Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 13 papers out of 13 papers

Grb7 Protein Stability Modulated by Pin1 in Association with Cell Cycle Progression.

  • Yu-Ling Tai‎ et al.
  • PloS one‎
  • 2016‎

Growth factor receptor bound protein-7 (Grb7) is a multi-domain adaptor protein that is co-opted by numerous tyrosine kinases involved in various cellular signaling and functions. The molecular mechanisms underlying the regulation of Grb7 remain unclear. Here, we revealed a novel negative post-translational regulation of Grb7 by the peptidyl-prolyl cis/trans isomerase, Pin1. Our data show that phosphorylation of Grb7 protein on the Ser194-Pro motif by c-Jun N-terminal kinase facilitates its binding with the WW domain of Pin1. Subsequently, Grb7 is degraded by the ubiquitin- and proteasome-dependent proteolytic pathway. Indeed, we found that Pin1 exerts its peptidyl-prolyl cis/trans isomerase activity in the modulation of Grb7 protein stability in regulation of cell cycle progression at the G2-M phase. This study illustrates a novel regulatory mechanism in modulating Grb7-mediated signaling, which may take part in pathophysiological consequences.


Grb7 knockout mice develop normally but litters born to knockout females fail to thrive.

  • Kristopher A Lofgren‎ et al.
  • Developmental dynamics : an official publication of the American Association of Anatomists‎
  • 2023‎

Growth factor receptor-bound 7 (Grb7) is an adaptor protein involved in signal transduction downstream of multiple receptor tyrosine kinases, including ERBB, FGFR, and PDGFR pathways. Experimental studies have implicated Grb7 in regulating cell proliferation, survival, migration, and invasion through its large repertoire of protein-protein interactions.


Genomic organization and control of the grb7 gene family.

  • E Lucas-Fernández‎ et al.
  • Current genomics‎
  • 2008‎

Grb7 and their related family members Grb10 and Grb14 are adaptor proteins, which participate in the functionality of multiple signal transduction pathways under the control of a variety of activated tyrosine kinase receptors and other tyrosine-phosphorylated proteins. They are involved in the modulation of important cellular and organismal functions such as cell migration, cell proliferation, apoptosis, gene expression, protein degradation, protein phosphorylation, angiogenesis, embryonic development and metabolic control. In this short review we shall describe the organization of the genes encoding the Grb7 protein family, their transcriptional products and the regulatory mechanisms implicated in the control of their expression. Finally, the alterations found in these genes and the mechanisms affecting their expression under pathological conditions such as cancer, diabetes and some congenital disorders will be highlighted.


Structural basis for the interaction of the adaptor protein grb14 with activated ras.

  • Rohini Qamra‎ et al.
  • PloS one‎
  • 2013‎

Grb14, a member of the Grb7-10-14 family of cytoplasmic adaptor proteins, is a tissue-specific negative regulator of insulin signaling. Grb7-10-14 contain several signaling modules, including a Ras-associating (RA) domain, a pleckstrin-homology (PH) domain, a family-specific BPS (between PH and SH2) region, and a C-terminal Src-homology-2 (SH2) domain. We showed previously that the RA and PH domains, along with the BPS region and SH2 domain, are necessary for downregulation of insulin signaling. Here, we report the crystal structure at 2.4-Å resolution of the Grb14 RA and PH domains in complex with GTP-loaded H-Ras (G12V). The structure reveals that the Grb14 RA and PH domains form an integrated structural unit capable of binding simultaneously to small GTPases and phosphoinositide lipids. The overall mode of binding of the Grb14 RA domain to activated H-Ras is similar to that of the RA domains of RalGDS and Raf1 but with important distinctions. The integrated RA-PH structural unit in Grb7-10-14 is also found in a second adaptor family that includes Rap1-interacting adaptor molecule (RIAM) and lamellipodin, proteins involved in actin-cytoskeleton rearrangement. The structure of Grb14 RA-PH in complex with H-Ras represents the first detailed molecular characterization of tandem RA-PH domains bound to a small GTPase and provides insights into the molecular basis for specificity.


The insulin resistance Grb14 adaptor protein promotes thyroid cancer ret signaling and progression.

  • K Balogh‎ et al.
  • Oncogene‎
  • 2012‎

The growth factor receptor-bound protein (Grb) 14 is an adaptor molecule of the Grb7/10/14 family with characteristic Between Plekstrin and SH2 (BPS) domains serving to avidly bind tyrosine kinases. Grb14 inhibits insulin receptor (IR) catalytic activity through interaction with the BPS domain and impedes peptide substrate binding. Members of this Grb family have also been shown to interact with other kinases through their SH2 domain. Here we examined the functional role of Grb14 in thyroid cancer using loss- and gain-of-function approaches. Stable knockdown of Grb14 in thyroid cancer cells facilitated IR signaling. In contrast, RET phosphorylation was diminished in concert with reduced activation of Akt and signal transducer and activator of transcription 3 (STAT3). Loss of Grb14 also resulted in diminished cell proliferation and invasion both in vitro and in mouse flank xenografts. In complementary studies, forced expression of Grb14 interrupted IR signaling but facilitated RET activation, STAT3 and Akt phosphorylation. Consistent with these findings Grb14 overexpression enhanced cell invasion and resulted in striking metastases in an orthotopic thyroid cancer mouse xenograft model. Primary human thyroid cancer microarrays revealed a positive correlation between Grb14 expression and invasive behavior. Our findings uncover a new role for Grb14 in finely tuning receptor signaling and modulating thyroid cancer progression.


SmShb, the SH2-Containing Adaptor Protein B of Schistosoma mansoni Regulates Venus Kinase Receptor Signaling Pathways.

  • Marion Morel‎ et al.
  • PloS one‎
  • 2016‎

Venus kinase receptors (VKRs) are invertebrate receptor tyrosine kinases (RTKs) formed by an extracellular Venus Fly Trap (VFT) ligand binding domain associated via a transmembrane domain with an intracellular tyrosine kinase (TK) domain. Schistosoma mansoni VKRs, SmVKR1 and SmVKR2, are both implicated in reproductive activities of the parasite. In this work, we show that the SH2 domain-containing protein SmShb is a partner of the phosphorylated form of SmVKR1. Expression of these proteins in Xenopus oocytes allowed us to demonstrate that the SH2 domain of SmShb interacts with the phosphotyrosine residue (pY979) located in the juxtamembrane region of SmVKR1. This interaction leads to phosphorylation of SmShb on tyrosines and promotes SmVKR1 signaling towards the JNK pathway. SmShb transcripts are expressed in all parasite stages and they were found in ovary and testes of adult worms, suggesting a possible colocalization of SmShb and SmVKR1 proteins. Silencing of SmShb in adult S. mansoni resulted in an accumulation of mature sperm in testes, indicating a possible role of SmShb in gametogenesis.


Grb7 upregulation is a molecular adaptation to HER2 signaling inhibition due to removal of Akt-mediated gene repression.

  • Alessio Nencioni‎ et al.
  • PloS one‎
  • 2010‎

The efficacy of anti-HER2 therapeutics, such as lapatinib and trastuzumab, is limited by primary and acquired resistance. Cellular adaptations that allow breast cancer cell to survive prolonged HER2 inhibition include de-repression of the transcription factor FOXO3A with consequent estrogen receptor activation, and/or increased HER3 signaling. Here, we used low-density arrays, quantitative PCR, and western blotting to determine how HER2 signaling inhibition with lapatinib or PI3K inhibitors affects the expression of genes involved in breast cancer metastatic spread and overall prognosis. Retroviral transgenesis was used to express constitutively active forms of Akt in the HER2(+) breast cancer cell line SKBR3, and Grb7 in MCF7 cells. Specific gene silencing was obtained by siRNAs transfection. A murine BT474 xenograft cancer model was used to assess the effect of lapatinib on gene expression in vivo. We found that lapatinib induces upregulation of Grb7, an adaptor protein involved in receptor tyrosine kinase signaling and promoting cell survival and cell migration. Grb7 upregulation induced by lapatinib was found to occur in cancer cells in vitro and in vivo. We demonstrate that Grb7 upregulation is recreated by PI3K inhibitors while being prevented by constitutively active Akt. Thus, Grb7 is repressed by PI3K signaling and lapatinib-mediated Akt inhibition is responsible for Grb7 de-repression. Finally, we show that Grb7 removal by RNA-interference reduces breast cancer cell viability and increases the activity of lapatinib. In conclusion, Grb7 upregulation is a potentially adverse consequence of HER2 signaling inhibition. Preventing Grb7 accumulation and/or its interaction with receptor tyrosine kinases may increase the benefit of HER2-targeting drugs.


Grb7-derived calmodulin-binding peptides inhibit proliferation, migration and invasiveness of tumor cells while they enhance attachment to the substrate.

  • Juan Alcalde‎ et al.
  • Heliyon‎
  • 2020‎

The growth factor receptor bound protein 7 (Grb7) is a Ca2+-dependent calmodulin (CaM)-binding adaptor protein implicated, among other functions, in cell proliferation, migration and tumor-associated angiogenesis. The goal of this study was to determine whether a peptide based on the CaM binding site of Grb7 disrupts cellular processes, relevant for the malignancy of tumor cells, in which this adaptor protein is implicated. We designed synthetic myristoylated and non-myristoylated peptides corresponding to the CaM-binding domain of human Grb7 with the sequence 243RKLWKRFFCFLRRS256 and a variant peptide with the mutated sequence RKLERFFCFLRRE (W246E-ΔK247-S256E). The two non-myristoylated peptides bind dansyl-CaM with higher efficiency in the presence than in the absence of Ca2+ and they enter into the cell, as tested with 5(6)-carboxytetramethylrhodamine (TAMRA)-labeled peptides. The myristoylated and non-myristoylated peptides inhibit the proliferation, migration and invasiveness of A431 tumor cells while they enhance their adhesion to the substrate. The myristoylated peptides have stronger inhibitory effect than the non-myristoylated counterparts, in agreement with their expected higher cell-permeant capacity. The myristoylated and non-myristoylated W246E-ΔK247-S256E mutant peptide has a lesser inhibitory effect on cell proliferation as compared to the wild-type peptide. We also demonstrated that the myristoylated peptides were more efficient than the CaM antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) inhibiting cell migration and equally efficient inhibiting cell proliferation.


Insight into the Selectivity of the G7-18NATE Inhibitor Peptide for the Grb7-SH2 Domain Target.

  • Gabrielle M Watson‎ et al.
  • Frontiers in molecular biosciences‎
  • 2017‎

Growth factor receptor bound protein 7 (Grb7) is an adaptor protein with established roles in the progression of both breast and pancreatic cancers. Through its C-terminal SH2 domain, Grb7 binds to phosphorylated tyrosine kinases to promote proliferative and migratory signaling. Here, we investigated the molecular basis for the specificity of a Grb7 SH2-domain targeted peptide inhibitor. We identified that arginine 462 in the BC loop is unique to Grb7 compared to Grb2, another SH2 domain bearing protein that shares the same consensus binding motif as Grb7. Using surface plasmon resonance we demonstrated that Grb7-SH2 binding to G7-18NATE is reduced 3.3-fold when the arginine is mutated to the corresponding Grb2 amino acid. The reverse mutation in Grb2-SH2 (serine to arginine), however, was insufficient to restore binding of G7-18NATE to Grb2-SH2. Further, using a microarray, we confirmed that G7-18NATE is specific for Grb7 over a panel of 79 SH2 domains, and identified that leucine at the βD6 position may also be a requirement for Grb7-SH2 binding. This study provides insight into the specificity defining features of Grb7 for the inhibitor molecule G7-18NATE, that will assist in the development of improved Grb7 targeted inhibitors.


SAXS study of the PIR domain from the Grb14 molecular adaptor: a natively unfolded protein with a transient structure primer?

  • K Moncoq‎ et al.
  • Biophysical journal‎
  • 2004‎

Grb14 belongs to the Grb7 family of adapters and was identified as a negative regulator of insulin signal transduction. Between the PH (pleckstrin homology) and SH2 (Src homology 2) domains is a new binding domain implicated in the interaction with receptor tyrosine kinases called PIR (phosphorylated insulin receptor interaction region). Both PIR and SH2 domains interact with the insulin receptor, but their relative role varies considering the member of the Grb7 family and the tyrosine kinase receptor. In the case of Grb14, PIR is the main binding domain and is sufficient to inhibit the insulin receptor kinase activity. We have proposed, on the basis of NMR measurements, that PIR lacks ordered structure and presents a high flexibility, although remaining fully active. To complement this first study, we have used small-angle x-ray scattering in solution together with a modeling approach representing the PIR domain as a chain of pseudo residues. Circular dichroism experiments were also performed in the presence of variable amounts of trifluoroethanol. These observations, together with an ensemble of sequence analyses and previous NMR results, all support the view of PIR as essentially unstructured but with a potentially structured short stretch encompassing residues 399-407. This stretch, which may be only structured transiently in the isolated molecule, could play a major role in Grb14 PIR binding to a biological partner by undergoing a structural transition.


Dual action of epidermal growth factor: extracellular signal-stimulated nuclear-cytoplasmic export and coordinated translation of selected messenger RNA.

  • Nien-Pei Tsai‎ et al.
  • The Journal of cell biology‎
  • 2010‎

We report the first example of a coordinated dual action of epidermal growth factor (EGF) in stimulating the nuclear-cytoplasmic export and translation of a select messenger RNA (mRNA). The effect of EGF is mediated by the RNA-binding protein Grb7 (growth factor receptor-bound protein 7), which serves as an adaptor for a specific mRNA-protein export complex and a translational regulator. Using the kappa-opioid receptor (OR [KOR]) as a model, we demonstrate that EGF activates nuclear SHP-2 (Src homology region 2-containing tyrosine phosphatase), which dephosphorylates Grb7 in the nucleus. Hypophosphorylated Grb7 binds to the KOR mRNA and recruits the Hu antigen R-exportin-1 (CRM1) complex to form a nuclear-cytoplasmic export complex that exports KOR mRNA. EGF also activates focal adhesion kinase in the cytoplasm to rephosphorylate Grb7, releasing KOR mRNA for active translation. In summary, this study uncovers a coordinated, dual activity of EGF in facilitating nuclear export of a specific mRNA-protein complex as well as translational activation of the exported mRNA.


Long range inter-chromosomal interaction of Oct4 distal enhancer loci regulates ESCs pluripotency.

  • Byoung-San Moon‎ et al.
  • Cell death discovery‎
  • 2023‎

Nuclear architecture underlies the transcriptional programs within the cell to establish cell identity. As previously demonstrated, long-range chromatin interactions of the Oct4 distal enhancer (DE) are correlated with active transcription in naïve state embryonic stem cells. Here, we identify and characterize extreme long-range interactions of the Oct4 DE through a novel CRISPR labeling technique we developed and chromosome conformation capture to identify lethal giant larvae 2 (Llgl2) and growth factor receptor-bound protein 7 (Grb7) as putative functional interacting target genes in different chromosomes. We show that the Oct4 DE directly regulates expression of Llgl2 and Grb7 in addition to Oct4. Expression of Llgl2 and Grb7 closely correlates with the pluripotent state, where knock down of either result in loss of pluripotency, and overexpression enhances somatic cell reprogramming. We demonstrated that biologically important interactions of the Oct4 DE can occur at extreme distances that are necessary for the maintenance of the pluripotent state.


GRB10 is a novel factor associated with gastric cancer proliferation and prognosis.

  • Li-Li Ren‎ et al.
  • Aging‎
  • 2023‎

GRB10 and its family members GRB7 and GRB14 were important adaptor proteins. They regulated many cellular functions by interacting with various tyrosine kinase receptors and other phosphorus-containing amino acid proteins. More and more studies have shown that the abnormal expression of GRB10 is closely related to the occurrence and development of cancer. In our current research, expression data for 33 cancers from the TCGA database was downloaded for analysis. It was found that GRB10 was up-regulated in cholangiocarcinoma, colon adenocarcinoma, head and neck squamous carcinoma, renal chromophobe, clear renal carcinoma, hepatocellular carcinoma, lung adenocarcinoma, lung squamous carcinoma, gastric adenocarcinoma and thyroid carcinoma. Especially in gastric cancer, the high GRB10 expression was closely associated with poorer overall survival. Further research showed that the knockdown of GRB10 inhibited proliferation and migration ability in gastric cancer. Also, there was a potential binding site for miR-379-5p on the 3'UTR of GRB10. Overexpression of miR-379-5p in gastric cancer cells reduced GRB10-regulated gastric cancer proliferation and migration capacity. In addition, we found that tumor growth was slower in a mice xenograft model with knock down of GRB10 expression. These findings suggested that miR-379-5p suppresses gastric cancer development by downregulating GRB10 expression. Therefore, miR-379-5p and GRB10 were expected to be potential targets for the treatment of gastric cancer.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: