Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 1,046 papers

Why All the Fury over Furin?

  • Essam Eldin A Osman‎ et al.
  • Journal of medicinal chemistry‎
  • 2022‎

Analysis of the SARS-CoV-2 sequence revealed a multibasic furin cleavage site at the S1/S2 boundary of the spike protein distinguishing this virus from SARS-CoV. Furin, the best-characterized member of the mammalian proprotein convertases, is an ubiquitously expressed single pass type 1 transmembrane protein. Cleavage of SARS-CoV-2 spike protein by furin promotes viral entry into lung cells. While furin knockout is embryonically lethal, its knockout in differentiated somatic cells is not, thus furin provides an exciting therapeutic target for viral pathogens including SARS-CoV-2 and bacterial infections. Several peptide-based and small-molecule inhibitors of furin have been recently reported, and select cocrystal structures have been solved, paving the way for further optimization and selection of clinical candidates. This perspective highlights furin structure, substrates, recent inhibitors, and crystal structures with emphasis on furin's role in SARS-CoV-2 infection, where the current data strongly suggest its inhibition as a promising therapeutic intervention for SARS-CoV-2.


FURIN and placental syncytialisation: a cautionary tale.

  • Saije K Morosin‎ et al.
  • Cell death & disease‎
  • 2021‎

FURIN is a pro-protein convertase previously shown to be important for placental syncytialisation (Zhou et al. [1]), a process of cell fusion whereby placental cytotrophoblast cells fuse to form a multinucleated syncytium. This finding has been broadly accepted however, we have evidence suggesting the contrary. Spontaneously syncytialising term primary human trophoblast cells and BeWo choriocarcinoma cells were treated with either FURIN siRNA or negative control siRNA or the protease inhibitor, DEC-RVKR-CMK, or vehicle. Cells were then left to either spontaneously syncytialise (primary trophoblasts) or were induced to syncytialise with forskolin (BeWo). Effects on syncytialisation were measured by determining human chorionic gonadotrophin secretion and E-cadherin protein levels. We showed that FURIN is not important for syncytialisation in either cell type. However, in primary trophoblasts another protease also inhibited by DEC-RVKR-CMK, may be involved. Our results directly contrast with those published by Zhou et al. Zhou et al. however, used first trimester villous explants to study syncytialisation, and we used term primary trophoblasts. Therefore, we suggest that FURIN may be involved in syncytialisation of first trimester trophoblasts, but not term trophoblasts. What is more concerning is that our results using BeWo cells do not agree with their results, even though for the most part, we used the same experimental design. It is unclear why these experiments yielded different results, however we wanted to draw attention to simple differences in measuring syncytialisation or flaws in method reporting (including omission of cell line source and passage numbers, siRNA concentration and protein molecular weights) and choice of immunoblot loading controls, that could impact on experimental outcomes. Our study shows that careful reporting of methods by authors and thorough scrutiny by referees are vital. Furthermore, a universal benchmark for measuring syncytialisation is required so that various studies of syncytialisation can be validated.


Influence of a Coronary Artery Disease-Associated Genetic Variant on FURIN Expression and Effect of Furin on Macrophage Behavior.

  • Guojun Zhao‎ et al.
  • Arteriosclerosis, thrombosis, and vascular biology‎
  • 2018‎

Objective- Genome-wide association studies have revealed a robust association between genetic variation on chromosome 15q26.1 and coronary artery disease (CAD) susceptibility; however, the underlying biological mechanism is still unknown. The lead CAD-associated genetic variant (rs17514846) at this locus resides in the FURIN gene. In advanced atherosclerotic plaques, furin is expressed primarily in macrophages. We investigated whether this CAD-associated variant alters FURIN expression and whether furin affects monocyte/macrophage behavior. Approach and Results- A quantitative reverse transcription polymerase chain reaction analysis showed that leukocytes from individuals carrying the CAD risk allele (A) of rs17514846 had increased FURIN expression. A chromatin immunoprecipitation assay revealed higher RNA polymerase II occupancy in the FURIN gene in mononuclear cells of individuals carrying this allele. A reporter gene assay in transiently transfected monocytes/macrophages indicated that the CAD risk allele had higher transcriptional activity than the nonrisk allele (C). An analysis of isogenic monocyte cell lines created by CRISPR (clustered regularly interspaced short palindromic repeats)-mediated genome editing showed that isogenic cells with the A/A genotype for rs17514846 had higher FURIN expression levels than the isogenic cells with the C/C genotype. An electrophoretic mobility shift assay exhibited preferential binding of a nuclear protein to the risk allele. Studies of monocytes/macrophages with lentivirus-mediated furin overexpression or shRNA (short hairpin RNA)-induced furin knockdown showed that furin overexpression promoted monocyte/macrophage migration, increased proliferation, and reduced apoptosis whereas furin knockdown had the opposite effects. Conclusions- Our study shows that the CAD-associated genetic variant increases FURIN expression and that furin promotes monocyte/macrophage migration and proliferation while inhibiting apoptosis, providing a biological mechanism for the association between variation at the chromosome 15q26.1 locus and CAD risk.


Transgenic overexpression of furin increases epileptic susceptibility.

  • Yi Yang‎ et al.
  • Cell death & disease‎
  • 2018‎

The proprotein convertase Furin plays crucial roles in the pathology of many diseases. However, the specific role of furin in epilepsy remains unclear. In our study, furin protein was increased in the temporal neocortex of epileptic patients and in the hippocampus and cortex of epileptic mice. The furin transgenic (TG) mice showed increased susceptibility to epilepsy and heightened epileptic activity compared with wild-type (WT) mice. Conversely, lentivirus-mediated knockdown of furin restrained epileptic activity. Using whole-cell patch clamp, furin knockdown and overexpression influenced neuronal inhibitory by regulating postsynaptic gamma-aminobutyric acid A receptor (GABAAR)-mediated synaptic transmission. Importantly, furin influenced the expression of GABAAR β2/3 membrane and total protein in epileptic mice by changing transcription level of GABAAR β2/3, not the protein degradation. These results reveal that furin may regulate GABAAR-mediated inhibitory synaptic transmission by altering the transcription of GABAAR β2/3 subunits in epilepsy; this finding could provide new insight into epilepsy prevention and treatment.


Furin cleavage sites naturally occur in coronaviruses.

  • Yiran Wu‎ et al.
  • Stem cell research‎
  • 2020‎

The spike protein is a focused target of COVID-19, a pandemic caused by SARS-CoV-2. A 12-nt insertion at S1/S2 in the spike coding sequence yields a furin cleavage site, which raised controversy views on origin of the virus. Here we analyzed the phylogenetic relationships of coronavirus spike proteins and mapped furin recognition motif on the tree. Furin cleavage sites occurred independently for multiple times in the evolution of the coronavirus family, supporting the natural occurring hypothesis of SARS-CoV-2.


Myeloid cell expressed proprotein convertase FURIN attenuates inflammation.

  • Zuzet Martinez Cordova‎ et al.
  • Oncotarget‎
  • 2016‎

The proprotein convertase enzyme FURIN processes immature pro-proteins into functional end- products. FURIN is upregulated in activated immune cells and it regulates T-cell dependent peripheral tolerance and the Th1/Th2 balance. FURIN also promotes the infectivity of pathogens by activating bacterial toxins and by processing viral proteins. Here, we evaluated the role of FURIN in LysM+ myeloid cells in vivo. Mice with a conditional deletion of FURIN in their myeloid cells (LysMCre-fur(fl/fl)) were healthy and showed unchanged proportions of neutrophils and macrophages. Instead, LysMCre-fur(fl/fl) mice had elevated serum IL-1β levels and reduced numbers of splenocytes. An LPS injection resulted in accelerated mortality, elevated serum pro-inflammatory cytokines and upregulated numbers of pro-inflammatory macrophages. A genome-wide gene expression analysis revealed the overexpression of several pro-inflammatory genes in resting FURIN-deficient macrophages. Moreover, FURIN inhibited Nos2 and promoted the expression of Arg1, which implies that FURIN regulates the M1/M2-type macrophage balance. FURIN was required for the normal production of the bioactive TGF-β1 cytokine, but it inhibited the maturation of the inflammation-provoking TACE and Caspase-1 enzymes. In conclusion, FURIN has an anti-inflammatory function in LysM+ myeloid cells in vivo.


1,25-Dihydroxyvitamin D3 regulates furin-mediated FGF23 cleavage.

  • Han Xie‎ et al.
  • JCI insight‎
  • 2023‎

Intact fibroblast growth factor 23 (iFGF23) is a phosphaturic hormone that is cleaved by furin into N-terminal and C-terminal fragments. Several studies have implicated vitamin D in regulating furin in infections. Thus, we investigated the effect of 1,25-dihydroxyvitamin D3 [1,25(OH)2D] and the vitamin D receptor (VDR) on furin-mediated iFGF23 cleavage. Mice lacking VDR (Vdr-/-) had a 25-fold increase in iFGF23 cleavage, with increased furin levels and activity compared with wild-type (WT) littermates. Inhibition of furin activity blocked the increase in iFGF23 cleavage in Vdr-/- animals and in a Vdr-knockdown osteocyte OCY454 cell line. Chromatin immunoprecipitation revealed VDR binding to DNA upstream of the Furin gene, with more transcription in the absence of VDR. In WT mice, furin inhibition reduced iFGF23 cleavage, increased iFGF23, and reduced serum phosphate levels. Similarly, 1,25(OH)2D reduced furin activity, decreased iFGF23 cleavage, and increased total FGF23. In a post hoc analysis of a randomized clinical trial, we found that ergocalciferol treatment, which increased serum 1,25(OH)2D, significantly decreased serum furin activity and iFGF23 cleavage, compared with placebo. Thus, 1,25(OH)2D inhibits iFGF23 cleavage via VDR-mediated suppression of Furin expression, thereby providing a mechanism by which vitamin D can augment phosphaturic iFGF23 levels.


Cationic Cell-Penetrating Peptides Are Potent Furin Inhibitors.

  • Bruno Ramos-Molina‎ et al.
  • PloS one‎
  • 2015‎

Cationic cell-penetrating peptides have been widely used to enhance the intracellular delivery of various types of cargoes, such as drugs and proteins. These reagents are chemically similar to the multi-basic peptides that are known to be potent proprotein convertase inhibitors. Here, we report that both HIV-1 TAT47-57 peptide and the Chariot reagent are micromolar inhibitors of furin activity in vitro. In agreement, HIV-1 TAT47-57 reduced HT1080 cell migration, thought to be mediated by proprotein convertases, by 25%. In addition, cyclic polyarginine peptides containing hydrophobic moieties which have been previously used as transfection reagents also exhibited potent furin inhibition in vitro and also inhibited intracellular convertases. Our finding that cationic cell-penetrating peptides exert potent effects on cellular convertase activity should be taken into account when biological effects are assessed.


The proprotein convertase furin is required for trophoblast syncytialization.

  • Z Zhou‎ et al.
  • Cell death & disease‎
  • 2013‎

The multinucleated syncytial trophoblast, which forms the outermost layer of the placenta and serves multiple functions, is differentiated from and maintained by cytotrophoblast cell fusion. Deficiencies in syncytial trophoblast differentiation or maintenance likely contribute to intrauterine growth restriction and pre-eclampsia, two common gestational diseases. The cellular and molecular mechanisms governing trophoblast syncytialization are poorly understood. We report here that the proprotein convertase furin is highly expressed in syncytial trophoblast in the first trimester human placentas, and expression of furin in the syncytiotrophoblast is significantly lower in the placentas from pre-eclamptic patients as compared with their gestational age-matched control placentas. Using multiple experimental models including induced fusion of choriocarcinoma BeWo cells and spontaneous fusion of primary cultured cytotrophoblast cells or placental explants, we demonstrate that cytotrophoblast cell fusion and syncytialization are accompanied by furin expression. Furin-specific siRNAs or inhibitors inhibit cell fusion in BeWo cells, as well as trophoblast syncytialization in human placental explants. Furthermore, type 1 IGF receptor (IGF1R) is indicated in this study as a substrate of furin, and processing of IGF1R by furin is an essential mechanism for syncytialization. Finally, using lentivirus-mediated RNAi targeting to mouse trophectoderm, we demonstrate that furin function is required for the development of syncytiotrophoblast structure in the labyrinth layer, as well as for normal embryonic development.


OFF-State-Specific Inhibition of the Proprotein Convertase Furin.

  • Sven O Dahms‎ et al.
  • ACS chemical biology‎
  • 2021‎

The pro-protein convertase furin is a highly specific serine protease involved in the proteolytic maturation of many proteins in the secretory pathway. It also activates surface proteins of many viruses including the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Furin inhibitors effectively suppress viral replication and thus are promising antiviral therapeutics with broad application potential. Polybasic substrate-like ligands typically trigger conformational changes shifting furin's active site cleft from the OFF-state to the ON-state. Here, we solved the X-ray structures of furin in complex with four different arginine mimetic compounds with reduced basicity. These guanylhydrazone-based inhibitor complexes showed for the first time an active site-directed binding mode to furin's OFF-state conformation. The compounds undergo unique interactions within the S1 pocket, largely different compared to substrate-like ligands. A second binding site was identified at the S4/S5 pocket of furin. Crystallography-based titration experiments confirmed the S1 site as the primary binding pocket. We also tested the proprotein convertases PC5/6 and PC7 for inhibition by guanylhydrazones and found an up to 7-fold lower potency for PC7. Interestingly, the observed differences in the Ki values correlated with the sequence conservation of the PCs at the allosteric sodium binding site. Therefore, OFF-state-specific targeting of furin can serve as a valuable strategy for structure-based development of PC-selective small-molecule inhibitors.


Engineering, and production of functionally active human Furin in N. benthamiana plant: In vivo post-translational processing of target proteins by Furin in plants.

  • Tarlan Mamedov‎ et al.
  • PloS one‎
  • 2019‎

A plant expression platform with eukaryotic post-translational modification (PTM) machinery has many advantages compared to other protein expression systems. This promising technology is useful for the production of a variety of recombinant proteins including, therapeutic proteins, vaccine antigens, native additives, and industrial enzymes. However, plants lack some of the important PTMs, including furin processing, which limits this system for the production of certain mammalian complex proteins of therapeutic value. Furin is a ubiquitous proprotein convertase that is involved in the processing (activation) of a wide variety of precursor proteins, including blood coagulation factors, cell surface receptors, hormones and growth factors, viral envelope glycoproteins, etc. and plays a critical regulatory role in a wide variety of cellular events. In this study, we engineered the human furin gene for expression in plants and demonstrated the production of a functional active recombinant truncated human furin in N. benthamiana plant. We demonstrate that plant produced human furin is highly active both in vivo and in vitro and specifically cleaved the tested target proteins, Factor IX (FIX) and Protective Antigen (PA83). We also demonstrate that both, enzymatic deglycosylation and proteolytic processing of target proteins can be achieved in vivo by co-expression of deglycosylating and furin cleavage enzymes in a single cell to produce deglycosylated and furin processed target proteins. It is highly expected that this strategy will have many potential applications in pharmaceutical industry and can be used to produce safe and affordable therapeutic proteins, antibodies, and vaccines using a plant expression system.


Associations between genetic variations in the FURIN gene and hypertension.

  • Nanfang Li‎ et al.
  • BMC medical genetics‎
  • 2010‎

Hypertension is a complex disease influenced by multiple genetic and environmental factors. The Kazakh ethnic group is characterized by a relatively high prevalence of hypertension. Previous research indicates that the FURIN gene may play a pivotal role in the renin-angiotensin system and maintaining the sodium-electrolyte balance. Because these systems influence blood pressure regulation, we considered FURIN as a candidate gene for hypertension. The purpose of this study was to systematically investigate the association between genetic variations in the FURIN gene and essential hypertension in a Xinjiang Kazakh population.


Furin inhibitors: importance of the positive formal charge and beyond.

  • Fabian López-Vallejo‎ et al.
  • Bioorganic & medicinal chemistry‎
  • 2012‎

Furin is the prototype member of the proprotein convertases superfamily. Proprotein convertases are associated with hormonal response, neural degeneration, viral and bacterial activation, and cancer. Several studies over the last decade have examined small molecules, natural products, peptides and peptide derivatives as furin inhibitors. Currently, subnanomolar inhibition of furin is possible. Herein, we report the analysis of 115 furin inhibitors reported in the literature. Analysis of the physicochemical properties of these compounds highlights the dependence of the inhibitory potency with the total formal charge and also shows how the most potent (peptide-based) furin inhibitors have physicochemical properties similar to drugs. In addition, we report docking studies of 26 furin inhibitors using Glide XP. Inspection of binding interactions shows that the two putative binding modes derived from our study are reasonable. Analysis of the binding modes and protein-ligand interaction fingerprints, used here as postdocking procedure, shows that electrostatic interactions predominate on S1, S2 and S4 subsites but are seldom in S3. Our models also show that the benzimidamide group, present in the most active inhibitors, can be accommodated in the S1 subsite. These results are valuable for the design of new furin inhibitors.


Furin cleavage is not a requirement for Drosophila Notch function.

  • Simon Kidd‎ et al.
  • Mechanisms of development‎
  • 2002‎

Notch (N) is a large transmembrane protein that acts as a receptor in an evolutionarily conserved intercellular signalling pathway. Because of this conservation, it has been assumed that biochemical events mediating N function are identical in all species. For instance, intracellular maturation by furin protease and subunit assembly leading to the formation of a heterodimeric cell surface N receptor are thought to be central to its function in both mammals and flies. However, in Drosophila the majority of N appears to be full-length. It has not been determined whether this full-length N protein is on the cell surface. We describe experiments which indicate that unlike mammalian N, the majority of Drosophila N on the cell surface is full-length and that in Drosophila, in vivo, furin cleavage is not required for biological activity. We further show that the behaviour of fly and mouse N can be interchanged simply by swapping the regions in which the mammalian furin-like cleavage site is located.


Furin Cleavage Site Is Key to SARS-CoV-2 Pathogenesis.

  • Bryan A Johnson‎ et al.
  • bioRxiv : the preprint server for biology‎
  • 2020‎

SARS-CoV-2 has resulted in a global pandemic and shutdown economies around the world. Sequence analysis indicates that the novel coronavirus (CoV) has an insertion of a furin cleavage site (PRRAR) in its spike protein. Absent in other group 2B CoVs, the insertion may be a key factor in the replication and virulence of SARS-CoV-2. To explore this question, we generated a SARS-CoV-2 mutant lacking the furin cleavage site (ΔPRRA) in the spike protein. This mutant virus replicated with faster kinetics and improved fitness in Vero E6 cells. The mutant virus also had reduced spike protein processing as compared to wild-type SARS-CoV-2. In contrast, the ΔPRRA had reduced replication in Calu3 cells, a human respiratory cell line, and had attenuated disease in a hamster pathogenesis model. Despite the reduced disease, the ΔPRRA mutant offered robust protection from SARS-CoV-2 rechallenge. Importantly, plaque reduction neutralization tests (PRNT 50 ) with COVID-19 patient sera and monoclonal antibodies against the receptor-binding domain found a shift, with the mutant virus resulting in consistently reduced PRNT 50 titers. Together, these results demonstrate a critical role for the furin cleavage site insertion in SARS-CoV-2 replication and pathogenesis. In addition, these findings illustrate the importance of this insertion in evaluating neutralization and other downstream SARS-CoV-2 assays.


Identification of Kukoamine A, Zeaxanthin, and Clexane as New Furin Inhibitors.

  • David Zaragoza-Huesca‎ et al.
  • International journal of molecular sciences‎
  • 2022‎

The endogenous protease furin is a key protein in many different diseases, such as cancer and infections. For this reason, a wide range of studies has focused on targeting furin from a therapeutic point of view. Our main objective consisted of identifying new compounds that could enlarge the furin inhibitor arsenal; secondarily, we assayed their adjuvant effect in combination with a known furin inhibitor, CMK, which avoids the SARS-CoV-2 S protein cleavage by means of that inhibition. Virtual screening was carried out to identify potential furin inhibitors. The inhibition of physiological and purified recombinant furin by screening selected compounds, Clexane, and these drugs in combination with CMK was assayed in fluorogenic tests by using a specific furin substrate. The effects of the selected inhibitors from virtual screening on cell viability (293T HEK cell line) were assayed by means of flow cytometry. Through virtual screening, Zeaxanthin and Kukoamine A were selected as the main potential furin inhibitors. In fluorogenic assays, these two compounds and Clexane inhibited both physiological and recombinant furin in a dose-dependent way. In addition, these compounds increased physiological furin inhibition by CMK, showing an adjuvant effect. In conclusion, we identified Kukoamine A, Zeaxanthin, and Clexane as new furin inhibitors. In addition, these drugs were able to increase furin inhibition by CMK, so they could also increase its efficiency when avoiding S protein proteolysis, which is essential for SARS-CoV-2 cell infection.


Furin inhibition prevents hypoxic and TGFβ-mediated blood-brain barrier disruption.

  • Julia Baumann‎ et al.
  • Experimental cell research‎
  • 2019‎

Hypoxic blood-brain barrier (BBB) dysfunction is a common feature of CNS diseases however mechanisms underlying barrier disturbance are still largely unknown. This study investigated the role of transforming growth factor β (TGFβ), a cytokine known to induce expression of the proprotein convertase Furin, in hypoxia-mediated barrier compromise. We show that exposure of brain endothelial cells (ECs) to hypoxia (1% O2) rapidly stimulates their migration. Additional exogenous TGFβ (0.4 nM) exposure potentiated this effect and increased Furin expression in a TGFβ type I receptor activin-like kinase 5 (ALK5) - dependent manner (prevented by 10 μM SB431542). Furin inhibition prevented hypoxia-induced EC migration and blocked TGFβ-induced potentiation suggesting existence of a feedback loop. TGFβ and Furin were also critical for hypoxia-induced BBB dysfunction. TGFβ treatment aggravated hypoxia-induced BBB permeability but ALK5 or Furin blockade reversed injury-induced permeability changes. Thus during insult Furin compromises endothelial integrity by mediating the effects of TGFβ. Targeting the Furin or ALK5 pathway may offer novel therapeutic strategies for improving BBB stability and CNS function during disease.


X-ray structures of human furin in complex with competitive inhibitors.

  • Sven O Dahms‎ et al.
  • ACS chemical biology‎
  • 2014‎

Furin inhibitors are promising therapeutics for the treatment of cancer and numerous infections caused by bacteria and viruses, including the highly lethal Bacillus anthracis or the pandemic influenza virus. Development and improvement of inhibitors for pharmacological use require a detailed knowledge of the protease's substrate and inhibitor binding properties. Here we present a novel preparation of human furin and the first crystal structures of this enzyme in complex with noncovalent inhibitors. We show the inhibitor exchange by soaking, allowing the investigation of additional inhibitors and substrate analogues. Thus, our work provides a basis for the rational design of furin inhibitors.


FURIN variant associations with postexercise hypotension are intensity and race dependent.

  • Burak T Cilhoroz‎ et al.
  • Physiological reports‎
  • 2019‎

FURIN is a proprotein convertase subtilisin/kexin enzyme important in pro-renin receptor processing, and FURIN (furin, paired basic amino acid cleaving enzyme) variants are involved in multiple aspects of blood pressure (BP) regulation. Therefore, we examined associations among FURIN variants and the immediate blood pressure (BP) response to bouts of aerobic exercise, termed postexercise hypotension (PEH). Obese (30.9 ± 3.6 kg  m-2 ) Black- (n = 14) and White- (n = 9) adults 42.0 ± 9.8 year with hypertension (139.8 ± 10.4/84.6 ± 6.2 mmHg) performed three random experiments: bouts of vigorous (VIGOROUS) and moderate (MODERATE) intensity cycling and control. Subjects were then attached to an ambulatory BP monitor for 19 h. We performed deep-targeted exon sequencing with the Illumina TruSeq Custom Amplicon kit. FURIN genotypes were coded as the number of minor alleles (#MA) and selected for additional statistical analysis based upon Bonferonni or Benjamini-Yekutieli multiple testing corrected P-values under time-adjusted linear models for 19 hourly BP measurements. After VIGOROUS over 19 h, as FURIN #MA increased in rs12917264 (P = 2.4E-04) and rs75493298 (P = 6.4E-04), systolic BP (SBP) decreased 30.4-33.7 mmHg; and in rs12917264 (P = 1.6E-03) and rs75493298 (P = 9.7E-05), diastolic BP (DBP) decreased 17.6-20.3 mmHg among Blacks only. In addition, after MODERATE over 19 h in FURIN rs74037507 (P = 8.0E-04), as #MA increased, SBP increased 20.8 mmHg among Blacks only. Whereas, after MODERATE over the awake hours in FURIN rs1573644 (P = 6.2E-04), as #MA increased, DBP decreased 12.5 mmHg among Whites only. FURIN appears to exhibit intensity and race-dependent associations with PEH that merit further exploration among a larger, ethnically diverse sample of adults with hypertension.


Pan-Cancer Analysis of FURIN as a Potential Prognostic and Immunological Biomarker.

  • Bolun Zhou‎ et al.
  • Frontiers in molecular biosciences‎
  • 2021‎

Furin is a calcium-dependent protease that processes various precursor proteins through diverse secretory pathways. The deregulation of FURIN correlated with the prognosis of patients in numerous diseases. However, the role of FURIN in human pan-cancer is still largely unknown.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: