Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 20 papers out of 201 papers

Casticin induces breast cancer cell apoptosis by inhibiting the expression of forkhead box protein M1.

  • Li-Ping Liu‎ et al.
  • Oncology letters‎
  • 2014‎

Casticin is an active ingredient derived from Fructus Viticis, a traditional Chinese medicine. This study aimed to investigate the role of forkhead box O3 (FOXO3a) in breast cancer cells and examine the regulatory mechanisms of FOXO3a in response to casticin treatment of the cells by ELISA, flow cytometry, small interfering RNA (siRNA) transfection and western blot analysis. Casticin treatment induced apoptosis and reduced the expression of the transcription factor forkhead box protein M1 (FOXM1). In addition, FOXM1 repression induced by casticin treatment was associated with the activation of FOXO3a via increased dephosphorylation. Notably, silencing FOXO3a expression by siRNA-mediated gene knockdown attenuated casticin-mediated apoptosis. Collectively, these findings suggest that FOXO3a is a critical mediator of the inhibitory effects of casticin on apoptosis in breast cancer cells.


Effects of forkhead box protein M1 on trophoblast invasion and its role in preeclampsia development.

  • Xuena Cui‎ et al.
  • Experimental and therapeutic medicine‎
  • 2018‎

The present study aimed to investigate the expression of the forkhead box protein M1 (FOXM1) in the placenta of patients with preeclampsia, and its effect on trophoblasts. A total of 28 patients with preeclampsia and 30 patients without preeclampsia (controls) who underwent cesarean section and were admitted to the Affiliated Hospital of Qingdao University between June 2013 and September 2016 were enrolled in the present study. The expression of FOXM1 in placental tissues was examined by reverse transcription-quantitative polymerase chain reaction, western blotting and immunohistochemistry. HTR8/SVneo cells were used to measure the in vitro expression of the vascular endothelial growth factor (VEGF). The results demonstrated that FOXM1 expression was downregulated in the placental tissues of patient with preeclampsia (P<0.05). Following the silencing of FOXM1 expression, the proliferation of HTR8/SVneo cells was suppressed. The results of flow cytometry demonstrated that proportion of HTR8/SVneo cells in the G0/G1 phase and the proportion of apoptotic cells increased. The expression of the apoptosis regulator BCL-2, as well as the expression of VEGF mRNA and protein expression were also downregulated following FOXM1 silencing. FOXM1 may therefore promote the development of preeclampsia via the VEGF signaling pathway.


The Forkhead Box M1 protein regulates BRIP1 expression and DNA damage repair in epirubicin treatment.

  • L J Monteiro‎ et al.
  • Oncogene‎
  • 2013‎

FOXM1 is implicated in genotoxic drug resistance but its role and mechanism of action remain unclear. Here, we establish that γH2AX foci, indicative of DNA double-strand breaks (DSBs), accumulate in a time-dependent manner in the drug-sensitive MCF-7 cells but not in the resistant counterparts in response to epirubicin. We find that FOXM1 expression is associated with epirubicin sensitivity and DSB repair. Ectopic expression of FOXM1 can increase cell viability and abrogate DSBs sustained by MCF-7 cells following epirubicin, owing to an enhancement in repair efficiency. Conversely, alkaline comet and γH2AX foci formation assays show that Foxm1-null cells are hypersensitive to DNA damage, epirubicin and γ-irradiation. Furthermore, we find that FOXM1 is required for DNA repair by homologous recombination (HR) but not non-homologous end joining (NHEJ), using HeLa cell lines harbouring an integrated direct repeat green fluorescent protein reporter for DSB repair. We also identify BRIP1 as a direct transcription target of FOXM1 by promoter analysis and chromatin-immunoprecipitation assay. In agreement, depletion of FOXM1 expression by small interfering RNA downregulates BRIP1 expression at the protein and mRNA levels in MCF-7 and the epirubicin-resistant MCF-7 Epi(R) cells. Remarkably, the requirement for FOXM1 for DSB repair can be circumvented by reintroduction of BRIP1, suggesting that BRIP1 is an important target of FOXM1 in DSB repair. Indeed, like FOXM1, BRIP1 is needed for HR. These data suggest that FOXM1 regulates BRIP1 expression to modulate epirubicin-induced DNA damage repair and drug resistance.


Centromere protein F and Forkhead box M1 correlation with prognosis of non-small cell lung cancer.

  • Rui Li‎ et al.
  • Oncology letters‎
  • 2020‎

Non-small cell lung cancer (NSCLC) is the most common histological type of lung cancer. Altered expression of centromere protein F (CENPF), a transient kinetochore protein, has been found in a variety of human cancers. However, its clinical significance in NSCLC remains unknown. In the present study the results of quantitative PCR and western blot analyses demonstrated that CENPF and Forkhead box M1 (FOXM1) were significantly higher in NSCLC tissues than in the non-cancerous controls at both transcriptional and translational levels. Immunohistochemical staining results showed 58.7% (44/75) and 64.0% (48/75) of NSCLC tissues displayed high expression of CENPF and FOXM1, respectively. CENPF protein expression showed a positive correlation with tumor size (P=0.0179), vital status (P=0.0008) and FOXM1 expression (P=0.0013) in NSCLC. Poor overall survival was correlated with high levels of CENPF and FOXM1 in NSCLC patients as evaluated by Kaplan-Meier and log rank test. Multivariate analyses showed that CENPF expression was an independent prognostic factor for NSCLC. In conclusion, our study provides evidence of the prognostic function of CENPF in NSCLC.


Forkhead Box Protein M1 Promotes Nasopharyngeal Carcinoma Cell Tumorigenesis Possibly via the Wnt/β-Catenin Signaling Pathway.

  • Chao Yu‎ et al.
  • Medical science monitor : international medical journal of experimental and clinical research‎
  • 2021‎

BACKGROUND Forkhead box protein M1 (FoxM1) is an important transcription factor involved in the development and progression of various malignancies. However, its role in nasopharyngeal carcinoma (NPC) remains largely unknown. This study aimed to assess the effect of FoxM1 on NPC cell tumorigenesis as well as the underlying mechanism. MATERIAL AND METHODS NPC cell lines CNE-1 and CNE-2 were treated with vehicle and FoxM1 inhibitor thiostrepton or transfected with small interfering RNA. CCK-8 assay, flow cytometric assay, and Hoechst 33258 staining were performed to assess the viability, apoptosis and nuclear morphological impairment, and cell cycle, respectively. The expression of apoptosis-related caspase-3 and caspase-9 was detected by western blot analysis The tumor growth in the mouse xenograft model of NPC treated with thiostrepton or control was assessed. The expression of Wnt/ß-catenin signaling proteins p27, FoxM1, S phase kinase-associated protein 2 (SKP2), and Cyclin D1 were determined both in cells and xenograft tissues by western blot analysis. RESULTS Inhibition of FoxM1 by thiostrepton significantly suppressed NPC cell viability, induced apoptosis, increased cell cycle arrest, impaired nuclear morphology, and reduced NPC cell-derived tumor xenograft growth. Mechanistically, inhibition or knockdown of FoxM1 inactivated the Wnt/ß-catenin signaling pathway, as demonstrated by altered expression of Wnt/ß-catenin signaling-related genes, including p27, SKP2, and cyclin D1, in both NPC cells and xenograft tissues. CONCLUSIONS We identified FoxM1 as a novel regulator of NPC cell tumorigenesis in vitro and in vivo. Targeting FoxM1 could be a promising therapeutic strategy against NPC.


Molecular mechanism of Forkhead box M1 inhibition by thiostrepton in breast cancer cells.

  • Mesayamas Kongsema‎ et al.
  • Oncology reports‎
  • 2019‎

Breast cancer is the most common type of malignancies in women worldwide, and genotoxic chemotherapeutic drugs are effective by causing DNA damage in cancer cells. However, >90% of patients with metastatic cancer are resistant to chemotherapy. The Forkhead box M1 (FOXM1) transcription factor plays a pivotal role in the resistance of breast cancer cells to chemotherapy by promoting DNA damage repair following genotoxic drug treatment. The aim of the present study was to investigate the inhibition of the FOXM1 protein by thiostrepton, a natural antibiotic produced by the Streptomyces species. Experimental studies were designed to examine the effectiveness of thiostrepton in downregulating FOXM1 mRNA expression and activity, leading to senescence and apoptosis of breast cancer cells. The cytotoxicity of thiostrepton in breast cancer was determined using cell viability assay. Additionally, thiostrepton treatment decreased the mRNA expression of cyclin B1 (CCNB1), a downstream target of FOXM1. The present results indicated that thiostrepton inhibited FOXM1 mRNA expression and its effect on CCNB1. Molecular dynamic simulations were performed to study the interactions between FOXM1‑DNA and thiostrepton after molecular docking. The results revealed that the possible mechanism underlying the inhibitory effect of thiostrepton on FOXM1 function was by forming a tight complex with the DNA and FOXM1 via its binding domain. Collectively, these results indicated that thiostrepton is a specific and direct inhibitor of the FOXM1 protein in breast cancer. The findings of the present study may lead to the development of novel therapeutic strategies for breast cancer and help overcome resistance to conventional chemotherapeutic drugs.


Phosphoglycerate dehydrogenase induces glioma cells proliferation and invasion by stabilizing forkhead box M1.

  • Jinlong Liu‎ et al.
  • Journal of neuro-oncology‎
  • 2013‎

Phosphoglycerate dehydrogenase (PHGDH) is the first enzyme branching from glycolysis in the three-step serine biosynthetic pathway. Recent evidence has shown that PHGDH is amplified in human breast cancer and melanoma and plays a key role in cancer metabolism. However, PHGDH expression in glioma and a potential non-metabolic role in tumorigenesis have not been reported. We analyzed PHGDH levels in specimens from glioma patients and found that PHGDH, although negative in normal brain tissues, was highly expressed in astrocytic tumors and increasingly expressed in more aggressive cancer types. Inhibition of PHGDH expression in glioma cells downregulated the expression of VEGF, MMP-2, CHK2 and cyclin D1 and reduced glioma cell proliferation, invasion and tumorigenicity in vitro and in vivo. Interestingly, we found that the oncogenic transcription factor FOXM1 was also downregulated in PHDGH-silenced glioma cells. Using LC/LC MS analysis, we identified PHGDH as a novel binding partner of FOXM1. PHGDH interacted with and stabilized FOXM1 at the protein level, promoting the proliferation, invasion and tumorigenicity of glioma cells. Our data identified PHGDH as a potential prognostic marker of glial brain tumors and identified a non-metabolic role for PHGDH in glioma tumorigenesis, providing a novel angle of targeting the PHGDH-FOXM1 axis in future brain tumor therapy.


The CCCTC-binding factor (CTCF)-forkhead box protein M1 axis regulates tumour growth and metastasis in hepatocellular carcinoma.

  • Bin Zhang‎ et al.
  • The Journal of pathology‎
  • 2017‎

CCCTC-binding factor (CTCF) is a DNA-binding protein that interacts with a large number of highly divergent target sequences throughout the genome. It is implicated in a variety of functions, including chromatin organization and transcriptional control. The functional role of CTCF in tumour pathogenesis remains elusive. We showed that CTCF is frequently upregulated in a subset of primary hepatocellular carcinomas (HCCs) as compared with non-tumoural liver. Overexpression of CTCF was associated with shorter disease-free survival of patients. Short hairpin RNA (shRNA)-mediated suppression of CTCF inhibited cell proliferation, motility and invasiveness in HCC cell lines; these effects were correlated with prominent reductions in the expression of telomerase reverse transcriptase (TERT), the shelterin complex member telomerase repeat-binding factor 1, and forkhead box protein M1 (FOXM1). In contrast, upregulation of CTCF was positively correlated with FOXM1 and TERT expression in clinical HCC biopsies. Depletion of CTCF resulted in reduced motility and invasiveness in HCC cells that could be reversed by ectopic expression of FOXM1, suggesting that FOXM1 is one of the important downstream effectors of CTCF in HCC. Reporter gene analysis suggested that depletion of CTCF is associated with reduced FOXM1 and TERT promoter activity. Chromatin immunoprecipitation (ChIP)-polymerase chain reaction (PCR) analysis further revealed occupancy of the FOXM1 promoter by CTCF in vivo. Importantly, depletion of CTCF by shRNA significantly inhibited tumour progression and metastasis in HCC mouse models. Our work uncovered a novel functional role of CTCF in HCC pathogenesis, which suggests that targeting CTCF could be further explored as a potential therapeutic strategy for HCC. © 2017 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


RASSF1A Suppresses Estrogen-Dependent Breast Cancer Cell Growth through Inhibition of the Yes-Associated Protein 1 (YAP1), Inhibition of the Forkhead Box Protein M1 (FOXM1), and Activation of Forkhead Box Transcription Factor 3A (FOXO3A).

  • Sven Roßwag‎ et al.
  • Cancers‎
  • 2020‎

The estrogen receptor alpha (ERα) is expressed by the majority of breast cancers and plays an important role in breast cancer development and tumor outgrowth. Although ERα is well known to be a specific and efficient therapeutic target, the molecular mechanisms that are responsible for the control of ERα expression and function in the context of breast cancer initiation and progression are complex and not completely elucidated. In previous work, we have demonstrated that the tumor suppressor RASSF1A inhibits ERα expression and function in ERα-positive breast cancer cells through an AKT-dependent mechanism. Transcriptional activators such as forkhead box protein M1 (FOXM1) and forkhead transcription factor 3A (FOXO3A) and signaling pathways such as the Hippo pathway are also known to modulate ERα expression and activity. Here we report that RASSF1A acts as an inhibitor of ERα-driven breast cancer cell growth through a complex, hierarchically organized network that initially involves suppression of the Hippo effector Yes-associated protein 1 (YAP1), which is followed by inhibition of AKT1 activity, increased FOXO3A activity as well as a blockade of FOXM1 and ERα expression. Together our findings provide important new mechanistic insights into how the loss of RASSF1A contributes to ERα+ breast cancer initiation and progression.


Deletion of Forkhead Box M1 transcription factor from respiratory epithelial cells inhibits pulmonary tumorigenesis.

  • I-Ching Wang‎ et al.
  • PloS one‎
  • 2009‎

The Forkhead Box m1 (Foxm1) protein is induced in a majority of human non-small cell lung cancers and its expression is associated with poor prognosis. However, specific requirements for the Foxm1 in each cell type of the cancer lesion remain unknown. The present study provides the first genetic evidence that the Foxm1 expression in respiratory epithelial cells is essential for lung tumorigenesis. Using transgenic mice, we demonstrated that conditional deletion of Foxm1 from lung epithelial cells (epFoxm1(-/-) mice) prior to tumor initiation caused a striking reduction in the number and size of lung tumors, induced by either urethane or 3-methylcholanthrene (MCA)/butylated hydroxytoluene (BHT). Decreased lung tumorigenesis in epFoxm1(-/-) mice was associated with diminished proliferation of tumor cells and reduced expression of Topoisomerase-2alpha (TOPO-2alpha), a critical regulator of tumor cell proliferation. Depletion of Foxm1 mRNA in cultured lung adenocarcinoma cells significantly decreased TOPO-2alpha mRNA and protein levels. Moreover, Foxm1 directly bound to and induced transcription of the mouse TOPO-2alpha promoter region, indicating that TOPO-2alpha is a direct target of Foxm1 in lung tumor cells. Finally, we demonstrated that a conditional deletion of Foxm1 in pre-existing lung tumors dramatically reduced tumor growth in the lung. Expression of Foxm1 in respiratory epithelial cells is critical for lung cancer formation and TOPO-2alpha expression in vivo, suggesting that Foxm1 is a promising target for anti-tumor therapy.


Sirtuin 6 deficiency induces endothelial cell senescence via downregulation of forkhead box M1 expression.

  • Ok-Hee Lee‎ et al.
  • Aging‎
  • 2020‎

Cellular senescence of endothelial cells causes vascular dysfunction, promotes atherosclerosis, and contributes to the development of age-related vascular diseases. Sirtuin 6 (SIRT6), a conserved NAD+-dependent protein deacetylase, has beneficial effects against aging, despite the fact that its functional mechanisms are largely uncharacterized. Here, we show that SIRT6 protects endothelial cells from senescence. SIRT6 expression is progressively decreased during both oxidative stress-induced senescence and replicative senescence. SIRT6 deficiency leads to endothelial dysfunction, growth arrest, and premature senescence. Using genetically engineered endothelial cell-specific SIRT6 knockout mice, we also show that down-regulation of SIRT6 expression in endothelial cells exacerbates vascular aging. Expression microarray analysis demonstrated that SIRT6 modulates the expression of multiple genes involved in cell cycle regulation. Specifically, SIRT6 appears to regulate the expression of forkhead box M1 (FOXM1), a critical transcription factor for cell cycle progression and senescence. Overexpression of FOXM1 ameliorates SIRT6 deficiency-induced endothelial cell senescence. In this work, we demonstrate the role of SIRT6 as an anti-aging factor in the vasculature. These data may provide the basis for future novel therapeutic approaches against age-related vascular disorders.


MicroRNA-320 Enhances Radiosensitivity of Glioma Through Down-Regulation of Sirtuin Type 1 by Directly Targeting Forkhead Box Protein M1.

  • Tengfei Li‎ et al.
  • Translational oncology‎
  • 2018‎

Glioma is the most common cancer in human brain system and seriously threatens human health. miRNA-320 has been demonstrated to be closely correlated with the development of glioma. However, its effect and molecular mechanism underlying radioresistance have not been fully elucidated in glioma. Here, RT-qPCR assay was used to assess the expressions of miR-320 and forkhead box protein M1 (FoxM1) mRNA in glioma tumor tissues and cells. The effects of miR-320, FoxM1 and sirtuin type 1 (Sirt1) on radiosensitivity in glioma cells were evaluated by clone formation assay, apoptosis assay, histone H2AX phosphorylation level (γH2AX) detection and caspase 3 activity analysis, respectively. The direct interaction between miR-320 and FoxM1 was detected by luciferase assay. The protein levels of FoxM1, Sirt1 and γH2AX were measured by western blot assay. We found that miR-320 expression was down-regulated and FoxM1 expression was up-regulated in radioresistant glioma tissues and IR-treated glioma cells. miR-320 overexpression dramatically enhanced radiosensitivity, promoted apoptosis, and improved γH2AX expression and caspase 3 activity in glioma cells. Luciferase reporter assay and western blot assay further validated that miR-320 suppressed FoxM1 expression by directly targeting 3' UTR region of FoxM1. Moreover, miR-320 inhibited Sirt1 expression via targeting FoxM1 in glioma cells. Furthermore, overexpression of FoxM1 and Sirt1 strikingly attenuated miR-320-induced increase of radiosensitivity, apoptosis and γH2AX expression in glioma cells. In conclusion, miR-320 enhanced radiosensitivity of glioma cells through down-regulation of Sirt1 by directly targeting FoxM1.


Overexpression of forkhead box protein M1 (FOXM1) in ovarian cancer correlates with poor patient survival and contributes to paclitaxel resistance.

  • Fung Zhao‎ et al.
  • PloS one‎
  • 2014‎

Deregulation of FOXM1 has been documented in various cancers. The aim of this study was to evaluate the role of FOXM1 in ovarian cancer tumorigenesis and paclitaxel resistance.


Comprehensive clinicopathological significance and putative transcriptional mechanisms of Forkhead box M1 factor in hepatocellular carcinoma.

  • Hua-Yu Wu‎ et al.
  • World journal of surgical oncology‎
  • 2023‎

The Forkhead box M1 factor (FOXM1) is a crucial activator for cancer cell proliferation. While FOXM1 has been shown to promote hepatocellular carcinoma (HCC) progression, its transcriptional mechanisms remain incompletely understood.


The forkhead box M1 transcription factor as a candidate of target for anti-cancer immunotherapy.

  • Kazunori Yokomine‎ et al.
  • International journal of cancer‎
  • 2010‎

The present study attempted to identify a target antigen for immunotherapy for cholangiocarcinoma. Forkhead box M1 (FOXM1) was selected as a candidate antigen based on the data of previous cDNA microarray analysis of clinical samples of cholangiocarcinoma. The level of FOXM1 mRNA was more than 4 times higher in cancer cells in comparison to adjacent normal epithelial cells, in all of 24 samples of cholangiocarcinoma tissues. An immunohistochemical analysis also detected FOXM1 protein in the cancer cells but not in the normal cells. Twenty-three human FOXM1-derived peptides predicted to bind to HLA-A2 were analyzed to determine their ability to induce HLA-A2-restricted T cells in HLA-A2 transgenic mice. FOXM1(362-370) (YLVPIQFPV), FOXM1(373-382) (SLVLQPSVKV), and FOXM1(640-649) (GLMDLSTTPL) peptides primed HLA-A2-restricted cytotoxic T lymphocytes (CTLs) in the HLA-A2 transgenic mice. Human CTL lines reactive to these 3 peptides could also be established from HLA-A2-positive healthy donors and cancer patients. Natural processing of the 3 epitopes from FOXM1 protein was confirmed by specific killing of HLA-A2-positive FOXM1-transfectants by peptide-induced CTLs. FOXM1 is expressed in various types of cancers and it is also functionally involved in oncogenic transformation and the survival of cancer cells. Therefore, FOXM1 may be a suitable target for immunotherapy against various cancers including cholangiocarcinoma.


Downregulation of sperm-associated antigen 5 inhibits melanoma progression by regulating forkhead box protein M1/A disintegrin and metalloproteinase 17/NOTCH1 signaling.

  • Lin Dang‎ et al.
  • Bioengineered‎
  • 2022‎

Sperm-associated antigen 5 (SPAG5) has been identified as a driver in several type of cancers. In this study, we aimed to reveal the role of SPAG5 in melanoma and clarify whether FOXM1 (forkhead box protein M1) /ADAM17 (A disintegrin and metalloproteinase 17) /NOTCH1 signaling was involved. The expression of SPAG5 in malignant melanoma (MM) tissues and matched normal tissues was detected using qRT-PCR, immunohistochemistry and Western blotting. Cell viability was tested using CCK-8 (Cell Count Kit-8), colony formation and EdU staining. Cell migration and epithelial to mesenchymal transition (EMT) were measured using transwell chambers and immunofluorescent staining. Cell cycle distribution and tumorigenesis were assessed by flow cytometry and in vivo tumor-bearing experiments, respectively. The results demonstrated that the expression of SPAG5 was increased in MM tissues and cells. Downregulation of SPAG5 inhibited cell viability, migration, invasion and EMT, and induced a G1-phase arrest. In addition, downregulation of SPAG5 decreased the expression of FOXM1, thereafter inhibiting the expression of ADAM17, NOTCH1 and HES1. Furthermore, deletion of SPAG5 expression decreased the tumorigenesis of MM A375 cells. In conclusion, this study demonstrated that SPAG5 was overexpressed in MM. Downregulation of SPAG5 repressed MM cell growth and EMT, which might be induced by inactivation of the FOXM1/ADAM17/NOTCH1 signaling.


Aberrant activation of hedgehog signaling promotes cell proliferation via the transcriptional activation of forkhead Box M1 in colorectal cancer cells.

  • DeJie Wang‎ et al.
  • Journal of experimental & clinical cancer research : CR‎
  • 2017‎

Recent evidence suggests that the aberrant activation of Hedgehog (Hh) signaling by Gli transcription factors is characteristic of a variety of aggressive human carcinomas, including colorectal cancer (CRC). Forkhead box M1 (FoxM1) controls the expression of a number of cell cycle regulatory proteins, and FoxM1 expression is elevated in a broad range of human malignancies, which suggests that it plays a crucial role in tumorigenesis. However, the mechanisms underlying FoxM1 expression are not fully understood. Here, we aim to further investigate the molecular mechanism by which Gli1 regulates FoxM1 in CRC.


Hypoxia-driven paracrine osteopontin/integrin αvβ3 signaling promotes pancreatic cancer cell epithelial-mesenchymal transition and cancer stem cell-like properties by modulating forkhead box protein M1.

  • Junyu Cao‎ et al.
  • Molecular oncology‎
  • 2019‎

Pancreatic stellate cells (PSCs), a key component of the tumor microenvironment, contribute to tumor invasion, metastasis, and chemoresistance. Osteopontin (OPN), a phosphorylated glycoprotein, is overexpressed in pancreatic cancer. However, OPN expression in PSCs and its potential roles in tumor-stroma interactions remain unclear. The present study first showed that OPN is highly expressed and secreted in activated PSCs driven by hypoxia, and this process is in a ROS-dependent manner; in addition, OPN was shown to be involved in the PSC-induced epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC)-like properties of pancreatic cancer cells (PCCs). Mechanistically, OPN from activated PSCs interacts with the transmembrane receptor integrin αvβ3 on PCCs to upregulate forkhead box protein M1 (FOXM1) expression and induce malignant phenotypes of PCCs. Moreover, the Akt and Erk pathways participate in OPN/integrin αvβ3 axis-induced FOXM1 expression of PCCs. Our further analysis showed that OPN and FOXM1 are significantly upregulated in pancreatic cancer tissues and are associated with poor clinical outcome, indicating that OPN and FOXM1 might be considered as diagnostic and prognostic biomarkers for patients with pancreatic cancer. In conclusion, we show here for the first time that OPN promotes the EMT and CSC-like properties of PCCs by activating the integrin αvβ3-Akt/Erk-FOXM1 cascade in a paracrine manner, suggesting that targeting the tumor microenvironment represents a promising therapeutic strategy in pancreatic cancer.


Upregulation of ZNF148 in SDHB-deficient gastrointestinal stromal tumor potentiates Forkhead box M1-mediated transcription and promotes tumor cell invasion.

  • Xiaodong Gao‎ et al.
  • Cancer science‎
  • 2020‎

Succinate dehydrogenase (SDH) deficiency is associated with gastrointestinal stromal tumor (GIST) oncogenesis, but the underlying molecular mechanism remains to be further investigated. Here, we show that succinate accumulation induced by SDHB loss of function increased the expression of zinc finger protein 148 (ZNF148, also named ZBP-89) in GIST cells. Meanwhile, ZNF148 is found to be phosphorylated by ERK at Ser306, and this phosphorylation results in ZNF148 binding to Forkhead box M1 (FOXM1). Through the complex formation at the promoter, ZNF148 facilitates Histone H3 acetylation and FOXM1-mediated Snail transcription, which eventually promotes cell invasion and tumor growth. The clinical analysis indicates that SDHB deficiency is associated with elevated ZNF148 levels, and ZNF148-S306 phosphorylation level displays a positive correlation with poor prognosis in GIST patients. These findings illustrate an unidentified molecular mechanism underlying FOXM1-regulated gene transcription related to GIST cell invasion, which highlights the physiological effects of SDHB deficiency on the invasiveness of GIST.


Expression of Forkhead box M1 in soft tissue leiomyosarcoma: Clinicopathologic and in vitro study using a newly established cell line.

  • Akira Maekawa‎ et al.
  • Cancer science‎
  • 2016‎

Leiomyosarcoma (LMS) of soft tissue is a sarcoma with smooth-muscle differentiation, and conventional chemotherapy does not improve its outcome. The application of novel antitumor agents and precise prognostication has been demanded. The expression of the protein Forkhead box M1 (FOXM1), a member of the FOX family, is considered an independent predictor of poor survival in many cancers and sarcomas. However, the expression status of FOXM1 in LMS is poorly understood. The purposes of this study were to examine the correlation between the expression of FOXM1 and clinicopathologic or prognostic factors and to clarify the efficacy of FOXM1 target therapy in LMS. We evaluated the immunohistochemical expressions of FOXM1 using 123 LMS tumor specimens. Univariate and multivariate survival analyses revealed that FOXM1 expression was associated with poor prognosis in LMS. An in vitro study was then carried out to examine the antitumor effect of a FOXM1 inhibitor (thiostrepton) and siRNA on a novel LMS cell line, TC616. We also assessed the efficacy of the combined use of doxorubicin and thiostrepton. Thiostrepton showed dose-dependent antitumor activity and TC616 cells treated with the combination of thiostrepton and doxorubicin showed lower proliferation compared to those treated with either drug individually. FOXM1 interruption by siRNA decreased cell proliferation and increased chemosensitivity. In conclusion, FOXM1 has potential to be a therapeutic target for LMS.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: