proteins, including gelsolin, leaked out of the overexpressing cells. Conversely, exogenous gelsolin added to permeabilized cells inhibited response in a dose-dependent manner. The washout and addback experiments clearly establish that excess gelsolin is the primary cause of PLC inhibition in cells. In vitro experiments showed that gelsolin and CapG stimulated as well as inhibited PLCbeta, and only gelsolin domains containing PIP2-binding sites were effective. Inhibition was mitigated by increasing PIP2 concentration in a manner consistent with competition between gelsolin and PLCbeta for PIP2. Gelsolin and CapG also had biphasic effects on tyrosine kinase- phosphorylated PLCgamma, although they inhibited PLCgamma less than PLCbeta. Our findings indicate that as PIP2 level and availability change during signaling, cross talk between PIP2-regulated proteins provides a selective mechanism for positive as well as negative regulation of the signal transduction cascade.


Secreted gelsolin inhibits DNGR-1-dependent cross-presentation and cancer immunity.

  • Evangelos Giampazolias‎ et al.
  • Cell‎
  • 2021‎

Cross-presentation of antigens from dead tumor cells by type 1 conventional dendritic cells (cDC1s) is thought to underlie priming of anti-cancer CD8+ T cells. cDC1 express high levels of DNGR-1 (a.k.a. CLEC9A), a receptor that binds to F-actin exposed by dead cell debris and promotes cross-presentation of associated antigens. Here, we show that secreted gelsolin (sGSN), an extracellular protein, decreases DNGR-1 binding to F-actin and cross-presentation of dead cell-associated antigens by cDC1s. Mice deficient in sGsn display increased DNGR-1-dependent resistance to transplantable tumors, especially ones expressing neoantigens associated with the actin cytoskeleton, and exhibit greater responsiveness to cancer immunotherapy. In human cancers, lower levels of intratumoral sGSN transcripts, as well as presence of mutations in proteins associated with the actin cytoskeleton, are associated with signatures of anti-cancer immunity and increased patient survival. Our results reveal a natural barrier to cross-presentation of cancer antigens that dampens anti-tumor CD8+ T cell responses.


Decreased levels of the gelsolin plasma isoform in patients with rheumatoid arthritis.

  • Teresia M Osborn‎ et al.
  • Arthritis research & therapy‎
  • 2008‎

Gelsolin is an intracellular actin-binding protein involved in cell shape changes, cell motility, and apoptosis. An extracellular gelsolin isoform, plasma gelsolin circulates in the blood of healthy individuals at a concentration of 200 +/- 50 mg/L and has been suggested to be a key component of an extracellular actin-scavenging system during tissue damage. Levels of plasma gelsolin decrease during acute injury and inflammation, and administration of recombinant plasma gelsolin to animals improves outcomes following sepsis or burn injuries. In the present study, we investigated plasma gelsolin in patients with rheumatoid arthritis.


The role of gelsolin domain 3 in familial amyloidosis (Finnish type).

  • Habiba Zorgati‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2019‎

In the disease familial amyloidosis, Finnish type (FAF), also known as AGel amyloidosis (AGel), the mechanism by which point mutations in the calcium-regulated actin-severing protein gelsolin lead to furin cleavage is not understood in the intact protein. Here, we provide a structural and biochemical characterization of the FAF variants. X-ray crystallography structures of the FAF mutant gelsolins demonstrate that the mutations do not significantly disrupt the calcium-free conformations of gelsolin. Small-angle X-ray-scattering (SAXS) studies indicate that the FAF calcium-binding site mutants are slower to activate, whereas G167R is as efficient as the wild type. Actin-regulating studies of the gelsolins at the furin cleavage pH (6.5) show that the mutant gelsolins are functional, suggesting that they also adopt relatively normal active conformations. Deletion of gelsolin domains leads to sensitization to furin cleavage, and nanobody-binding protects against furin cleavage. These data indicate instability in the second domain of gelsolin (G2), since loss or gain of G2-stabilizing interactions impacts the efficiency of cleavage by furin. To demonstrate this principle, we engineered non-FAF mutations in G3 that disrupt the G2-G3 interface in the calcium-activated structure. These mutants led to increased furin cleavage. We carried out molecular dynamics (MD) simulations on the FAF and non-FAF mutant G2-G3 fragments of gelsolin. All mutants showed an increase in the distance between the center of masses of the 2 domains (G2 and G3). Since G3 covers the furin cleavage site on G2 in calcium-activated gelsolin, this suggests that destabilization of this interface is a critical step in cleavage.


Plasma gelsolin facilitates interaction between β2 glycoprotein I and α5β1 integrin.

  • Miyuki Bohgaki‎ et al.
  • Journal of cellular and molecular medicine‎
  • 2011‎

Antiphospholipid syndrome (APS) is characterized by thrombosis and the presence of antiphospholipid antibodies (aPL) that directly recognizes plasma β(2)-glycoprotein I (β(2) GPI). Tissue factor (TF), the major initiator of the extrinsic coagulation system, is induced on monocytes by aPL in vitro, explaining in part the pathophysiology in APS. We previously reported that the mitogen-activated protein kinase (MAPK) pathway plays an important role in aPL-induced TF expression on monocytes. In this study, we identified plasma gelsolin as a protein associated with β(2) GPI by using immunoaffinity chromatography and mass spectrometric analysis. An in vivo binding assay showed that endogenous β(2) GPI interacts with plasma gelsolin, which binds to integrin a(5) β(1) through fibronectin. The tethering of β(2) GPI to monoclonal anti-β(2) GPI autoantibody on the cell surface was enhanced in the presence of plasma gelsolin. Immunoblot analysis demonstrated that p38 MAPK protein was phosphorylated by monoclonal anti-β(2) GPI antibody treatment, and its phosphorylation was attenuated in the presence of anti-integrin a(5) β(1) antibody. Furthermore, focal adhesion kinase, a downstream molecule of the fibronectin-integrin signalling pathway, was phosphorylated by anti-β(2) GPI antibody treatment. These results indicate that molecules including gelsolin and integrin are involved in the anti-β(2) GPI antibody-induced MAPK pathway on monocytes and that integrin is a possible therapeutic target to modify a prothrombotic state in patients with APS.


siRNA induces gelsolin gene transcription activation in human esophageal cancer cell.

  • Guo-Wei Huang‎ et al.
  • Scientific reports‎
  • 2015‎

Recent studies show that targeting gene promoter or 3' terminal regions of mRNA with siRNA induces target gene transcription. However, the ability of exon-targeting siRNA to affect transcription has yet to be demonstrated. We designed and synthesized siRNA against various exons in the gelsolin gene (GSN) to knockdown GSN transcript in KYSE150 and KYSE450 cells. Surprisingly, we found that siGSN-2, targeting the GSN twelfth exon, induced GSN gene transcription detected by real time RT-PCR. An siGSN-2 co-precipitation assay was performed and H3 histone, previously shown to correlate with gene transcription, was detected in the siGSN-2 pull-down pellet. However, H3 histone was not detected in an siGSN-1-precipitated pellet, which resulted in GSN knockdown. In addition, siGSN-2 decreased stress fibers, lamellipodia and filopodia, demonstrating that siGSN-2 induced GSN transcription activation and exerted biological function. In conclusion, our finds reveal siRNA, which is derived from target gene exon, can form the complex with H3 histone to be involved in the regulation of gene expression.


Plasma gelsolin is associated with hip BMD in Chinese postmenopausal women.

  • Wen-Yu Wang‎ et al.
  • PloS one‎
  • 2018‎

Gelsolin (GSN) protein, expressed in circulating monocytes, was previously reported to be associated with osteoporosis in both Chinese and Caucasian women. This study aims to test if plasma GSN protein level is associated with hip bone mineral density (BMD) in Chinese population. Based on two study Groups containing 6,308 old Chinese, we adopted extreme sampling scheme and selected 3 independent samples (Subgroups 1-3) for discovery, replication, and validation purposes. We tested plasma GSN concentration, and analyzed whether plasma GSN level differs between subjects with extremely low vs. high hip BMD. In Group 1 (N = 1,860), the plasma GSN level increased in the female with low BMD, which was discovered in the Subgroup 1 (N = 42, p = 0.093) and replicated in the Subgroup 2 (N = 39, p = 0.095). With more extreme sampling for the Subgroup 3 from the Group 2 (N = 4,448), the difference of plasma GSN level in the female with low BMD vs. high BMD is more significant (N = 45, p = 0.037). After the subjects were pooled from Subgroups 2 and 3, the difference in plasma GSN between low and high BMD subjects became even more significant (p = 0.016). The plasma GSN level was negatively correlated with total hip BMD (r = -0.26, p = 0.033). We concluded that plasma GSN was associated with hip BMD in Chinese postmenopausal women and plasma GSN might be a potential risk biomarker for osteoporosis.


Antioxidant and Wound Healing Property of Gelsolin in 3T3-L1 Cells.

  • Bhavna Vaid‎ et al.
  • Oxidative medicine and cellular longevity‎
  • 2020‎

Delineation of factors which affect wound healing would be of immense value to enable on-time or early healing and reduce comorbidities associated with infections or biochemical stress like diabetes. Plasma gelsolin has been identified earlier to significantly enable injury recovery compared to placebo. This study evaluates the role of rhuGSN for its antioxidant and wound healing properties in murine fibroblasts (3T3-L1 cell line). Total antioxidant capacity of rhuGSN increased in a concentration-dependent manner (0.75-200 μg/mL). Cells pretreated with 0.375 and 0.75 μg/mL rhuGSN for 24 h exhibited a significant increase in viability in a MTT assay. Preincubation of cells with rhuGSN for 24 h followed by oxidative stress induced by exposure to H2O2 for 3 h showed cytoprotective effect. rhuGSN at 12.5 and 25 μg/mL concentration showed an enhanced cell migration after 20 h of injury in a scratch wound healing assay. The proinflammatory cytokine IL-6 levels were elevated in the culture supernatant. These results establish an effective role of rhuGSN against oxidative stress induced by H2O2 and in wound healing of 3T3-L1 fibroblast cells.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: