Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 697 papers

From fossils to mind.

  • Alexandra A de Sousa‎ et al.
  • Communications biology‎
  • 2023‎

Fossil endocasts record features of brains from the past: size, shape, vasculature, and gyrification. These data, alongside experimental and comparative evidence, are needed to resolve questions about brain energetics, cognitive specializations, and developmental plasticity. Through the application of interdisciplinary techniques to the fossil record, paleoneurology has been leading major innovations. Neuroimaging is shedding light on fossil brain organization and behaviors. Inferences about the development and physiology of the brains of extinct species can be experimentally investigated through brain organoids and transgenic models based on ancient DNA. Phylogenetic comparative methods integrate data across species and associate genotypes to phenotypes, and brains to behaviors. Meanwhile, fossil and archeological discoveries continuously contribute new knowledge. Through cooperation, the scientific community can accelerate knowledge acquisition. Sharing digitized museum collections improves the availability of rare fossils and artifacts. Comparative neuroanatomical data are available through online databases, along with tools for their measurement and analysis. In the context of these advances, the paleoneurological record provides ample opportunity for future research. Biomedical and ecological sciences can benefit from paleoneurology's approach to understanding the mind as well as its novel research pipelines that establish connections between neuroanatomy, genes and behavior.


Parasitoid biology preserved in mineralized fossils.

  • Thomas van de Kamp‎ et al.
  • Nature communications‎
  • 2018‎

About 50% of all animal species are considered parasites. The linkage of species diversity to a parasitic lifestyle is especially evident in the insect order Hymenoptera. However, fossil evidence for host-parasitoid interactions is extremely rare, rendering hypotheses on the evolution of parasitism assumptive. Here, using high-throughput synchrotron X-ray microtomography, we examine 1510 phosphatized fly pupae from the Paleogene of France and identify 55 parasitation events by four wasp species, providing morphological and ecological data. All species developed as solitary endoparasitoids inside their hosts and exhibit different morphological adaptations for exploiting the same hosts in one habitat. Our results allow systematic and ecological placement of four distinct endoparasitoids in the Paleogene and highlight the need to investigate ecological data preserved in the fossil record.


Dating Alphaproteobacteria evolution with eukaryotic fossils.

  • Sishuo Wang‎ et al.
  • Nature communications‎
  • 2021‎

Elucidating the timescale of the evolution of Alphaproteobacteria, one of the most prevalent microbial lineages in marine and terrestrial ecosystems, is key to testing hypotheses on their co-evolution with eukaryotic hosts and Earth's systems, which, however, is largely limited by the scarcity of bacterial fossils. Here, we incorporate eukaryotic fossils to date the divergence times of Alphaproteobacteria, based on the mitochondrial endosymbiosis that mitochondria evolved from an alphaproteobacterial lineage. We estimate that Alphaproteobacteria arose ~1900 million years (Ma) ago, followed by rapid divergence of their major clades. We show that the origin of Rickettsiales, an order of obligate intracellular bacteria whose hosts are mostly animals, predates the emergence of animals for ~700 Ma but coincides with that of eukaryotes. This, together with reconstruction of ancestral hosts, strongly suggests that early Rickettsiales lineages had established previously underappreciated interactions with unicellular eukaryotes. Moreover, the mitochondria-based approach displays higher robustness to uncertainties in calibrations compared with the traditional strategy using cyanobacterial fossils. Further, our analyses imply the potential of dating the (bacterial) tree of life based on endosymbiosis events, and suggest that previous applications using divergence times of the modern hosts of symbiotic bacteria to date bacterial evolution might need to be revisited.


Fossils improve phylogenetic analyses of morphological characters.

  • Nicolás Mongiardino Koch‎ et al.
  • Proceedings. Biological sciences‎
  • 2021‎

Fossils provide our only direct window into evolutionary events in the distant past. Incorporating them into phylogenetic hypotheses of living clades can help time-calibrate divergences, as well as elucidate macroevolutionary dynamics. However, the effect fossils have on phylogenetic reconstruction from morphology remains controversial. The consequences of explicitly incorporating the stratigraphic ages of fossils using tip-dated inference are also unclear. Here, we use simulations to evaluate the performance of inference methods across different levels of fossil sampling and missing data. Our results show that fossil taxa improve phylogenetic analysis of morphological datasets, even when highly fragmentary. Irrespective of inference method, fossils improve the accuracy of phylogenies and increase the number of resolved nodes. They also induce the collapse of ancient and highly uncertain relationships that tend to be incorrectly resolved when sampling only extant taxa. Furthermore, tip-dated analyses under the fossilized birth-death process outperform undated methods of inference, demonstrating that the stratigraphic ages of fossils contain vital phylogenetic information. Fossils help to extract true phylogenetic signals from morphology, an effect that is mediated by both their distinctive morphology and their temporal information, and their incorporation in total-evidence phylogenetics is necessary to faithfully reconstruct evolutionary history.


Characterisation of iron oxide encrusted microbial fossils.

  • Alan Levett‎ et al.
  • Scientific reports‎
  • 2020‎

Robust methods for the characterisation of microbial biosignatures in geological matrices is critical for developing mineralogical biosignatures. Studying microbial fossils is fundamental for our understanding of the role microorganisms have played in elemental cycling in modern and ancient environments on Earth and potentially Mars. Here, we aim to understand what promotes the fossilisation of microorganisms after the initial stages of biomineralisation, committing bacteriomorphic structures to the geological record within iron-rich environments. Mineral encrusted cell envelope structures were routinely identified within a goethite-rich vein that cross-cut the saprolite (iron ore) of a weathered banded iron formation (BIF) system in the Quadrilátero Ferrífero, Brazil. The preservation of potential organic and mineralogical biosignatures associated with these fossils was characterised using the following high-resolution analytical techniques: scanning and transmission electron microscopy, focused ion beam scanning electron microscopy, nanoscale secondary ion mass spectrometry, synchrotron-based Fourier transform infrared spectroscopy and Raman spectroscopy. Electron microscopy demonstrated that mineral nucleation associated with a range of cell envelope structures typically followed the extant cell templates. These biologically-influenced iron-rich minerals are microcrystalline with minimal secondary growth. In contrast, intracellular mineralisation formed larger minerals that grew inward from the cell membrane to infill intracellular voids after cell death. A three dimensional reconstruction of encrusted cell envelopes in a fossilised biofilm suggests that microorganisms may be able to replicate, during the initial stages of mineralisation. Carbon and nitrogen signatures are preserved associated with the cell envelope structures; however, there were no conclusive mineralogical biosignatures associated with the mineralised cell envelopes highlighting the classical importance of morphology and elemental biosignatures in determining the biogenicity of bacteriomorphic structures.


Australia's oldest marsupial fossils and their biogeographical implications.

  • Robin M D Beck‎ et al.
  • PloS one‎
  • 2008‎

We describe new cranial and post-cranial marsupial fossils from the early Eocene Tingamarra Local Fauna in Australia and refer them to Djarthia murgonensis, which was previously known only from fragmentary dental remains.


Genomic fossils calibrate the long-term evolution of hepadnaviruses.

  • Clément Gilbert‎ et al.
  • PLoS biology‎
  • 2010‎

Because most extant viruses mutate rapidly and lack a true fossil record, their deep evolution and long-term substitution rates remain poorly understood. In addition to retroviruses, which rely on chromosomal integration for their replication, many other viruses replicate in the nucleus of their host's cells and are therefore prone to endogenization, a process that involves integration of viral DNA into the host's germline genome followed by long-term vertical inheritance. Such endogenous viruses are highly valuable as they provide a molecular fossil record of past viral invasions, which may be used to decipher the origins and long-term evolutionary characteristics of modern pathogenic viruses. Hepadnaviruses (Hepadnaviridae) are a family of small, partially double-stranded DNA viruses that include hepatitis B viruses. Here we report the discovery of endogenous hepadnaviruses in the genome of the zebra finch. We used a combination of cross-species analysis of orthologous insertions, molecular dating, and phylogenetic analyses to demonstrate that hepadnaviruses infiltrated repeatedly the germline genome of passerine birds. We provide evidence that some of the avian hepadnavirus integration events are at least 19 My old, which reveals a much deeper ancestry of Hepadnaviridae than could be inferred based on the coalescence times of modern hepadnaviruses. Furthermore, the remarkable sequence similarity between endogenous and extant avian hepadnaviruses (up to 75% identity) suggests that long-term substitution rates for these viruses are on the order of 10(-8) substitutions per site per year, which is a 1,000-fold slower than short-term rates estimated based on the sequences of circulating hepadnaviruses. Together, these results imply a drastic shift in our understanding of the time scale of hepadnavirus evolution, and suggest that the rapid evolutionary dynamics characterizing modern avian hepadnaviruses do not reflect their mode of evolution on a deep time scale.


Molecules and fossils reveal punctuated diversification in Caribbean "faviid" corals.

  • Sonja A Schwartz‎ et al.
  • BMC evolutionary biology‎
  • 2012‎

Even with well-known sampling biases, the fossil record is key to understanding macro-evolutionary patterns. During the Miocene to Pleistocene in the Caribbean Sea, the fossil record of scleractinian corals shows a remarkable period of rapid diversification followed by massive extinction. Here we combine a time-calibrated molecular phylogeny based on three nuclear introns with an updated fossil stratigraphy to examine patterns of radiation and extinction in Caribbean corals within the traditional family Faviidae.


Cryptic terrestrial fungus-like fossils of the early Ediacaran Period.

  • Tian Gan‎ et al.
  • Nature communications‎
  • 2021‎

The colonization of land by fungi had a significant impact on the terrestrial ecosystem and biogeochemical cycles on Earth surface systems. Although fungi may have diverged ~1500-900 million years ago (Ma) or even as early as 2400 Ma, it is uncertain when fungi first colonized the land. Here we report pyritized fungus-like microfossils preserved in the basal Ediacaran Doushantuo Formation (~635 Ma) in South China. These micro-organisms colonized and were preserved in cryptic karstic cavities formed via meteoric water dissolution related to deglacial isostatic rebound after the terminal Cryogenian snowball Earth event. They are interpreted as eukaryotes and probable fungi, thus providing direct fossil evidence for the colonization of land by fungi and offering a key constraint on fungal terrestrialization.


Congruence, fossils and the evolutionary tree of rodents and lagomorphs.

  • Robert J Asher‎ et al.
  • Royal Society open science‎
  • 2019‎

Given an evolutionary process, we expect distinct categories of heritable data, sampled in ever larger amounts, to converge on a single tree of historical relationships. We tested this assertion by undertaking phylogenetic analyses of a new morphology-DNA dataset for mammals, focusing on Glires and including the oldest known skeletons of geomyoid and Ischyromys rodents. Our results support geomyoids in the mouse-related clade (Myomorpha) and a ricochetal locomotor pattern for the common ancestor of geomyoid rodents. They also support Ischyromys in the squirrel-related clade (Sciuromorpha) and the evolution of sciurids and Aplodontia from extinct, 'protrogomorph'-grade rodents. Moreover, ever larger samples of characters from our dataset increased congruence with an independent, well-corroborated tree. Addition of morphology from fossils increased congruence to a greater extent than addition of morphology from extant taxa, consistent with fossils' temporal proximity to the common ancestors of living species, reflecting the historical, phylogenetic signal present in our data, particularly in morphological characters from fossils. Our results support the widely held but poorly tested intuition that fossils resemble the common ancestors shared by living species, and that fossilizable hard tissues (i.e. bones and teeth) help to reconstruct the evolutionary tree of life.


New Miocene Fossils and the History of Penguins in Australia.

  • Travis Park‎ et al.
  • PloS one‎
  • 2016‎

Australia has a fossil record of penguins reaching back to the Eocene, yet today is inhabited by just one breeding species, the little penguin Eudyptula minor. The description of recently collected penguin fossils from the re-dated upper Miocene Port Campbell Limestone of Portland (Victoria), in addition to reanalysis of previously described material, has allowed the Cenozoic history of penguins in Australia to be placed into a global context for the first time. Australian pre-Quaternary fossil penguins represent stem taxa phylogenetically disparate from each other and E. minor, implying multiple dispersals and extinctions. Late Eocene penguins from Australia are closest to contemporaneous taxa in Antarctica, New Zealand and South America. Given current material, the Miocene Australian fossil penguin fauna is apparently unique in harbouring 'giant penguins' after they went extinct elsewhere; and including stem taxa until at least 6 Ma, by which time crown penguins dominated elsewhere in the southern hemisphere. Separation of Australia from Antarctica during the Palaeogene, and its subsequent drift north, appears to have been a major event in Australian penguin biogeography. Increasing isolation through the Cenozoic may have limited penguin dispersal to Australia from outside the Australasian region, until intensification of the eastwards-flowing Antarctic Circumpolar Current in the mid-Miocene established a potential new dispersal vector to Australia.


Enigmatic Fossils from the Lower Carboniferous Shrimp Bed, Granton, Scotland.

  • Mikołaj K Zapalski‎ et al.
  • PloS one‎
  • 2015‎

The Lower Carboniferous (Visean) Granton Lagerstätte (Edinburgh, Scotland) is principally known for the discovery of the conodont animal, but has also yielded numerous crustaceans and other faunas. Here we report on small branching colonies, reaching 10 mm in length. They are small, erect, arborescent, and irregularly branched with predominant monopodial and dichotomous growth. They bud in a single plane. In one specimen the wall microstructure is well preserved and it is composed of evenly spaced, linear fibers, running parallel to the axis of the stems, and connected by transverse bars. We discuss possible biological affinities of these organisms; we consider algal, poriferan, hydrozoan and bryozoan affinities. The general pattern of branching, presence of fan-like structures (interpreted here as possible gonophores) and microstructure suggests affinity to Hydrozoa, affinity to non-calcifying algae is less likely. Assuming hydrozoan nature; the microstructure might suggest affinities with the extant family Solanderiidae Marshall, 1892 that possess an internal chitinous skeleton. The EDS analysis shows that fossils discussed here are preserved as phosphates. The skeletons were probably not mineralized, the presence of phosphorus suggests that the colonies were originally composed of chitin. We describe these organisms as Caledonicratis caridum gen. et sp. nov. (Solanderiidae?, Capitata?). Colonies of C. caridum gen et. sp. nov. sometimes encrust the exuviae of crustaceans, which very probably lived in fresh to brackish water thus indicating a likely habitat of Caledonicratis.


The first darter (Aves: Anhingidae) fossils from India (late Pliocene).

  • Thomas Stidham‎ et al.
  • PloS one‎
  • 2017‎

New fossils from the latest Pliocene portion of the Tatrot Formation exposed in the Siwalik Hills of northern India represent the first fossil record of a darter (Anhingidae) from India. The darter fossils possibly represent a new species, but the limited information on the fossil record of this group restricts their taxonomic allocation. The Pliocene darter has a deep pit on the distal face of metatarsal trochlea IV not reported in other anhingids, it has an open groove for the m. flexor perforatus et perforans digiti II tendon on the hypotarsus unlike New World anhingid taxa, and these darter specimens are the youngest of the handful of Neogene records of the group from Asia. These fossil specimens begin to fill in a significant geographic and temporal gap in the fossil record of this group that is largely known from other continents and other time periods. The presence of a darter and pelican (along with crabs, fish, turtles, and crocodilians) in the same fossil-bearing horizon strongly indicates the past presence of a substantial water body (large pond, lake, or river) in the interior of northern India in the foothills of the Himalayan Mountains.


Middle Jurassic fossils document an early stage in salamander evolution.

  • Marc E H Jones‎ et al.
  • Proceedings of the National Academy of Sciences of the United States of America‎
  • 2022‎

Salamanders are an important group of living amphibians and model organisms for understanding locomotion, development, regeneration, feeding, and toxicity in tetrapods. However, their origin and early radiation remain poorly understood, with early fossil stem-salamanders so far represented by larval or incompletely known taxa. This poor record also limits understanding of the origin of Lissamphibia (i.e., frogs, salamanders, and caecilians). We report fossils from the Middle Jurassic of Scotland representing almost the entire skeleton of the enigmatic stem-salamander Marmorerpeton. We use computed tomography to visualize high-resolution three-dimensional anatomy, describing morphologies that were poorly characterized in early salamanders, including the braincase, scapulocoracoid, and lower jaw. We use these data in the context of a phylogenetic analysis intended to resolve the relationships of early and stem-salamanders, including representation of important outgroups alongside data from high-resolution imaging of extant species. Marmorerpeton is united with Karaurus, Kokartus, and others from the Middle Jurassic-Lower Cretaceous of Asia, providing evidence for an early radiation of robustly built neotenous stem-salamanders. These taxa display morphological specializations similar to the extant cryptobranchid "giant" salamanders. Our analysis also demonstrates stem-group affinities for a larger sample of Jurassic species than previously recognized, highlighting an unappreciated diversity of stem-salamanders and cautioning against the use of single species (e.g., Karaurus) as exemplars for stem-salamander anatomy. These phylogenetic findings, combined with knowledge of the near-complete skeletal anatomy of Mamorerpeton, advance our understanding of evolutionary changes on the salamander stem-lineage and provide important data on early salamanders and the origins of Batrachia and Lissamphibia.


Validating a molecular clock for nudibranchs-No fossils to the rescue.

  • Kara K S Layton‎ et al.
  • Ecology and evolution‎
  • 2024‎

Time calibrated phylogenies are typically reconstructed with fossil information but for soft-bodied marine invertebrates that lack hard parts, a fossil record is lacking. In these cases, biogeographic calibrations or the rates of divergence for related taxa are often used. Although nudibranch phylogenies have advanced with the input of molecular data, no study has derived a divergence rate for this diverse group of invertebrates. Here, we use an updated closure date for the Isthmus of Panama (2.8 Ma) to derive the first divergence rates for chromodorid nudibranchs using multigene data from a geminate pair with broad phylogeographic sampling. Examining the species Chromolaichma sedna (Marcus & Marcus, 1967), we uncover deep divergences among eastern Pacific and western Atlantic clades and we erect a new species designation for the latter (Chromolaichma hemera sp. nov.). Next, we discover extensive phylogeographic structure within C. hemera sp. nov. sensu lato, thereby refuting the hypothesis of a recent introduction. Lastly, we derive divergence rates for mitochondrial and nuclear loci that exceed known rates for other gastropods and we highlight significant rate heterogeneity both among markers and taxa. Together, these findings improve understanding of nudibranch systematics and provide rates useful to apply to divergence scenarios in this diverse group.


Palaeosymbiosis revealed by genomic fossils of Wolbachia in a strongyloidean nematode.

  • Georgios Koutsovoulos‎ et al.
  • PLoS genetics‎
  • 2014‎

Wolbachia are common endosymbionts of terrestrial arthropods, and are also found in nematodes: the animal-parasitic filaria, and the plant-parasite Radopholus similis. Lateral transfer of Wolbachia DNA to the host genome is common. We generated a draft genome sequence for the strongyloidean nematode parasite Dictyocaulus viviparus, the cattle lungworm. In the assembly, we identified nearly 1 Mb of sequence with similarity to Wolbachia. The fragments were unlikely to derive from a live Wolbachia infection: most were short, and the genes were disabled through inactivating mutations. Many fragments were co-assembled with definitively nematode-derived sequence. We found limited evidence of expression of the Wolbachia-derived genes. The D. viviparus Wolbachia genes were most similar to filarial strains and strains from the host-promiscuous clade F. We conclude that D. viviparus was infected by Wolbachia in the past, and that clade F-like symbionts may have been the source of filarial Wolbachia infections.


X-ray computed tomography datasets for forensic analysis of vertebrate fossils.

  • Timothy B Rowe‎ et al.
  • Scientific data‎
  • 2016‎

We describe X-ray computed tomography (CT) datasets from three specimens recovered from Early Cretaceous lakebeds of China that illustrate the forensic interpretation of CT imagery for paleontology. Fossil vertebrates from thinly bedded sediments often shatter upon discovery and are commonly repaired as amalgamated mosaics grouted to a solid backing slab of rock or plaster. Such methods are prone to inadvertent error and willful forgery, and once required potentially destructive methods to identify mistakes in reconstruction. CT is an efficient, nondestructive alternative that can disclose many clues about how a specimen was handled and repaired. These annotated datasets illustrate the power of CT in documenting specimen integrity and are intended as a reference in applying CT more broadly to evaluating the authenticity of comparable fossils.


Molecules and fossils tell distinct yet complementary stories of mammal diversification.

  • Nathan S Upham‎ et al.
  • Current biology : CB‎
  • 2021‎

Reconstructing the tempo at which biodiversity arose is a fundamental goal of evolutionary biologists, yet the relative merits of evolutionary-rate estimates are debated based on whether they are derived from the fossil record or time-calibrated phylogenies (timetrees) of living species. Extinct lineages unsampled in timetrees are known to "pull" speciation rates downward, but the temporal scale at which this bias matters is unclear. To investigate this problem, we compare mammalian diversification-rate signatures in a credible set of molecular timetrees (n = 5,911 species, ∼70% from DNA) to those in fossil genus durations (n = 5,320). We use fossil extinction rates to correct or "push" the timetree-based (pulled) speciation-rate estimates, finding a surge of speciation during the Paleocene (∼66-56 million years ago, Ma) between the Cretaceous-Paleogene (K-Pg) boundary and the Paleocene-Eocene Thermal Maximum (PETM). However, about two-thirds of the K-Pg-to-PETM originating taxa did not leave modern descendants, indicating that this rate signature is likely undetectable from extant lineages alone. For groups without substantial fossil records, thankfully all is not lost. Pushed and pulled speciation rates converge starting ∼10 Ma and are equal at the present day when recent evolutionary processes can be estimated without bias using species-specific "tip" rates of speciation. Clade-wide moments of tip rates also enable enriched inference, as the skewness of tip rates is shown to approximate a clade's extent of past diversification-rate shifts. Molecular timetrees need fossil-correction to address deep-time questions, but they are sufficient for shallower time questions where extinctions are fewer.


Estimating Age-Dependent Extinction: Contrasting Evidence from Fossils and Phylogenies.

  • Oskar Hagen‎ et al.
  • Systematic biology‎
  • 2018‎

The estimation of diversification rates is one of the most vividly debated topics in modern systematics, with considerable controversy surrounding the power of phylogenetic and fossil-based approaches in estimating extinction. Van Valen's seminal work from 1973 proposed the "Law of constant extinction," which states that the probability of extinction of taxa is not dependent on their age. This assumption of age-independent extinction has prevailed for decades with its assessment based on survivorship curves, which, however, do not directly account for the incompleteness of the fossil record, and have rarely been applied at the species level. Here, we present a Bayesian framework to estimate extinction rates from the fossil record accounting for age-dependent extinction (ADE). Our approach, unlike previous implementations, explicitly models unobserved species and accounts for the effects of fossil preservation on the observed longevity of sampled lineages. We assess the performance and robustness of our method through extensive simulations and apply it to a fossil data set of terrestrial Carnivora spanning the past 40 myr. We find strong evidence of ADE, as we detect the extinction rate to be highest in young species and declining with increasing species age. For comparison, we apply a recently developed analogous ADE model to a dated phylogeny of extant Carnivora. Although the phylogeny-based analysis also infers ADE, it indicates that the extinction rate, instead, increases with increasing taxon age. The estimated mean species longevity also differs substantially, with the fossil-based analyses estimating 2.0 myr, in contrast to 9.8 myr derived from the phylogeny-based inference. Scrutinizing these discrepancies, we find that both fossil and phylogeny-based ADE models are prone to high error rates when speciation and extinction rates increase or decrease through time. However, analyses of simulated and empirical data show that fossil-based inferences are more robust. This study shows that an accurate estimation of ADE from incomplete fossil data is possible when the effects of preservation are jointly modeled, thus allowing for a reassessment of Van Valen's model as a general rule in macroevolution.


Fossils from South China redefine the ancestral euarthropod body plan.

  • Cédric Aria‎ et al.
  • BMC evolutionary biology‎
  • 2020‎

Early Cambrian Lagerstätten from China have greatly enriched our perspective on the early evolution of animals, particularly arthropods. However, recent studies have shown that many of these early fossil arthropods were more derived than previously thought, casting uncertainty on the ancestral euarthropod body plan. In addition, evidence from fossilized neural tissues conflicts with external morphology, in particular regarding the homology of the frontalmost appendage.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: