Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 599 papers

Evidence for heterotrimeric GTP-binding proteins in Toxoplasma gondii.

  • S K Halonen‎ et al.
  • The Journal of eukaryotic microbiology‎
  • 1996‎

Toxoplasma gondii, an intracellular protozoan parasite, resides within a host-derived vacuole that is rapidly modified by a parasite-secreted membranous tubular network. In this study we investigated the involvement of heterotrimeric G proteins in the secretory pathway of T. gondii. Aluminum fluoride (AlFn), a specific activator of heterotrimeric G proteins, induced secretion from isolated tachyzoites of T. gondii in vitro, as seen by light optics and electron microscopy. In Western blot analyses, antibodies to G protein alpha subunits reacted with 39-42 kDa proteins from T. gondii isolates. Antibodies to G(o) alpha and Gs alpha coupled to the fluorescent probe fluorescein isothiocyanate localized to the paranuclear region of T. gondii. Gi3 alpha immunoprobes were confined to the cytoplasmic matrix of T. gondii and also labeled the parasitophorous vesicle. Fluorescein isothiocyanate-conjugated GA/1, an antipeptide antisera directed toward the GTP binding site common to G protein alpha subunits, was confined to the lateral cytoplasmic domain of the parasites where secretion is most prominent. In time-sequence studies using the GA/1 probe, the immunoreactive material shifted position during invasion of target cell to areas of active secretion.


A distinct class of GTP-binding proteins mediates chloroplast protein import in Rhodophyta.

  • Sanghun Baek‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Chloroplast protein import is mediated by translocons named TOC and TIC on the outer and inner envelope membranes, respectively. Translocon constituents are conserved among green lineages, including plants and green algae. However, it remains unclear whether Rhodophyta (red algae) share common chloroplast protein import mechanisms with the green lineages. We show that in the rhodophyte Cyanidioschyzon merolae, plastome-encoded Tic20pt localized to the chloroplast envelope and was transiently associated with preproteins during import, suggesting its conserved function as a TIC constituent. Besides plastome-encoded FtsHpt and several chaperones, a class of GTP (guanosine 5'-triphosphate)-binding proteins distinct from the Toc34/159 GTPase family associated transiently with preproteins. This class of proteins resides mainly in the cytosol and shows sequence similarities with Sey1/RHD3, required for endoplasmic reticulum membrane fusion, and with the periplastid-localized import factor PPP1, previously identified in the Apicomplexa and diatoms. These GTP-binding proteins, named plastid targeting factor for protein import 1 (PTF1) to PTF3, may act as plastid targeting factors in Rhodophyta.


Autophagy in Saccharomyces cerevisiae requires the monomeric GTP-binding proteins, Arl1 and Ypt6.

  • Shu Yang‎ et al.
  • Autophagy‎
  • 2016‎

Macroautophagy/autophagy is a cellular degradation process that sequesters organelles or proteins into a double-membrane structure called the phagophore; this transient compartment matures into an autophagosome, which then fuses with the lysosome or vacuole to allow hydrolysis of the cargo. Factors that control membrane traffic are also essential for each step of autophagy. Here we demonstrate that 2 monomeric GTP-binding proteins in Saccharomyces cerevisiae, Arl1 and Ypt6, which belong to the Arf/Arl/Sar protein family and the Rab family, respectively, and control endosome-trans-Golgi traffic, are also necessary for starvation-induced autophagy under high temperature stress. Using established autophagy-specific assays we found that cells lacking either ARL1 or YPT6, which exhibit synthetic lethality with one another, were unable to undergo autophagy at an elevated temperature, although autophagy proceeds normally at normal growth temperature; specifically, strains lacking one or the other of these genes are unable to construct the autophagosome because these 2 proteins are required for proper traffic of Atg9 to the phagophore assembly site (PAS) at the restrictive temperature. Using degron technology to construct an inducible arl1Δ ypt6Δ double mutant, we demonstrated that cells lacking both genes show defects in starvation-inducted autophagy at the permissive temperature. We also found Arl1 and Ypt6 participate in autophagy by targeting the Golgi-associated retrograde protein (GARP) complex to the PAS to regulate the anterograde trafficking of Atg9. Our data show that these 2 membrane traffic regulators have novel roles in autophagy.


Tissue-specific expression differences in Ras-related GTP-binding proteins in male rats.

  • Gregory N Kincheloe‎ et al.
  • Physiological reports‎
  • 2024‎

The protein kinase Mechanistic Target of Rapamycin (mTOR) in Complex 1 (mTORC1) is regulated in part by the Ras-related GTP-binding proteins (Rag GTPases). Rag GTPases form a heterodimeric complex consisting of either RagA or RagB associated with either RagC or RagD and act to localize mTORC1 to the lysosomal membrane. Until recently, RagA and RagB were thought to be functionally redundant, as were RagC and RagD. However, recent research suggests that the various isoforms differentially activate mTORC1. Here, the mRNA expression and protein abundance of the Rag GTPases was compared across male rat skeletal muscle, heart, liver, kidney, and brain. Whereas mRNA expression of RagA was higher than RagB in nearly all tissues studied, RagB protein abundance was higher than RagA in all tissues besides skeletal muscle. RagC mRNA expression was more abundant or equal to RagD mRNA, and RagD protein was more abundant than RagC protein in all tissues. Moreover, the proportion of RagB in the short isoform was greater than the long in liver, whereas the opposite was true in brain. These results serve to further elucidate Rag GTPase expression and offer potential explanations for the differential responses to amino acids that are observed in different tissues.


Molecular cloning and subcellular localization of three GTP-binding proteins of the rab subfamily.

  • V M Olkkonen‎ et al.
  • Journal of cell science‎
  • 1993‎

Small GTPases of the rab subfamily are involved in regulation of intracellular membrane transport events. We recently used a PCR approach to isolate short cDNA fragments of a number of novel rab sequences. These PCR fragments have not been used with cDNA library screening and PCR-based techniques to clone the cDNAs encoding three of these proteins, rab12, rab22, and rab24. By northern blot analysis, the messages were found to be present in a wide variety of mouse tissues. However, quantitative differences in the mRNA levels between the tissues were detected. We determined the subcellular localization of the GTPases by expressing the c-myc epitope-tagged proteins with the Semliki Forest virus and the vaccinia T7 vector systems. Transiently expressed rab12 was localized to the Golgi complex. This localization was confirmed using a polyclonal anti-peptide antibody detecting the endogenous protein in BHK cells. rab22 expressed from the cDNA was localized to endosomal compartments and to the plasma membrane. After longer periods of expression, the protein was found on abnormally large perinuclear endosomal structures, suggesting that it is a potent regulator of events in the endocytic pathway. Finally, rab24 was found in the endoplasmic reticulum/cis-Golgi region and on late endosomal structures. The localization of rab24 may indicate its involvement in autophagy-related processes.


Septin6 and Septin7 GTP binding proteins regulate AP-3- and ESCRT-dependent multivesicular body biogenesis.

  • Sofia Traikov‎ et al.
  • PloS one‎
  • 2014‎

Septins (SEPTs) form a family of GTP-binding proteins implicated in cytoskeleton and membrane organization, cell division and host/pathogen interactions. The precise function of many family members remains elusive. We show that SEPT6 and SEPT7 complexes bound to F-actin regulate protein sorting during multivesicular body (MVB) biogenesis. These complexes bind AP-3, an adapter complex sorting cargos destined to remain in outer membranes of maturing endosomes, modulate AP-3 membrane interactions and the motility of AP-3-positive endosomes. These SEPT-AP interactions also influence the membrane interaction of ESCRT (endosomal-sorting complex required for transport)-I, which selects ubiquitinated cargos for degradation inside MVBs. Whereas our findings demonstrate that SEPT6 and SEPT7 function in the spatial, temporal organization of AP-3- and ESCRT-coated membrane domains, they uncover an unsuspected coordination of these sorting machineries during MVB biogenesis. This requires the E3 ubiquitin ligase LRSAM1, an AP-3 interactor regulating ESCRT-I sorting activity and whose mutations are linked with Charcot-Marie-Tooth neuropathies.


LRRK2 kinase activity is dependent on LRRK2 GTP binding capacity but independent of LRRK2 GTP binding.

  • Jean-Marc Taymans‎ et al.
  • PloS one‎
  • 2011‎

Leucine rich repeat kinase 2 (LRRK2) is a Parkinson's disease (PD) gene that encodes a large multidomain protein including both a GTPase and a kinase domain. GTPases often regulate kinases within signal transduction cascades, where GTPases act as molecular switches cycling between a GTP bound "on" state and a GDP bound "off" state. It has been proposed that LRRK2 kinase activity may be increased upon GTP binding at the LRRK2 Ras of complex proteins (ROC) GTPase domain. Here we extensively test this hypothesis by measuring LRRK2 phosphorylation activity under influence of GDP, GTP or non-hydrolyzable GTP analogues GTPγS or GMPPCP. We show that autophosphorylation and lrrktide phosphorylation activity of recombinant LRRK2 protein is unaltered by guanine nucleotides, when co-incubated with LRRK2 during phosphorylation reactions. Also phosphorylation activity of LRRK2 is unchanged when the LRRK2 guanine nucleotide binding pocket is previously saturated with various nucleotides, in contrast to the greatly reduced activity measured for the guanine nucleotide binding site mutant T1348N. Interestingly, when nucleotides were incubated with cell lysates prior to purification of LRRK2, kinase activity was slightly enhanced by GTPγS or GMPPCP compared to GDP, pointing to an upstream guanine nucleotide binding protein that may activate LRRK2 in a GTP-dependent manner. Using metabolic labeling, we also found that cellular phosphorylation of LRRK2 was not significantly modulated by nucleotides, although labeling is significantly reduced by guanine nucleotide binding site mutants. We conclude that while kinase activity of LRRK2 requires an intact ROC-GTPase domain, it is independent of GDP or GTP binding to ROC.


Structural Basis of Dimeric Rasip1 RA Domain Recognition of the Ras Subfamily of GTP-Binding Proteins.

  • Alexandre R Gingras‎ et al.
  • Structure (London, England : 1993)‎
  • 2016‎

Ras-interacting protein 1 (Rasip1) is an endothelial-specific Rap1 and Ras effector, important for vascular development and angiogenesis. Here, we report the crystal structure of the Rasip1 RA domain (RRA) alone, revealing the basis of dimerization, and in complex with Rap1 at 2.8 Å resolution. In contrast to most RA domains, RRA formed a dimer that can bind two Rap1 (KD = 0.9 μM) or Ras (KD = 2.2 μM) molecules. We solved the Rap1-RRA complex and found that Rasip1 binds Rap1 in the Switch I region, and Rap1 binding induces few conformation changes to Rasip1 stabilizing a β strand and an unstructured loop. Our data explain how Rasip1 can act as a Rap1 and Ras effector and show that Rasip1 defines a subgroup of dimeric RA domains that could mediate cooperative binding to membrane-associated Ras superfamily members.


Characterization of Novel Derivatives of MBQ-167, an inhibitor of the GTP-binding proteins Rac/Cdc42.

  • Julia I Medina‎ et al.
  • Cancer research communications‎
  • 2022‎

Rac and Cdc42, are homologous GTPases that regulate cell migration, invasion, and cell cycle progression; thus, representing key targets for metastasis therapy. We previously reported on the efficacy of MBQ-167, which blocks both Rac1 and Cdc42 in breast cancer cells and mouse models of metastasis. To identify compounds with increased activity, a panel of MBQ-167 derivatives was synthesized, maintaining its 9-ethyl-3-(1H-1,2,3-triazol-1-yl)-9H-carbazole core. Similar to MBQ-167, MBQ-168 and EHop-097, inhibit activation of Rac and Rac1B splice variant and breast cancer cell viability, and induce apoptosis. MBQ-167 and MBQ-168 inhibit Rac and Cdc42 by interfering with guanine nucleotide binding, and MBQ-168 is a more effective inhibitor of PAK (1,2,3) activation. EHop-097 acts via a different mechanism by inhibiting the interaction of the guanine nucleotide exchange factor (GEF) Vav with Rac. MBQ-168 and EHop-097 inhibit metastatic breast cancer cell migration, and MBQ-168 promotes loss of cancer cell polarity to result in disorganization of the actin cytoskeleton and detachment from the substratum. In lung cancer cells, MBQ-168 is more effective than MBQ-167 or EHop-097 at reducing ruffle formation in response to EGF. Comparable to MBQ-167, MBQ-168 significantly inhibits HER2+ tumor growth and metastasis to lung, liver, and spleen. Both MBQ-167 and MBQ-168 inhibit the cytochrome P450 (CYP) enzymes 3A4, 2C9, and 2C19. However, MBQ-168 is ~10X less potent than MBQ-167 at inhibiting CYP3A4, thus demonstrating its utility in relevant combination therapies. In conclusion, the MBQ-167 derivatives MBQ-168 and EHop-097 are additional promising anti metastatic cancer compounds with similar and distinct mechanisms.


Arf, Arl, Arp and Sar proteins: a family of GTP-binding proteins with a structural device for 'front-back' communication.

  • Sebastiano Pasqualato‎ et al.
  • EMBO reports‎
  • 2002‎

Arf proteins are important regulators of cellular traffic and the founding members of an expanding family of homologous proteins and genomic sequences. They depart from other small GTP-binding proteins by a unique structural device, which we call the 'interswitch toggle', that implements front-back communication from the N-terminus to the nucleotide binding site. Here we define the sequence and structural determinants that propagate information across the protein and identify them in all of the Arf family proteins other than Arl6 and Arl4/Arl7. The positions of these determinants lead us to propose that Arf family members with the interswitch toggle device are activated by a bipartite mechanism acting on opposite sides of the protein. The presence of this communication device might provide a more useful basis for unifying Arf homologs as a family than do the cellular functions of these proteins, which are mostly unrelated. We review available genomic sequences and functional data from this perspective, and identify a novel subfamily that we call Arl8.


Modulation of reconstituted ATP-sensitive K(+)-channels by GTP-binding proteins in a mammalian cell line.

  • J A Sánchez‎ et al.
  • The Journal of physiology‎
  • 1998‎

1. The action of GTP-binding proteins on ATP-sensitive potassium (KATP) channels was investigated. KATP channels were expressed in a mammalian cell line (COS-1 cells) by cotransfecting vectors carrying the sulphonylurea receptor (SUR1) and BIR (Kir6.2), a member of the inward rectifier K+ channel family. G proteins were also tested on KATP channels composed of an isoform of SUR1, SUR2A, in combination with Kir6.2. 2. The alpha and beta gamma subunits of the GTP binding protein G1 were tested separately in inside-out patches under continuous recording. G alpha-11 increases the activity of SUR1-Kir6.2 and SUR2A-Kir6.2 channels by 200 and by 30%, respectively. 3. G alpha-12 does not increase the activity of SUR1-Kir6.2 channels, but increase the activity of SUR2A-Kir6.2 channels by 30%. 4. Control experiments showed that GTP gamma S, a specific activator of G proteins, and heat-inactivated G alpha-11 do not increase the single channel activity. 5. No effects of the other subunits (beta gamma) from either G11 or G12 on the single channel activity were observed. 6. The protein kinase C inhibitors H7 and an inhibitory peptide (FARKGALRQKNV) had no effect on the modulatory action of G alpha-11 on SUR1-Kir6.2 channels. 7. We conclude that both types of reconstituted KATP channels are modulated by G proteins.


The GTP binding proteins Gem and Rad are negative regulators of the Rho-Rho kinase pathway.

  • Yvona Ward‎ et al.
  • The Journal of cell biology‎
  • 2002‎

The cytoskeletal changes that alter cellular morphogenesis and motility depend upon a complex interplay among molecules that regulate actin, myosin, and other cytoskeletal components. The Rho family of GTP binding proteins are important upstream mediators of cytoskeletal organization. Gem and Rad are members of another family of small GTP binding proteins (the Rad, Gem, and Kir family) for which biochemical functions have been mostly unknown. Here we show that Gem and Rad interface with the Rho pathway through association with the Rho effectors, Rho kinase (ROK) alpha and beta. Gem binds ROKbeta independently of RhoA in the ROKbeta coiled-coil region adjacent to the Rho binding domain. Expression of Gem inhibited ROKbeta-mediated phosphorylation of myosin light chain and myosin phosphatase, but not LIM kinase, suggesting that Gem acts by modifying the substrate specificity of ROKbeta. Gem or Rad expression led to cell flattening and neurite extension in N1E-115 neuroblastoma cells. In interference assays, Gem opposed ROKbeta- and Rad opposed ROKalpha-mediated cell rounding and neurite retraction. Gem did not oppose cell rounding initiated by ROKbeta containing a deletion of the Gem binding region, demonstrating that Gem binding to ROKbeta is required for the effects observed. In epithelial or fibroblastic cells, Gem or Rad expression resulted in stress fiber and focal adhesion disassembly. In addition, Gem reverted the anchorage-independent growth and invasiveness of Dbl-transformed fibroblasts. These results identify physiological roles for Gem and Rad in cytoskeletal regulation mediated by ROK.


Dual modulation by adenosine of ATP-activated channels through GTP-binding proteins in rat pheochromocytoma PC12 cells.

  • K Inoue‎ et al.
  • European journal of pharmacology‎
  • 1994‎

Effects of adenosine on inward current activated by extracellular ATP were examined in rat pheochromocytoma PC12 cells. Adenosine induced two types of modulation on the current activated by 30 microM ATP; a low concentration of adenosine (1 microM) inhibited the current whereas a high concentration (> 10 microM) enhanced the current. Neither the inhibition nor the enhancement was observed in cells pretreated with pertussis toxin (PTX), or in cells dialyzed with guanosine 5'-O-(2-thiotriphosphate) trilithium salt (GDP beta S). In contrast, dialysis with K-252a, a protein kinase inhibitor, abolished the inhibition, but not the enhancement. Adenosine induced similar inhibition and enhancement on ATP-evoked increase in intracellular free Ca2+ concentration. The results suggest that adenosine produces dual modulation on the ATP-activated channels through different mechanisms involving PTX-sensitive GTP-binding proteins.


Characterization of GTP-binding proteins coupled to inhibition of adenylyl cyclase in guinea pig tracheal epithelial cells.

  • J Yang‎ et al.
  • American journal of respiratory cell and molecular biology‎
  • 1994‎

Many important airway epithelial cell functions are regulated by intracellular cAMP. Adenylyl cyclase, the enzyme that synthesizes cAMP, is under dual regulation in many cells, but muscarinic agonists have not been shown to inhibit adenylyl cyclase in human and dog epithelial cells, despite the presence of muscarinic receptors. We question whether the lack of inhibition was related to the absence of a component of the inhibitory pathway or a lack of coupling between the components. The GTP-binding regulatory proteins (G proteins) that regulate adenylyl cyclase activity in airway epithelium have not been well characterized. We used primary cultures of guinea pig tracheal epithelial cells as a model system and identified the G proteins that modulate adenylyl cyclase activity. Immunoblot analysis demonstrated the presence of alpha subunits corresponding to stimulatory (Gs alpha) and inhibitory [Gi alpha (2) and Gi alpha (3)] G proteins as well as beta chains. These G proteins were functionally coupled to stimulation and inhibition of adenylyl cyclase in epithelial membrane preparations. Pertussis toxin-catalyzed [32P]ADP-ribosylation of Gi alpha was significantly reduced by 100 microM GTP gamma S (78.4 +/- 3.6% of control), by 100 mM NaF (41.9 +/- 9.1% of control), and by carbachol (100 microM) (29.2 +/- 9.0% of control). Atropine (10 microM) inhibited the carbachol effect by greater than 90%, suggesting that the muscarinic receptors were functionally coupled to Gi proteins. beta-Adrenergic agonists increased adenylyl cyclase activity, but muscarinic agonists failed to inhibit this enzyme. In summary, guinea pig tracheal epithelial membranes contain muscarinic receptors, Gi alpha (2) and adenylyl cyclase, which are appropriately coupled.(ABSTRACT TRUNCATED AT 250 WORDS)


Identification of two alpha-subunit species of GTP-binding proteins, Galpha15 and Galphaq, expressed in rat taste buds.

  • Y Kusakabe‎ et al.
  • Biochimica et biophysica acta‎
  • 1998‎

We cloned cDNAs for two G protein alpha-subunits belonging to the Galphaq family, each capable of activating PLCbeta, from rat tongue. One is a Galphaq in the narrow sense, and the other, termed rat Galpha15, is a rat counterpart of mouse Galpha15, sharing an amino acid sequence similarity of 94%. RT-PCR and Northern blot analysis demonstrated that rat Galpha15 and Galphaq were distinctly expressed in tongue epithelia containing taste buds. Immunostaining also showed that rat Galpha15, together with the Galphaq, was localized mainly in taste buds. These studies suggest the possibility that these two Galpha proteins function for taste signal transduction in sensory cells.


Structural impact of GTP binding on downstream KRAS signaling.

  • Dóra K Menyhárd‎ et al.
  • Chemical science‎
  • 2020‎

Oncogenic RAS proteins, involved in ∼30% of human tumors, are molecular switches of various signal transduction pathways. Here we apply a new protocol for the NMR study of KRAS in its (inactive) GDP- and (activated) GTP-bound form, allowing a comprehensive analysis of the backbone dynamics of its WT-, G12C- and G12D variants. We found that Tyr32 shows opposite mobility with respect to the backbone of its surroundings: it is more flexible in the GDP-bound form while more rigid in GTP-complexes (especially in WT- and G12D-GTP). Using the G12C/Y32F double mutant, we showed that the presence of the hydroxyl group of Tyr32 has a marked effect on the G12C-KRAS-GTP system as well. Molecular dynamics simulations indicate that Tyr32 is linked to the γ-phosphate of GTP in the activated states - an arrangement shown, using QM/MM calculations, to support catalysis. Anchoring Tyr32 to the γ-phosphate contributes to the capture of the catalytic waters participating in the intrinsic hydrolysis of GTP and supports a simultaneous triple proton transfer step (catalytic water → assisting water → Tyr32 → O1G of the γ-phosphate) leading to straightforward product formation. The coupled flip of negatively charged residues of switch I toward the inside of the effector binding pocket potentiates ligand recognition, while positioning of Thr35 to enter the coordination sphere of the Mg2+ widens the pocket. Position 12 mutations do not disturb the capture of Tyr32 by the γ-phosphate, but (partially) displace Gln61, which opens up the catalytic pocket and destabilizes catalytic water molecules thus impairing intrinsic hydrolysis.


Xenopus Rnd1 and Rnd3 GTP-binding proteins are expressed under the control of segmentation clock and required for somite formation.

  • Tadahiro Goda‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2009‎

The process of segmentation in vertebrates is described by a clock and wavefront model consisting of a Notch signal and an fibroblast growth factor-8 (FGF8) gradient, respectively. To further investigate the segmentation process, we screened gene expression profiles for downstream targets of the segmentation clock. The Rnd1 and Rnd3 GTP-binding proteins comprise a subgroup of the Rho GTPase family that show a specific expression pattern similar to the Notch signal component ESR5, suggesting an association between Rnd1/3 and the segmentation clock. Rnd1/3 expression patterns are disrupted by overexpression of dominant-negative or active forms of Notch signaling genes, and responds to the FGF inhibitor SU5402 by a posterior shift analogous to other segmentation-related genes, suggesting that Rnd1/3 expressions are regulated by the segmentation clock machinery. We also show that antisense morpholino oligonucleotides to Rnd1/3 inhibit somite segmentation and differentiation in Xenopus embryos. These results suggest that Rnd1/3 are required for Xenopus somitogenesis.


Structural stabilization of GTP-binding domains in circularly permuted GTPases: implications for RNA binding.

  • Baskaran Anand‎ et al.
  • Nucleic acids research‎
  • 2006‎

GTP hydrolysis by GTPases requires crucial residues embedded in a conserved G-domain as sequence motifs G1-G5. However, in some of the recently identified GTPases, the motif order is circularly permuted. All possible circular permutations were identified after artificially permuting the classical GTPases and subjecting them to profile Hidden Markov Model searches. This revealed G4-G5-G1-G2-G3 as the only possible circular permutation that can exist in nature. It was also possible to recognize a structural rationale for the absence of other permutations, which either destabilize the invariant GTPase fold or disrupt regions that provide critical residues for GTP binding and hydrolysis, such as Switch-I and Switch-II. The circular permutation relocates Switch-II to the C-terminus and leaves it unfastened, thus affecting GTP binding and hydrolysis. Stabilizing this region would require the presence of an additional domain following Switch-II. Circularly permuted GTPases (cpGTPases) conform to such a requirement and always possess an 'anchoring' C-terminal domain. There are four sub-families of cpGTPases, of which three possess an additional domain N-terminal to the G-domain. The biochemical function of these domains, based on available experimental reports and domain recognition analysis carried out here, are suggestive of RNA binding. The features that dictate RNA binding are unique to each subfamily. It is possible that RNA-binding modulates GTP binding or vice versa. In addition, phylogenetic analysis indicates a closer evolutionary relationship between cpGTPases and a set of universally conserved bacterial GTPases that bind the ribosome. It appears that cpGTPases are RNA-binding proteins possessing a means to relate GTP binding to RNA binding.


GTP-binding-defective ARL4D alters mitochondrial morphology and membrane potential.

  • Chun-Chun Li‎ et al.
  • PloS one‎
  • 2012‎

ARL4D, ARL4A, and ARL4C are closely related members of the ADP-ribosylation factor/ARF-like protein (ARF/ARL) family of GTPases. All three ARL4 proteins contain nuclear localization signals (NLSs) at their C-termini and are primarily found at the plasma membrane, but they are also present in the nucleus and cytoplasm. ARF function and localization depends on their controlled binding and hydrolysis of GTP. Here we show that GTP-binding-defective ARL4D is targeted to the mitochondria, where it affects mitochondrial morphology and function. We found that a portion of endogenous ARL4D and the GTP-binding-defective ARL4D mutant ARL4D(T35N) reside in the mitochondria. The N-terminal myristoylation of ARL4D(T35N) was required for its localization to mitochondria. The localization of ARL4D(T35N) to the mitochondria reduced the mitochondrial membrane potential (ΔΨm) and caused mitochondrial fragmentation. Furthermore, the C-terminal NLS region of ARL4D(T35N) was required for its effect on the mitochondria. This study is the first to demonstrate that the dysfunctional GTP-binding-defective ARL4D is targeted to mitochondria, where it subsequently alters mitochondrial morphology and membrane potential.


Developmentally Regulated GTP binding protein 1 (DRG1) controls microtubule dynamics.

  • Anna Katharina Schellhaus‎ et al.
  • Scientific reports‎
  • 2017‎

The mitotic spindle, essential for segregating the sister chromatids into the two evolving daughter cells, is composed of highly dynamic cytoskeletal filaments, the microtubules. The dynamics of microtubules are regulated by numerous microtubule associated proteins. We identify here Developmentally regulated GTP binding protein 1 (DRG1) as a microtubule binding protein with diverse microtubule-associated functions. In vitro, DRG1 can diffuse on microtubules, promote their polymerization, drive microtubule formation into bundles, and stabilize microtubules. HeLa cells with reduced DRG1 levels show delayed progression from prophase to anaphase because spindle formation is slowed down. To perform its microtubule-associated functions, DRG1, although being a GTPase, does not require GTP hydrolysis. However, all domains are required as truncated versions show none of the mentioned activities besides microtubule binding.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: