Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,581 papers

Phoenixin: a novel peptide in rodent sensory ganglia.

  • R-M Lyu‎ et al.
  • Neuroscience‎
  • 2013‎

Phoenixin-14 amide, herein referred to as phoenixin, is a newly identified peptide from the rat brain. Using a previously characterized rabbit polyclonal antiserum against phoenixin, enzyme-immunoassay detected a high level (>4.5 ng/g tissue) of phoenixin-immunoreactivity (irPNX) in the rat spinal cords. Immunohistochemical studies revealed irPNX in networks of cell processes in the superficial dorsal horn, spinal trigeminal tract and nucleus of the solitary tract; and in a population of dorsal root, trigeminal and nodose ganglion cells. The pattern of distribution of irPNX in the superficial layers of the dorsal horn was similar to that of substance P immunoreactivity (irSP). Double-labeling the dorsal root ganglion sections showed that irPNX and irSP express in different populations of ganglion cells. In awake mice, intrathecal injection of phoenixin (1 or 5 μg) did not significantly affect the tail-flick latency as compared to that in animals injected with artificial cerebrospinal fluid (aCSF). Intrathecal administration of phoenixin (0.5, 1.25 or 2.5 μg) significantly reduced the number of writhes elicited by intraperitoneal injection of acetic acid (0.6%, 0.3 ml/30 g) as compared to that in mice injected with aCSF. While not affecting the tail-flick latency, phoenixin antiserum (1:100) injected intrathecally 10 min prior to the intraperitoneal injection of acetic acid significantly increased the number of writhes as compared to mice pre-treated with normal rabbit serum. Intrathecal injection of non-amidated phoenixin (2.5 μg) did not significantly alter the number of writhes evoked by acetic acid. Our result shows that phoenixin is expressed in sensory neurons of the dorsal root, nodose and trigeminal ganglia, the amidated peptide is bioactive, and exogenously administered phoenixin may preferentially suppress visceral as opposed to thermal pain.


Diversity of satellite glia in sympathetic and sensory ganglia.

  • Aurelia A Mapps‎ et al.
  • Cell reports‎
  • 2022‎

Satellite glia are the major glial type found in sympathetic and sensory ganglia in the peripheral nervous system, and specifically, contact neuronal cell bodies. Sympathetic and sensory neurons differ in morphological, molecular, and electrophysiological properties. However, the molecular diversity of the associated satellite glial cells remains unclear. Here, using single-cell RNA sequencing analysis, we identify five different populations of satellite glia from sympathetic and sensory ganglia. We define three shared populations of satellite glia enriched in immune-response genes, immediate-early genes, and ion channels/ECM-interactors, respectively. Sensory- and sympathetic-specific satellite glia are differentially enriched for modulators of lipid synthesis and metabolism. Sensory glia are also specifically enriched for genes involved in glutamate turnover. Furthermore, satellite glia and Schwann cells can be distinguished by unique transcriptional signatures. This study reveals the remarkable heterogeneity of satellite glia in the peripheral nervous system.


Local GABAergic signaling within sensory ganglia controls peripheral nociceptive transmission.

  • Xiaona Du‎ et al.
  • The Journal of clinical investigation‎
  • 2017‎

The integration of somatosensory information is generally assumed to be a function of the central nervous system (CNS). Here we describe fully functional GABAergic communication within rodent peripheral sensory ganglia and show that it can modulate transmission of pain-related signals from the peripheral sensory nerves to the CNS. We found that sensory neurons express major proteins necessary for GABA synthesis and release and that sensory neurons released GABA in response to depolarization. In vivo focal infusion of GABA or GABA reuptake inhibitor to sensory ganglia dramatically reduced acute peripherally induced nociception and alleviated neuropathic and inflammatory pain. In addition, focal application of GABA receptor antagonists to sensory ganglia triggered or exacerbated peripherally induced nociception. We also demonstrated that chemogenetic or optogenetic depolarization of GABAergic dorsal root ganglion neurons in vivo reduced acute and chronic peripherally induced nociception. Mechanistically, GABA depolarized the majority of sensory neuron somata, yet produced a net inhibitory effect on the nociceptive transmission due to the filtering effect at nociceptive fiber T-junctions. Our findings indicate that peripheral somatosensory ganglia represent a hitherto underappreciated site of somatosensory signal integration and offer a potential target for therapeutic intervention.


Altered Sensory Representations in Parkinsonian Cortical and Basal Ganglia Networks.

  • Teresa M Peña-Rangel‎ et al.
  • Neuroscience‎
  • 2021‎

In parkinsonian conditions, network dynamics in the cortical and basal ganglia circuits present abnormal oscillations and periods of high synchrony, affecting the functionality of multiple striatal regions including the sensorimotor striatum. However, it is still unclear how these altered dynamics impact on sensory processing, a key feature for motor control that is severely impaired in parkinsonian patients. A major confound is that pathological dynamics in sensorimotor networks may elicit unspecific motor responses that may alter sensory representations through sensory feedback, making it difficult to disentangle motor and sensory components. To address this issue, we studied sensory processing using an anesthetized model with robust sensory representations throughout cortical and basal ganglia sensory regions and limited motor confounds in control and hemiparkinsonian rats. A general screening of sensory-evoked activity in large populations of neurons recorded in the primary sensory cortex (S1), dorsolateral striatum (DLS) and substantia nigra pars reticulata (SNr) revealed increased excitability and altered sensory representations in the three regions. Further analysis revealed uncoordinated population dynamics between DLS and S1/SNr. Finally, DLS lesions in hemiparkinsonian animals partially recovered population dynamics and execution in the rotarod.


Tissue-resident M2 macrophages directly contact primary sensory neurons in the sensory ganglia after nerve injury.

  • Haruki Iwai‎ et al.
  • Journal of neuroinflammation‎
  • 2021‎

Macrophages in the peripheral nervous system are key players in the repair of nerve tissue and the development of neuropathic pain due to peripheral nerve injury. However, there is a lack of information on the origin and morphological features of macrophages in sensory ganglia after peripheral nerve injury, unlike those in the brain and spinal cord. We analyzed the origin and morphological features of sensory ganglionic macrophages after nerve ligation or transection using wild-type mice and mice with bone-marrow cell transplants.


Cross-Excitation in Peripheral Sensory Ganglia Associated with Pain Transmission.

  • Katsuhiro Omoto‎ et al.
  • Toxins‎
  • 2015‎

Despite the absence of synaptic contacts, cross-excitation of neurons in sensory ganglia during signal transmission is considered to be chemically mediated and appears increased in chronic pain states. In this study, we modulated neurotransmitter release in sensory neurons by direct application of type A botulinum neurotoxin (BoNT/A) to sensory ganglia in an animal model of neuropathic pain and evaluated the effect of this treatment on nocifensive. Unilateral sciatic nerve entrapment (SNE) reduced the ipsilateral hindpaw withdrawal threshold to mechanical stimulation and reduced hindpaw withdrawal latency to thermal stimulation. Direct application of BoNT/A to the ipsilateral L4 dorsal root ganglion (DRG) was localized in the cell bodies of the DRG and reversed the SNE-induced decreases in withdrawal thresholds within 2 days of BoNT/A administration. Results from this study suggest that neurotransmitter release within sensory ganglia is involved in the regulation of pain-related signal transmission.


Evidence for glutamate as a neuroglial transmitter within sensory ganglia.

  • Ling-Hsuan Kung‎ et al.
  • PloS one‎
  • 2013‎

This study examines key elements of glutamatergic transmission within sensory ganglia of the rat. We show that the soma of primary sensory neurons release glutamate when depolarized. Using acute dissociated mixed neuronal/glia cultures of dorsal root ganglia (DRG) or trigeminal ganglia and a colorimetric assay, we show that when glutamate uptake by satellite glial cells (SGCs) is inhibited, KCl stimulation leads to simultaneous increase of glutamate in the culture medium. With calcium imaging we see that the soma of primary sensory neurons and SGCs respond to AMPA, NMDA, kainate and mGluR agonists, and selective antagonists block this response. Using whole cell patch-clamp technique, inward currents were recorded from small diameter (<30 µm) DRG neurons from intact DRGs (ex-vivo whole ganglion preparation) in response to local application of the above glutamate receptor agonists. Following a chronic constriction injury (CCI) of either the inferior orbital nerve or the sciatic nerve, glutamate expression increases in the trigeminal ganglia and DRG respectively. This increase occurs in neurons of all diameters and is present in the somata of neurons with injured axons as well as in somata of neighboring uninjured neurons. These data provides additional evidence that glutamate can be released within the sensory ganglion, and that the somata of primary sensory neurons as well as SGCs express functional glutamate receptors at their surface. These findings, together with our previous gene knockdown data, suggest that glutamatergic transmission within the ganglion could impact nociceptive threshold.


Comprehensive RNA-Seq expression analysis of sensory ganglia with a focus on ion channels and GPCRs in Trigeminal ganglia.

  • Stavros Manteniotis‎ et al.
  • PloS one‎
  • 2013‎

The specific functions of sensory systems depend on the tissue-specific expression of genes that code for molecular sensor proteins that are necessary for stimulus detection and membrane signaling. Using the Next Generation Sequencing technique (RNA-Seq), we analyzed the complete transcriptome of the trigeminal ganglia (TG) and dorsal root ganglia (DRG) of adult mice. Focusing on genes with an expression level higher than 1 FPKM (fragments per kilobase of transcript per million mapped reads), we detected the expression of 12984 genes in the TG and 13195 in the DRG. To analyze the specific gene expression patterns of the peripheral neuronal tissues, we compared their gene expression profiles with that of the liver, brain, olfactory epithelium, and skeletal muscle. The transcriptome data of the TG and DRG were scanned for virtually all known G-protein-coupled receptors (GPCRs) as well as for ion channels. The expression profile was ranked with regard to the level and specificity for the TG. In total, we detected 106 non-olfactory GPCRs and 33 ion channels that had not been previously described as expressed in the TG. To validate the RNA-Seq data, in situ hybridization experiments were performed for several of the newly detected transcripts. To identify differences in expression profiles between the sensory ganglia, the RNA-Seq data of the TG and DRG were compared. Among the differentially expressed genes (> 1 FPKM), 65 and 117 were expressed at least 10-fold higher in the TG and DRG, respectively. Our transcriptome analysis allows a comprehensive overview of all ion channels and G protein-coupled receptors that are expressed in trigeminal ganglia and provides additional approaches for the investigation of trigeminal sensing as well as for the physiological and pathophysiological mechanisms of pain.


How do neurons in sensory ganglia communicate with satellite glial cells?

  • Rachel Feldman-Goriachnik‎ et al.
  • Brain research‎
  • 2021‎

Neurons and satellite glial cells (SGCs) in sensory ganglia maintain bidirectional communications that are believed to be largely mediated by chemical messengers. Nerve injury leads to SGC activation, which was proposed to be mediated by nitric oxide (NO) released from active neurons, but evidence for this is lacking. Here we tested the idea that increased neuronal firing is a major factor in NO release. We activated neurons in isolated dorsal root and trigeminal ganglia from mice with capsaicin (5 µM), which acts on transient receptor potential vanilloid type 1 (TRPV1) channels in small neurons. We found that capsaicin induced SGC activation, as assayed by glial fibrillary acidic protein (GFAP) upregulation, and an NO-donor had a similar effect. Incubating the ganglia in capsaicin in the presence of the NO-synthase inhibitor L-NAME (100 µM) prevented the GFAP upregulation. We also found that capsaicin caused an increase in SGC-SGC coupling, which was shown previously to accompany SGC activation. To test the contribution of ATP to the actions of capsaicin, we incubated the ganglia with capsaicin in the presence of P2 purinergic receptor inhibitor suramin (100 µM), which prevented the capsaicin-induced GFAP upregulation. Size analysis indicated that although capsaicin acts mainly on small neurons, SGCs around neurons of all sizes were affected by capsaicin, suggesting a spread of signals from small neurons to neighboring cells. We conclude that neuronal excitation leads to NO release, which induces SGCs activation. It appears that ATP participates in NO's action, possibly by interaction with TRPV1 channels.


A fate-map for cranial sensory ganglia in the sea lamprey.

  • Melinda S Modrell‎ et al.
  • Developmental biology‎
  • 2014‎

Cranial neurogenic placodes and the neural crest make essential contributions to key adult characteristics of all vertebrates, including the paired peripheral sense organs and craniofacial skeleton. Neurogenic placode development has been extensively characterized in representative jawed vertebrates (gnathostomes) but not in jawless fishes (agnathans). Here, we use in vivo lineage tracing with DiI, together with neuronal differentiation markers, to establish the first detailed fate-map for placode-derived sensory neurons in a jawless fish, the sea lamprey Petromyzon marinus, and to confirm that neural crest cells in the lamprey contribute to the cranial sensory ganglia. We also show that a pan-Pax3/7 antibody labels ophthalmic trigeminal (opV, profundal) placode-derived but not maxillomandibular trigeminal (mmV) placode-derived neurons, mirroring the expression of gnathostome Pax3 and suggesting that Pax3 (and its single Pax3/7 lamprey ortholog) is a pan-vertebrate marker for opV placode-derived neurons. Unexpectedly, however, our data reveal that mmV neuron precursors are located in two separate domains at neurula stages, with opV neuron precursors sandwiched between them. The different branches of the mmV nerve are not comparable between lampreys and gnatho-stomes, and spatial segregation of mmV neuron precursor territories may be a derived feature of lampreys. Nevertheless, maxillary and mandibular neurons are spatially segregated within gnathostome mmV ganglia, suggesting that a more detailed investigation of gnathostome mmV placode development would be worthwhile. Overall, however, our results highlight the conservation of cranial peripheral sensory nervous system development across vertebrates, yielding insight into ancestral vertebrate traits.


Neuropathic Injury-Induced Plasticity of GABAergic System in Peripheral Sensory Ganglia.

  • Caixue Wang‎ et al.
  • Frontiers in pharmacology‎
  • 2021‎

GABA is a major inhibitory neurotransmitter in the mammalian central nervous system (CNS). Inhibitory GABAA channel circuits in the dorsal spinal cord are the gatekeepers of the nociceptive input from the periphery to the CNS. Weakening of these spinal inhibitory mechanisms is a hallmark of chronic pain. Yet, recent studies have suggested the existence of an earlier GABAergic "gate" within the peripheral sensory ganglia. In this study, we performed systematic investigation of plastic changes of the GABA-related proteins in the dorsal root ganglion (DRG) in the process of neuropathic pain development. We found that chronic constriction injury (CCI) induced general downregulation of most GABAA channel subunits and the GABA-producing enzyme, glutamate decarboxylase, consistent with the weakening of the GABAergic inhibition at the periphery. Strikingly, the α5 GABAA subunit was consistently upregulated. Knock-down of the α5 subunit in vivo moderately alleviated neuropathic hyperalgesia. Our findings suggest that while the development of neuropathic pain is generally accompanied by weakening of the peripheral GABAergic system, the α5 GABAA subunit may have a unique pro-algesic role and, hence, might represent a new therapeutic target.


Neutrophils infiltrate sensory ganglia and mediate chronic widespread pain in fibromyalgia.

  • Sara Caxaria‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2023‎

Fibromyalgia is a debilitating widespread chronic pain syndrome that occurs in 2 to 4% of the population. The prevailing view that fibromyalgia results from central nervous system dysfunction has recently been challenged with data showing changes in peripheral nervous system activity. Using a mouse model of chronic widespread pain through hyperalgesic priming of muscle, we show that neutrophils invade sensory ganglia and confer mechanical hypersensitivity on recipient mice, while adoptive transfer of immunoglobulin, serum, lymphocytes, or monocytes has no effect on pain behavior. Neutrophil depletion abolishes the establishment of chronic widespread pain in mice. Neutrophils from patients with fibromyalgia also confer pain on mice. A link between neutrophil-derived mediators and peripheral nerve sensitization is already established. Our observations suggest approaches for targeting fibromyalgia pain via mechanisms that cause altered neutrophil activity and interactions with sensory neurons.


Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons.

  • Manojkumar Gunasekaran‎ et al.
  • Frontiers in immunology‎
  • 2018‎

The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs) of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR), dorsal root ganglion (DRG) sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG) required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO) or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM) into wild-type (WT) mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses.


TLR7 is expressed by support cells, but not sensory neurons, in ganglia.

  • Becky J Proskocil‎ et al.
  • Journal of neuroinflammation‎
  • 2021‎

Toll-like receptor 7 (TLR7) is an innate immune receptor that detects viral single-stranded RNA and triggers the production of proinflammatory cytokines and type 1 interferons in immune cells. TLR7 agonists also modulate sensory nerve function by increasing neuronal excitability, although studies are conflicting whether sensory neurons specifically express TLR7. This uncertainty has confounded the development of a mechanistic understanding of TLR7 function in nervous tissues.


The formation of the cranial ganglia by placodally-derived sensory neuronal precursors.

  • Aida Blentic‎ et al.
  • Molecular and cellular neurosciences‎
  • 2011‎

The generation of the sensory ganglia involves the migration of a precursor population to the site of ganglion formation and the differentiation of sensory neurons. There is, however, a significant difference between the ganglia of the head and trunk in that while all of the sensory neurons of the trunk are derived from the neural crest, the majority of cranial sensory neurons are generated by the neurogenic placodes. In this study, we have detailed the route through which the placodally-derived sensory neurons are generated, and we find a number of important differences between the head and trunk. Although, the neurogenic placodes release neuroblasts that migrate internally to the site of ganglion formation, we find that there are no placodally-derived progenitor cells within the forming ganglia. The cells released by the placodes differentiate during migration and contribute to the cranial ganglia as post-mitotic neurons. In the trunk, it has been shown that progenitor cells persist in the forming Dorsal Root Ganglia and that much of the process of sensory neuronal differentiation occurs within the ganglion. We also find that the period over which neuronal cells delaminate from the placodes is significantly longer than the time frame over which neural crest cells populate the DRGs. We further show that placodal sensory neuronal differentiation can occur in the absence of local cues. Finally, we find that, in contrast to neural crest cells, the different mature neurogenic placodes seem to lack plasticity. Nodose neuroblasts cannot be diverted to form trigeminal neurons and vice versa.


Wounds increase activin in skin and a vasoactive neuropeptide in sensory ganglia.

  • Bethany A Cruise‎ et al.
  • Developmental biology‎
  • 2004‎

Successful healing of skin wounds requires sensory innervation and the release of vasoactive neuropeptides that dilate blood vessels and deliver serum proteins to the wound, and that cause pain that protects from further injury. Activin has been proposed as a target-derived regulator of sensory neuropeptides during development, but its role in the mature nervous system is unknown. While adult skin contains a low level of activin, protein levels in skin adjacent to a wound increase rapidly after an excision. Neurons containing the neuropeptide calcitonin gene-related peptide (CGRP) increased in sensory ganglia that projected to the wounded skin, but not in ganglia that projected to unwounded skin, suggesting that neurons respond to a local skin signal. Indeed, many adult sensory neurons respond with increased CGRP expression to the application of activin in vitro and utilize a smad-mediated signal transduction pathway in this response. A second skin-derived factor nerve growth factor (NGF) also increased in wounded skin and increased CGRP in cultured adult dorsal root ganglia (DRG) neurons but with lower efficacy. Together, these data support the hypothesis that activin made by skin cells regulates changes in sensory neuropeptides following skin injury, thereby promoting vasodilation and wound healing.


Development of nNOS-positive neurons in the rat sensory and sympathetic ganglia.

  • P M Masliukov‎ et al.
  • Neuroscience‎
  • 2014‎

Neurochemical features in sympathetic and afferent neurons are subject to change during development. Nitric oxide (NO) plays a developmental role in the nervous system. To better understand the neuroplasticity of sympathetic and afferent neurons during postnatal ontogenesis, the distribution of neuronal NO synthase (nNOS) immunoreactivity was studied in the sympathetic para- and prevertebral, nodose ganglion (NG) and Th2 and L4 dorsal root ganglia (DRG) from female Wistar rats of different ages (newborn, 10-day-old, 20-day-old, 30-day-old, 2-month-old, 6-month-old, 1-year-old, and 3-year-old). nNOS-positive neurons were revealed in all sensory ganglia but not in sympathetic ones from birth onward. The percentage of nNOS-immunoreactive (IR) neurons increased during first 10 days of life from 41.3 to 57.6 in Th2 DRG, from 40.9 to 59.1 in L4 DRG and from 31.6 to 38.5 in NG. The percentage of nNOS-IR neurons did not change in the NG later during development and senescence. However, in Th2 and L4 DRG the proportion of nNOS-IR neurons was high in animals between 10 and 30days of life and decreased up to the second month of life. In 2-month-old rats, the percentage of nNOS-IR neurons was 52.9 in Th2 DRG and 51.3 in L4 DRG. We did not find statistically significant differences in the percentage of nNOS-IR neurons between Th2 and L4 DRG and between young and aged rats. In NG and DRG of 10-day-old and older rats, a high proportion of nNOS-IR neurons binds isolectin B4. In newborn animals, only 41.3%, 45.3% and 28.4% of nNOS neuron profiles bind to IB4 in Th2, L4 DRG and NG, respectively. In 10-day-old and older rats, the number of sensory nNOS-IR neurons binding IB4 reached more than 90% in DRG and more than 80% in NG. Only a small number of nNOS-positive cells showed immunoreactivity to calcitonin gene-related peptide, neurofilament 200, calretinin. The information provided here will also serve as a basis for future studies investigating mechanisms of the development of sensory neurons.


Allergic airway inflammation induces the migration of dendritic cells into airway sensory ganglia.

  • Duc Dung Le‎ et al.
  • Respiratory research‎
  • 2014‎

A neuroimmune crosstalk between dendritic cells (DCs) and airway nerves in the lung has recently been reported. However, the presence of DCs in airway sensory ganglia under normal and allergic conditions has not been explored so far. Therefore, this study aims to investigate the localisation, distribution and proliferation of DCs in airway sensory ganglia under allergic airway inflammation.


Adult dorsal root ganglia sensory neurons express the early neuronal fate marker doublecortin.

  • Anna Dellarole‎ et al.
  • The Journal of comparative neurology‎
  • 2008‎

It has been widely accepted that doublecortin (DCX) may represent a neuronal fate marker transiently expressed by immature neurons during development of the central and peripheral nervous tissue and in neurogenic areas of the adult brain. Previous work described the presence of DCX in the developing dorsal root ganglia (DRG), structures of the peripheral nervous system originating from the neural crest, but no information is available on its expression in adulthood. To this purpose, we have performed an immunohistochemical and biochemical analysis for DCX expression in DRG from adult male mice and rats. To our surprise, we demonstrated that the majority of DRG neurons do express DCX, both in somata and in fibers. DCX(+) cells have been characterized morphologically and phenotypically with well-established markers of DRG neuronal subpopulations. A large number of DCX(+) cells belong to the small and medium-sized nociceptive neurons. Additionally, DCX immunoreactivity is present in the spinal cord dorsal horns, the projection area of DRG neurons. The novel and unexpected localization for DCX protein opens up new, interesting vistas on the functional role of this protein in mature neurons and in particular in sensory neurons.


Development of nNOS-positive neurons in the rat sensory ganglia after capsaicin treatment.

  • Petr M Masliukov‎ et al.
  • Brain research‎
  • 2015‎

To gain a better understanding of the neuroplasticity of afferent neurons during postnatal ontogenesis, the distribution of neuronal nitric oxide synthase (nNOS) immunoreactivity was studied in the nodose ganglion (NG) and Th2 and L4 dorsal root ganglia (DRG) from vehicle-treated and capsaicin-treated female Wistar rats at different ages (10-day-old, 20-day-old, 30-day-old, and two-month-old). The percentage of nNOS-immunoreactive (IR) neurons decreased after capsaicin treatment in all studied ganglia in first 20 days of life, from 55.4% to 36.9% in the Th2 DRG, from 54.6% to 26.1% in the L4 DRG and from 37.1% to 15.0% in the NG. However, in the NG, the proportion of nNOS-IR neurons increased after day 20, from 11.8% to 23.9%. In the sensory ganglia of all studied rats, a high proportion of nNOS-IR neurons bound isolectin B4. Approximately 90% of the sensory nNOS-IR neurons bound to IB4 in the DRG and approximately 80% in the NG in capsaicin-treated and vehicle-treated rats. In 10-day-old rats, a large number of nNOS-IR neurons also expressed TrkA, and the proportion of nNOS(+)/TrkA(+) neurons was larger in the capsaicin-treated rats compared with the vehicle-treated animals. During development, the percentage of nNOS(+)/TrkA(+) cells decreased in the first month of life in both groups. The information provided here will also serve as a basis for future studies investigating mechanisms of sensory neuron development.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: