Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 2,208 papers

Coxsackievirus A6 Induces Cell Cycle Arrest in G0/G1 Phase for Viral Production.

  • Zengyan Wang‎ et al.
  • Frontiers in cellular and infection microbiology‎
  • 2018‎

Recent epidemiological data indicate that outbreaks of hand, foot, and mouth disease (HFMD), which can be categorized according to its clinical symptoms as typical or atypical, have markedly increased worldwide. A primary causative agent for typical HFMD outbreaks, enterovirus 71 (EV71), has been shown to manipulate the cell cycle in S phase for own replication; however, it is not clear whether coxsackievirus (CVA6), the main agent for atypical HFMD, also regulates the host cell cycle. In this study, we demonstrate for the first time that CVA6 infection arrests the host cell cycle in G0/G1-phase. Furthermore, synchronization in G0/G1 phase, but not S phase or G2/M phase, promotes viral production. To investigate the mechanism of cell cycle arrest induced by CVA6 infection, we analyzed cell cycle progression after cell cycle synchronization at G0/G1 or G2/M. Our results demonstrate that CVA6 infection promotes G0/G1 phase entry from G2/M phase, and inhibits G0/G1 exit into S phase. In line with its role to arrest cells in G0/G1 phase, the expression of cyclinD1, CDK4, cyclinE1, CDK2, cyclinB1, CDK1, P53, P21, and P16 is regulated by CVA6. Finally, the non-structural proteins of CVA6, RNA-dependent RNA polymerase 3D and protease 3C , are demonstrated to be responsible for the G0/G1-phase arrest. These findings suggest that CVA6 infection arrested cell cycle in G0/G1-phase via non-structural proteins 3D and 3C, which may provide favorable environments for virus production.


Quantitative proteomic comparison of stationary/G0 phase cells and tetrads in budding yeast.

  • Ravinder Kumar‎ et al.
  • Scientific reports‎
  • 2016‎

Most of the microbial cells on earth under natural conditions exist in a dormant condition, commonly known as quiescent state. Quiescent cells exhibit low rates of transcription and translation suggesting that cellular abundance of proteins may be similar in quiescent cells. Therefore, this study aim to compare the proteome of budding yeast cells from two quiescent states viz. stationary phase/G0 and tetrads. Using iTRAQ (isobaric tag for relative and absolute quantitation) based quantitative proteomics we identified 289 proteins, among which around 40 proteins exhibited ±1.5 fold change consistently from the four biological replicates. Proteomics data was validated by western blot and denstiometric analysis of Hsp12 and Spg4. Level of budding yeast 14-3-3 proteins was found to be similar in both the quiescent states, whereas Hsp12 and Spg4 expressed only during stress. FACS (fluorescence-activated cell sorting) analysis showed that budding yeast cells were arrested at G1 stages both in tetrads as well as in stationary phase. We also observed that quiescent states did not express Ime1 (inducer of meiosis). Taken together, our present study demonstrates that the cells in quiescent state may have similar proteome, and accumulation of proteins like Hsp12, Hsp26, and Spg4 may play an important role in retaining viability of the cells during dormancy.


SUN1 silencing inhibits cell growth through G0/G1 phase arrest in lung adenocarcinoma.

  • Weiyi Huang‎ et al.
  • OncoTargets and therapy‎
  • 2017‎

Cytoskeleton is critical for carcinoma cell proliferation, migration, and invasion. Sad-1 and UNC-84 domain containing 1 (SUN1) is one of the core linkers of nucleoskeleton and cytoskeleton. However, the functions of SUN1 in lung adenocarcinoma are largely unknown.


Contrasting quiescent G0 phase with mitotic cell cycling in the mouse immune system.

  • Michio Tomura‎ et al.
  • PloS one‎
  • 2013‎

A transgenic mouse line expressing Fucci (fluorescent ubiquitination-based cell-cycle indicator) probes allows us to monitor the cell cycle in the hematopoietic system. Two populations with high and low intensities of Fucci signals for Cdt1(30/120) accumulation were identified by FACS analysis, and these correspond to quiescent G0 and cycling G1 cells, respectively. We observed the transition of immune cells between quiescent and proliferative phases in lymphoid organs during differentiation and immune responses.


Luteoloside Induces G0/G1 Phase Arrest of Neuroblastoma Cells by Targeting p38 MAPK.

  • Ya He‎ et al.
  • Molecules (Basel, Switzerland)‎
  • 2023‎

Luteoloside has shown anti-inflammatory, antiviral, and antitumor properties. However, the effect and mechanism of luteoloside on neuroblastoma cells remain unknown. The proliferation of human neuroblastoma cells (SH-SY5Y and SK-N-AS) treated with different concentrations of luteoloside (0, 12.5, 25, and 50 μM) was detected by the MTT assay and colony formation assay. Cell apoptosis and cell cycle were examined by Hoechst staining and flow cytometry. A subcutaneous tumorigenesis model was established in nude mice to evaluate the effect of luteoloside on tumor growth in vivo. Bioinformatics, molecular docking techniques, and cellular thermal shift assays were utilized to predict the potential targets of luteoloside in neuroblastoma. The p38 MAPK inhibitor SB203580 was used to confirm the role of p38 MAPK. Luteoloside inhibited the proliferation of neuroblastoma cells in vitro and in vivo. Luteoloside slightly induced cellular G0/G1 phase arrest and reduced the expression levels of G0/G1 phase-related genes and the proteins cyclin D1, CDK4, and C-myc, which are downregulated by p38 MAPK pathways. Meanwhile, p38 was identified as the target of luteoloside, and inhibition of p38 MAPK reversed the inhibitory effect of luteoloside on neuroblastoma cells. Luteoloside is a potential anticancer drug for treating neuroblastoma by activating p38 MAPK.


Suppression of STIM1 inhibits human glioblastoma cell proliferation and induces G0/G1 phase arrest.

  • Guilin Li‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2013‎

Depletion of calcium (Ca2+) from the endoplasmic reticulum (ER) activates the ubiquitous store-operated Ca2+ entry (SOCE) pathway which sustains long-term Ca2+ signals and is critical for cellular functions. Stromal interacting molecule 1 (STIM1) serves a dual role as an ER Ca2+ sensor and activator of SOCE. Aberrant expression of STIM1 could be observed in several human cancer cells. However, the role of STIM1 in regulating tumorigenesis of human glioblastoma still remains unclear.


Discovery of Dihydropyrrol-2-ones as Novel G0/G1-Phase Arresting Agents Inducing Apoptosis.

  • Danni Yang‎ et al.
  • ACS omega‎
  • 2019‎

A series of dihydropyrrol-2-ones (DHPs) were designed and synthesized via an efficient multicomponent reaction at room temperature for evaluation of their bioactivities against four human cancer lines (MCF-7, RKO, HeLa, and A549) in vitro. Preliminary structure-activity relationship studies showed that R4 = 3-MeO-4-OH-Ph is a crucial group for increasing cytotoxicities against RKO cells and the influences of R1-R3 depend on their combination. It was found that DHPs 5a, 5q, and 5s showed the best antiproliferative activities against A549, RKO, and all four studied cell lines, respectively (IC50 = 1.9, 0.8, and 0.9-2.4 μM). They can be used as new lead compounds for developing potentially selective or broad spectrum anticancer agents. 5q proves as a potent G0/G1-phase arresting agent inducing cell apoptosis by increasing/decreasing the levels of p53 and p21/cyclin D1.


Oleanolic acid induces mitochondrial-dependent apoptosis and G0/G1 phase arrest in gallbladder cancer cells.

  • Huai-Feng Li‎ et al.
  • Drug design, development and therapy‎
  • 2015‎

Oleanolic acid (OA), a naturally occurring triterpenoid, exhibits potential antitumor activity in many tumor cell lines. Gallbladder carcinoma is the most common malignancy of the biliary tract, and is a highly aggressive tumor with an extremely poor prognosis. Unfortunately, the effects of OA on gallbladder carcinoma are unknown. In this study, we investigated the effects of OA on gallbladder cancer cells and the underlying mechanism. The results showed that OA inhibits proliferation of gallbladder cancer cells in a dose-dependent and time-dependent manner on MTT and colony formation assay. A flow cytometry assay revealed apoptosis and G0/G1 phase arrest in GBC-SD and NOZ cells. Western blot analysis and a mitochondrial membrane potential assay demonstrated that OA functions through the mitochondrial apoptosis pathway. Moreover, this drug inhibited tumor growth in nude mice carrying subcutaneous NOZ tumor xenografts. These data suggest that OA inhibits proliferation of gallbladder cancer cells by regulating apoptosis and the cell cycle process. Thus, OA may be a promising drug for adjuvant chemotherapy in gallbladder carcinoma.


Lycorine induces cell-cycle arrest in the G0/G1 phase in K562 cells via HDAC inhibition.

  • Lv Li‎ et al.
  • Cancer cell international‎
  • 2012‎

Lycorine, a natural alkaloid extracted from Amaryllidaceae, has shown various pharmacological effects. Recent studies have focused on the potential antitumor activity of lycorine. In our previous study, we found that lycorine decrease the cell viability of leukemia HL-60 cells and multiple myeloma KM3 cells and induces cell apoptosis. However, the effect and molecular mechanism of lycorine on human chronic myelocytic leukemia cells has yet to be determined.


Downregulation of PLK4 expression induces apoptosis and G0/G1-phase cell cycle arrest in keloid fibroblasts.

  • Ru-Lin Huang‎ et al.
  • Cell proliferation‎
  • 2022‎

Keloids are benign fibroproliferative tumors that display many cancer-like characteristics, such as progressive uncontrolled growth, lack of spontaneous regression, and extremely high rates of recurrence. Polo-like kinase 4 (PLK4) was recently identified as a master regulator of centriole replication, and its aberrant expression is closely associated with tumorigenesis. This study aimed to investigate the expression and biological role of PLK4 in the pathogenesis of keloids.


A high ratio of G1 to G0 phase cells and an accumulation of G1 phase cells before S phase progression after injurious stimuli in the proximal tubule.

  • Takamasa Iwakura‎ et al.
  • Physiological reports‎
  • 2014‎

Proximal tubule (PT) cells can proliferate explosively after injurious stimuli. To investigate this proliferative capacity, we examined cell cycle status and the expression of cyclin-dependent kinase inhibitor p27, a G1 phase mediator, in PT cells after a proliferative or injurious stimulus. Rats were treated with lead acetate (proliferative stimulus) or uranyl acetate (UA; injurious stimulus). Isolated tubular cells were separated into PT and distal tubule (DT) cells by density-gradient centrifugation. Cell cycle status was analyzed with flow cytometry by using the Hoechst 33342/pyronin Y method. Most PT and DT cells from control rats were in G0/G1 phase, with a higher percentage of PT cells than DT cells in G1 phase. Lead acetate and UA administration promoted the G0-G1 transition and the accumulation of G1 phase cells before S phase progression. In PT cells from rats treated with lead acetate or a subnephrotoxic dose of UA, p27 levels increased or did not change, possibly reflecting G1 arrest. In contrast, p27 became undetectable before the appearance of apoptotic cells in rats treated with a nephrotoxic dose of UA. The decrease in p27 might facilitate rapid cell cycling. The decreased number of p27-positive cells was associated with PT cell proliferation in renal tissues after a proliferative or injurious stimulus. The findings suggest that a high ratio of G1 to G0 phase cells and a rapid accumulation of G1 phase cells before S phase progression in the PT is a biological strategy for safe, timely, and explosive cell proliferation in response to injurious stimuli.


Porcine epidemic diarrhea virus through p53-dependent pathway causes cell cycle arrest in the G0/G1 phase.

  • Pei Sun‎ et al.
  • Virus research‎
  • 2018‎

Porcine epidemic diarrhea virus (PEDV), an enteropathogenic Alphacoronavirus, has caused enormous economic losses in the swine industry. p53 protein exists in a wide variety of animal cells, which is involved in cell cycle regulation, apoptosis, cell differentiation and other biological functions. In this study, we investigated the effects of PEDV infection on the cell cycle of Vero cells and p53 activation. The results demonstrated that PEDV infection induces cell cycle arrest at G0/G1 phase in Vero cells, while UV-inactivated PEDV does not cause cell cycle arrest. PEDV infection up-regulates the levels of p21, cdc2, cdk2, cdk4, Cyclin A protein and down-regulates Cyclin E protein. Further research results showed that inhibition of p53 signaling pathway can reverse the cell cycle arrest in G0/G1 phase induced by PEDV infection and cancel out the up-regulation of p21 and corresponding Cyclin/cdk mentioned above. In addition, PEDV infection of the cells synchronized in various stages of cell cycle showed that viral subgenomic RNA and virus titer were higher in the cells released from G0/G1 phase synchronized cells than that in the cells released from the G1/S phase and G2/M phase synchronized or asynchronous cells after 18 h p.i.. This is the first report to demonstrate that the p53-dependent pathway plays an important role in PEDV induced cell cycle arrest and beneficially contributes to viral infection.


Propranolol induced G0/G1/S phase arrest and apoptosis in melanoma cells via AKT/MAPK pathway.

  • Chengfang Zhou‎ et al.
  • Oncotarget‎
  • 2016‎

Both preclinical and epidemiology studies associate β-adrenoceptors-blockers (β-blockers) with activity against melanoma. However, the underlying mechanism is still unclear, especially in acral melanoma. In this study, we explored the effect of propranolol, a non-selective β-blocker, on the A375 melanoma cell line, two primary acral melanoma cell lines (P-3, P-6) and mice xenografts. Cell viability assay demonstrated that 50μM-400μM of propranolol inhibited viability in a concentration and time dependent manner with an IC50 ranging from 65.33μM to 148.60μM for 24h -72h treatment, but propranolol (less than 200μM) had no effect on HaCaT cell line. Western blots showed 100μM propranolol significantly reduced the expression of Bcl-2 while increasing the expressions of Bax, cytochrome c, cleaved capase-9 and cleaved caspase-3, and down-regulated the levels of p-AKT, p-BRAF, p-MEK1/2 and p-ERK1/2 in melanoma cells, after a 24h incubation. The in vivo data confirmed the isolation results. Mice received daily ip. administration of propranolol at the dose of 2 mg/kg for 3 weeks and the control group was treated with the same volume of saline. The mean tumor volume at day 21 in A375 xenografts was 82.33 ± 3.75mm3vs. 2044.67 ± 54.57mm3 for the propranolol-treated mice and the control group, respectively, and 31.66 ± 4.67 mm3vs. 1074.67 ± 32.17 mm3 for the P-3 xenografts. Propranolol also reduced Ki67, inhibited phosphorylation of AKT, BRAF, MEK1/2 and ERK1/2 in xenografts. These are the first data to demonstrate that propranolol might inhibit melanoma by activating the intrinsic apoptosis pathway and inactivating the MAPK and AKT pathways.


Halofuginone and artemisinin synergistically arrest cancer cells at the G1/G0 phase by upregulating p21Cip1 and p27Kip1.

  • Guoqing Chen‎ et al.
  • Oncotarget‎
  • 2016‎

Combinational drug therapy is one of the most promising strategies in modern anticancer research. Traditional Chinese medicine (TCM) formulas represent a wealth of complex combinations proven successful over centuries of clinical application. One such formula used to treat a variety of diseases, including cancer, contains two herbs, whose main active components are Halofuginone (HF) and Artemisinin (ATS). Here we studied the anticancer synergism of HF and ATS in various cancer cell lines and in a xenograft nude mice model. We found that the HF-ATS combination arrested more cells at the G1/G0 phase than either one alone, with the concomitant increased levels of CDK2 inhibitors, p21Cip1 and p27Kip1. By knocking down p21Cip1 and p27Kip1 separately or simultaneously in HCT116 cells and MCF-7 cells, we found that p21Cip1 was required for HF induced G1/G0 arrest, whereas p21Cip1 and p27Kip1 were both required for ATS or HF-ATS combination-mediated cell cycle arrest. Moreover, HF-ATS combination synergistically inhibited tumor growth in xenograft nude mice, and this was associated with the increased levels of p21Cip1 and p27Kip1. Collectively, these data indicate that the upregulation of p21Cip1 and p27Kip1 contributes to the synergistic anticancer effect of the HF-ATS combination.


Gypenoside LI arrests the cell cycle of breast cancer in G0/G1 phase by down-regulating E2F1.

  • Ma-Li Zu‎ et al.
  • Journal of ethnopharmacology‎
  • 2021‎

Gynostemma pentaphyllum (Thunb.) Makino, a traditional medicine in China, has been widely used for the treatment of various diseases. Gypenoside LI (Gyp LI) is a major constituent from steamed G. pentaphyllum. Previous studies have shown that gypnenoside LI possess inhibitory effect on the growth of many cancer cells. However, its pharmacological effect in breast cancer and the mechanism have not been reported yet.


Phellinus gilvus‑derived protocatechualdehyde induces G0/G1 phase arrest and apoptosis in murine B16‑F10 cells.

  • Shi Zhong‎ et al.
  • Molecular medicine reports‎
  • 2020‎

Protocatechualdehyde (PCA) is considered to be the main phenolic component of Phellinus gilvus responsible for its anticancer properties. Previous studies have demonstrated that PCA can have an anticancer effect on multiple cancer types, but little is known about the effect of PCA on melanoma cells. The present study investigated the inhibitory abilities and potential anticancer mechanisms of PCA on B16‑F10 cells using MTT assay. Cell apoptosis and cell cycle were assessed by flow cytometry using Annexin V‑FITC and propidium iodide staining. Whole‑transcriptome analysis was used to investigate the effects of PCA on gene expression. PCA significantly decreased cell viability, induced cell cycle arrest at G0/G1 phase and promoted apoptosis of B16‑F10 cells, suggesting that PCA could have anticancer effects against melanoma cells. Whole‑transcriptome analysis indicated that PCA treatment upregulated genes involved in histone modification and decreased the transcription of genes involved in DNA repair and replication. Kyoto Encyclopedia of Genes and Genomes analysis showed that PCA treatment enhanced the complement and coagulation cascades, and the p53 signaling pathway. The present results indicated that PCA could act as an antitumor agent in melanoma cells, which may provide experimental support for the development of novel therapies to treat melanoma.


Berberine inhibits proliferation and induces G0/G1 phase arrest in colorectal cancer cells by downregulating IGF2BP3.

  • Yaru Zhang‎ et al.
  • Life sciences‎
  • 2020‎

Berberine (BBR) is one of isoquinoline alkaloids from Coptidis Rhizoma and possesses extensive pharmacological activities, including anti-colorectal cancer (CRC) activity. However, the detailed mechanisms remain to be determined. The current study aims to investigate the ability and the potential mechanism of BBR against CRC.


Isorhapontigenin (ISO) inhibited cell transformation by inducing G0/G1 phase arrest via increasing MKP-1 mRNA Stability.

  • Guangxun Gao‎ et al.
  • Oncotarget‎
  • 2014‎

The cancer chemopreventive property of Chinese herb new isolate isorhapontigenin (ISO) and mechanisms underlying its activity have never been explored. Here we demonstrated that ISO treatment with various concentrations for 3 weeks could dramatically inhibit TPA/EGF-induced cell transformation of Cl41 cells in Soft Agar assay, whereas co-incubation of cells with ISO at the same concentrations could elicit G0/G1 cell-cycle arrest without redundant cytotoxic effects on non-transformed cells. Further studies showed that ISO treatment resulted in cyclin D1 downregulation in dose- and time-dependent manner. Our results indicated that ISO regulated cyclin D1 at transcription level via targeting JNK/C-Jun/AP-1 activation. Moreover, we found that ISO-inhibited JNK/C-Jun/AP-1 activation was mediated by both upregulation of MKP-1 expression through increasing its mRNA stability and deactivating MKK7. Most importantly, MKP-1 knockdown could attenuate ISO-mediated suppression of JNK/C-Jun activation and cyclin D1 expression, as well as G0/G1 cell cycle arrest and cell transformation inhibition, while ectopic expression of FLAG-cyclin D1 T286A mutant also reversed ISO-induced G0/G1 cell-cycle arrest and inhibition of cell transformation. Our results demonstrated that ISO is a promising chemopreventive agent via upregulating mkp-1 mRNA stability, which is distinct from its cancer therapeutic effect with downregulation of XIAP and cyclin D1 expression.


Involvement of miR-15a in G0/G1 Phase Cell Cycle Arrest Induced by Porcine Circovirus Type 2 Replication.

  • Rong Quan‎ et al.
  • Scientific reports‎
  • 2016‎

Many viruses exploit the host cell division cycle to favour their own growth. Here we demonstrated that porcine circovirus type 2 (PCV2), which is a major causative agent of an emerging and important swine disease complex, PCV2-associated diseases, caused G0/G1 cell cycle arrest through degradation of cyclin D1 and E followed by reduction of retinoblastoma phosphorylation in synchronized PCV2-infected cells dependent upon virus replication. This induction of G0/G1 cell cycle arrest promoted PCV2 replication as evidenced by increased viral protein expression and progeny virus production in the synchronized PCV2-infected cells. To delineate a mechanism of miRNAs in regulating PCV2-induced G0/G1 cell cycle arrest, we determined expression levels of some relevant miRNAs and found that only miR-15a but not miR-16, miR-21, and miR-34a was significantly changed in the PCV2-infected cells. We further demonstrated that upregulation of miR-15a promoted PCV2-induced G0/G1 cell cycle arrest via mediating cyclins D1 and E degradation, in which involves PCV2 growth. These results reveal that G0/G1 cell cycle arrest induced by PCV2 may provide favourable conditions for viral protein expression and progeny production and that miR-15a is implicated in PCV2-induced cell cycle control, thereby contributing to efficient viral replication.


Murrayafoline A Induces a G0/G1-Phase Arrest in Platelet-Derived Growth Factor-Stimulated Vascular Smooth Muscle Cells.

  • Joo-Hui Han‎ et al.
  • The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology‎
  • 2015‎

The increased potential for vascular smooth muscle cell (VSMC) growth is a key abnormality in the development of atherosclerosis and post-angioplasty restenosis. Abnormally high activity of platelet-derived growth factor (PDGF) is believed to play a central role in the etiology of these pathophysiological situations. Here, we investigated the anti-proliferative effects and possible mechanism(s) of murrayafoline A, a carbazole alkaloid isolated from Glycosmis stenocarpa Guillamin (Rutaceae), on PDGF-BB-stimulated VSMCs. Murrayafoline A inhibited the PDGF-BB-stimulated proliferation of VSMCs in a concentration-dependent manner, as measured using a non-radioactive colorimetric WST-1 assay and direct cell counting. Furthermore, murrayafoline A suppressed the PDGF-BB-stimulated progression through G0/G1 to S phase of the cell cycle, as measured by [(3)H]-thymidine incorporation assay and cell cycle progression analysis. This anti-proliferative action of murrayafoline A, arresting cell cycle progression at G0/G1 phase in PDGF-BB-stimulated VSMCs, was mediated via down-regulation of the expression of cyclin D1, cyclin E, cyclin-dependent kinase (CDK)2, CDK4, and proliferating cell nuclear antigen (PCNA), and the phosphorylation of retinoblastoma protein (pRb). These results indicate that murrayafoline A may be useful in preventing the progression of vascular complications such as restenosis after percutaneous transluminal coronary angioplasty and atherosclerosis.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: