Searching across hundreds of databases

Our searching services are busy right now. Your search will reload in five seconds.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

X
Forgot Password

If you have forgotten your password you can enter your email here and get a temporary password sent to your email.

This service exclusively searches for literature that cites resources. Please be aware that the total number of searchable documents is limited to those containing RRIDs and does not include all open-access literature.

Search

Type in a keyword to search

On page 1 showing 1 ~ 12 papers out of 12 papers

Fluorocarbons Enhance Intracellular Delivery of Short STAT3-sensors and Enable Specific Imaging.

  • Valeriy Metelev‎ et al.
  • Theranostics‎
  • 2017‎

Short oligonucleotide sequences are now being widely investigated for their potential therapeutic properties. The modification of oligonucleotide termini with short fluorinated residues is capable of drastically altering their behavior in complex in vitro and in vivo systems, and thus may serve to greatly enhance their therapeutic potential. The main goals of our work were to explore: 1) how modification of STAT3 transcription factor-binding oligodeoxynucleotide (ODN) duplexes (ODND) with one or two short fluorocarbon (FC)-based residues would change their properties in vitro and in vivo, and if so, how this would affect their intracellular uptake by cancer cells, and 2) the ability of such modified ODND to form non-covalent complexes with FC-modified carrier macromolecule. The latter has an inherent advantage of producing a 19F-specific magnetic resonance (MR) imaging signature. Thus, we also tested the ability of such copolymers to generate 19F-MR signals. Materials and Methods. Fluorinated nucleic acid residues were incorporated into ODN by using automated synthesis or via activated esters on ODN 5'-ends. To quantify ODND uptake by the cells and to track their stability, we covalently labeled ODN with fluorophores using internucleoside linker technology; the FC-modified carrier was synthesized by acylation of pegylated polylysine graft copolymer with perfluoroundecanoic acid (M5-gPLL-PFUDA). Results. ODN with a single FC group exhibited a tendency to form duplexes with higher melting points and with increased stability against degradation when compared to control non-modified ODNs. ODND carrying fluorinated residues showed complex formation with M5-gPLL-PFUDA as predicted by molecular dynamics simulations. Moreover, FC groups modulated the specificity of ODND binding to the STAT3 target. Finally, FC modification resulted in greater cell uptake (2 to 4 fold higher) when compared to the uptake of non-modified ODND as determined by quantitative confocal fluorescence imaging of A431 and INS-1 cells. Conclusion. ODND modification with FC residues enables fine-tuning of protein binding specificity to double-strand binding motifs and results in an increased internalization by A431 and INS-1 cells in culture. Our results show that modification of ODN termini with FC residues is both a feasible and powerful strategy for developing more efficient nucleic acid-based therapies with the added benefit of allowing for non-invasive MR imaging of ODND therapeutic targeting and response.


Metal-Organic Framework-Derived Strategy for Improving Catalytic Performance of a Chromia-Based Catalyst in the Chlorine/Fluorine Exchange Reactions for Unsaturated Fluorocarbons.

  • Xiutao Li‎ et al.
  • ACS omega‎
  • 2020‎

Hydrofluoroolefins (HFOs) and cyclic hydrofluorocarbons (c-HFCs) have been the most favored alternatives of the ozone depletion substances; however, because of the poor performance of the present chlorine/fluorine (Cl/F) exchange catalysts, the development and production of HFOs and c-HFCs are hindered. Here, we first report a novel and facile route to fabricate high-performance Cl/F exchange catalysts via a metal-organic framework (MOF) carbonization method. The MOF-derived catalyst not only has high selectivity but also can significantly lower the reaction temperature. Moreover, benefiting from the stable structure and coke-inhibiting ability, the MOF-derived catalyst has a long service life compared with the traditional precipitation method. Furthermore, the nanoscopic MOF-derived catalyst can greatly reduce the Cr dosage, which would help to minimize the risk of Cr contamination.


Nanoparticles for "two color" 19F magnetic resonance imaging: Towards combined imaging of biodistribution and degradation.

  • Olga Koshkina‎ et al.
  • Journal of colloid and interface science‎
  • 2020‎

The use of polymeric nanoparticles (NPs) as therapeutics has been steadily increasing over past decades. In vivo imaging of NPs is necessary to advance the therapeutic performance. 19F Magnetic Resonance Imaging (19F MRI) offers multiple advantages for in vivo imaging. However, design of a probe for both biodistribution and degradation has not been realized yet. We developed polymeric NPs loaded with two fluorocarbons as promising imaging tools to monitor NP biodistribution and degradation by 19F MRI. These 200 nm NPs consist of poly(lactic-co-glycolic acid) (PLGA) loaded with perfluoro-15-crown-5 ether (PFCE) and PERFECTA. PERFECTA/PFCE-PLGA NPs have a fractal sphere structure, in which both fluorocarbons are distributed in the polymeric matrix of the fractal building blocks, which differs from PFCE-PLGA NPs and is unique for fluorocarbon-loaded colloids. This structure leads to changes of magnetic resonance properties of both fluorocarbons after hydrolysis of NPs. PERFECTA/PFCE-PLGA NPs are colloidally stable in serum and biocompatible. Both fluorocarbons show a single resonance in 19F MRI that can be imaged separately using different excitation pulses. In the future, these findings may be used for biodistribution and degradation studies of NPs by 19F MRI in vivo using "two color" labeling leading to improvement of drug delivery agents.


Perfluorocarbons for the treatment of decompression illness: how to bridge the gap between theory and practice.

  • Dirk Mayer‎ et al.
  • European journal of applied physiology‎
  • 2019‎

Decompression illness (DCI) is a complex clinical syndrome caused by supersaturation of respiratory gases in blood and tissues after abrupt reduction in ambient pressure. The resulting formation of gas bubbles combined with pulmonary barotrauma leads to venous and arterial gas embolism. Severity of DCI depends on the degree of direct tissue damage caused by growing bubbles or indirect cell injury by impaired oxygen transport, coagulopathy, endothelial dysfunction, and subsequent inflammatory processes. The standard therapy of DCI requires expensive and not ubiquitously accessible hyperbaric chambers, so there is an ongoing search for alternatives. In theory, perfluorocarbons (PFC) are ideal non-recompressive therapeutics, characterized by high solubility of gases. A dual mechanism allows capturing of excess nitrogen and delivery of additional oxygen. Since the 1980s, numerous animal studies have proven significant benefits concerning survival and reduction in DCI symptoms by intravenous application of emulsion-based PFC preparations. However, limited shelf-life, extended organ retention and severe side effects have prevented approval for human usage by regulatory authorities. These negative characteristics are mainly due to emulsifiers, which provide compatibility of PFC to the aqueous medium blood. The encapsulation of PFC with amphiphilic biopolymers, such as albumin, offers a new option to achieve the required biocompatibility avoiding toxic emulsifiers. Recent studies with PFC nanocapsules, which can also be used as artificial oxygen carriers, show promising results. This review summarizes the current state of research concerning DCI pathology and the therapeutic use of PFC including the new generation of non-emulsified formulations based on nanocapsules.


Cardiotoxicity of Freon among refrigeration services workers: comparative cross-sectional study.

  • Laila M E Sabik‎ et al.
  • Environmental health : a global access science source‎
  • 2009‎

Freon includes a number of gaseous, colorless chlorofluorocarbons. Although freon is generally considered to be a fluorocarbon of relatively low toxicity; significantly detrimental effects may occur upon over exposure. The purpose of the present study is to investigate whether occupational exposure to fluorocarbons can induce arterial hypertension, myocardial ischemia, cardiac arrhythmias, elevated levels of plasma lipids and renal dysfunction.


Toward Precisely Controllable Acoustic Response of Shell-Stabilized Nanobubbles: High Yield and Narrow Dispersity.

  • Amin Jafari Sojahrood‎ et al.
  • ACS nano‎
  • 2021‎

Understanding the pressure dependence of the nonlinear behavior of ultrasonically excited phospholipid-stabilized nanobubbles (NBs) is important for optimizing ultrasound exposure parameters for implementations of contrast enhanced ultrasound, critical to molecular imaging. The viscoelastic properties of the shell can be controlled by the introduction of membrane additives, such as propylene glycol as a membrane softener or glycerol as a membrane stiffener. We report on the production of high-yield NBs with narrow dispersity and different shell properties. Through precise control over size and shell structure, we show how these shell components interact with the phospholipid membrane, change their structure, affect their viscoelastic properties, and consequently change their acoustic response. A two-photon microscopy technique through a polarity-sensitive fluorescent dye, C-laurdan, was utilized to gain insights on the effect of membrane additives to the membrane structure. We report how the shell stiffness of NBs affects the pressure threshold (Pt) for the sudden amplification in the scattered acoustic signal from NBs. For narrow size NBs with 200 nm mean size, we find Pt to be between 123 and 245 kPa for the NBs with the most flexible membrane as assessed using C-Laurdan, 465-588 kPa for the NBs with intermediate stiffness, and 588-710 kPa for the NBs with stiff membranes. Numerical simulations of the NB dynamics are in good agreement with the experimental observations, confirming the dependence of acoustic response to shell properties, thereby substantiating further the development in engineering the shell of ultrasound contrast agents. The viscoelastic-dependent threshold behavior can be utilized for significantly and selectively enhancing the diagnostic and therapeutic ultrasound applications of potent narrow size NBs.


Cardiovascular effects of environmental chemicals.

  • A E Taylor‎
  • Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery‎
  • 1996‎

This article presents recent data on several environmental toxins: lead, carbon disulfide, asbestos, arsenic, ozone, cadmium, vinyl chloride, fluorocarbons, freon, and pesticides. These environmental toxins produce both hypertension and cardiac arrhythmias in most studies, and they are not necessarily related to primary lung disease and secondary heart disease. The possible mechanisms that could cause the cardiovascular diseases include (1) damage to the endothelial barrier in the vascular system, (2) activation of leukocytes and platelets, (3) initiation of plaque formation, (4) stimulation of the inflammatory response, (5) kidney-related hypertension, and (6) direct damage to cardiac and blood vessel tissue. Recommendations are that more animal, human cultured cell, and epidemiologic studies should be conducted on the environmental toxins identified in this article.


Pollutants: a candidate as a new risk factor for osteoarthritis-results from a systematic literature review.

  • Camille Deprouw‎ et al.
  • RMD open‎
  • 2022‎

Considering non-classical environmental risk factors for osteoarthritis (OA), a systematic literature review (SLR) was performed to summarise existing knowledge on associations between OA and pollutants.


Design and fabrication of superhydrophobic cellulose nanocrystal films by combination of self-assembly and organocatalysis.

  • Rana Alimohammadzadeh‎ et al.
  • Scientific reports‎
  • 2023‎

Cellulose nanocrystals, which have unique properties of high aspect ratio, high surface area, high mechanical strength, and a liquid crystalline nature, constitute a renewable nanomaterial with great potential for several uses (e.g., composites, films and barriers). However, their intrinsic hydrophilicity results in materials that are moisture sensitive and exhibit poor water stability. This limits their use and competitiveness as a sustainable alternative against fossil-based materials/plastics in packaging, food storage, construction and materials application, which cause contamination in our oceans and environment. To make cellulose nanocrystal films superhydrophobic, toxic chemicals such as fluorocarbons are typically attached to their surfaces. Hence, there is a pressing need for environmentally friendly alternatives for their modification and acquiring this important surface property. Herein, we describe the novel creation of superhydrophobic, fluorocarbon-free and transparent cellulose nanocrystal films with functional groups by a bioinspired combination of self-assembly and organocatalytic surface modification at the nanoscale using food approved organic acid catalysts. The resulting film-surface is superhydrophobic (water contact angle > 150°) and has self-cleaning properties (the lotus effect). In addition, the superhydrophobic cellulose nanocrystal films have excellent water stability and significantly decreased oxygen permeability at high relative humidity with oxygen transmission rates better than those of commonly used plastics.


Systemic oxygen delivery by peritoneal perfusion of oxygen microbubbles.

  • Jameel A Feshitan‎ et al.
  • Biomaterials‎
  • 2014‎

Severe hypoxemia refractory to pulmonary mechanical ventilation remains life-threatening in critically ill patients. Peritoneal ventilation has long been desired for extrapulmonary oxygenation owing to easy access of the peritoneal cavity for catheterization and the relative safety compared to an extracorporeal circuit. Unfortunately, prior attempts involving direct oxygen ventilation or aqueous perfusates of fluorocarbons or hemoglobin carriers have failed, leading many researchers to abandon the method. We attribute these prior failures to limited mass transfer of oxygen to the peritoneum and have designed an oxygen formulation that overcomes this limitation. Using phospholipid-coated oxygen microbubbles (OMBs), we demonstrate 100% survival for rats experiencing acute lung trauma to at least 2 h. In contrast, all untreated rats and rats treated with peritoneal oxygenated saline died within 30 min. For rats treated with OMBs, hemoglobin saturation and heart rate were at normal levels over the 2-h timeframe. Peritoneal oxygenation with OMBs was therefore shown to be safe and effective, and the method requires less equipment and technical expertise than initiating and maintaining an extracorporeal circuit. Further translation of peritoneal oxygenation with OMBs may provide therapy for acute respiratory distress syndrome arising from trauma, sepsis, pneumonia, aspiration, burns and other pulmonary diseases.


Perfluorocarbon Nanoemulsions with Fluorous Chlorin-Type Photosensitizers for Antitumor Photodynamic Therapy in Hypoxia.

  • Minh Tuan Nguyen‎ et al.
  • International journal of molecular sciences‎
  • 2023‎

The efficacy of photodynamic therapy (PDT) strictly depends on the availability of molecular oxygen to trigger the light-induced generation of reactive species. Fluorocarbons have an increased ability to dissolve oxygen and are attractive tools for gas delivery. We synthesized three fluorous derivatives of chlorin with peripheral polyfluoroalkyl substituents. These compounds were used as precursors for preparing nanoemulsions with perfluorodecalin as an oxygen depot. Therefore, our formulations contained hydrophobic photosensitizers capable of absorbing monochromatic light in the long wavelength region and the oxygen carrier. These modifications did not alter the photosensitizing characteristics of chlorin such as the generation of singlet oxygen, the major cytocidal species in PDT. Emulsions readily entered HCT116 colon carcinoma cells and accumulated largely in mitochondria. Illumination of cells loaded with emulsions rapidly caused peroxidation of lipids and the loss of the plasma membrane integrity (photonecrosis). Most importantly, in PDT settings, emulsions potently sensitized cells cultured under prolonged (8 weeks) hypoxia as well as cells after oxygen depletion with sodium sulfite (acute hypoxia). The photodamaging potency of emulsions in hypoxia was significantly more pronounced compared to emulsion-free counterparts. Considering a negligible dark cytotoxicity, our materials emerge as efficient and biocompatible instruments for PDT-assisted eradication of hypoxic cells.


Biofabrication under fluorocarbon: a novel freeform fabrication technique to generate high aspect ratio tissue-engineered constructs.

  • Andreas Blaeser‎ et al.
  • BioResearch open access‎
  • 2013‎

Bioprinting is a recent development in tissue engineering, which applies rapid prototyping techniques to generate complex living tissues. Typically, cell-containing hydrogels are dispensed layer-by-layer according to a computer-generated three-dimensional model. The lack of mechanical stability of printed hydrogels hinders the fabrication of high aspect ratio constructs. Here we present submerged bioprinting, a novel technique for freeform fabrication of hydrogels in liquid fluorocarbon. The high buoyant density of fluorocarbons supports soft hydrogels by floating. Hydrogel constructs of up to 30-mm height were generated. Using 3% (w/v) agarose as the hydrogel and disposable syringe needles as nozzles, the printer produced features down to 570-μm diameter with a lateral dispensing accuracy of 89 μm. We printed thin-walled hydrogel cylinders measuring 4.8 mm in height, with an inner diameter of ∼2.9 mm and a minimal wall thickness of ∼650 μm. The technique was successfully applied in printing a model of an arterial bifurcation. We extruded under fluorocarbon, cellularized alginate tubes with 5-mm outer diameter and 3-cm length. Cells grew vigorously and formed clonal colonies within the 7-day culture period. Submerged bioprinting thus seems particularly suited to fabricate hollow structures with a high aspect ratio like vascular grafts for cardiovascular tissue engineering as well as branching or cantilever-like structures, obviating the need for a solid support beneath the overhanging protrusions.


  1. SciCrunch.org Resources

    Welcome to the FDI Lab - SciCrunch.org Resources search. From here you can search through a compilation of resources used by FDI Lab - SciCrunch.org and see how data is organized within our community.

  2. Navigation

    You are currently on the Community Resources tab looking through categories and sources that FDI Lab - SciCrunch.org has compiled. You can navigate through those categories from here or change to a different tab to execute your search through. Each tab gives a different perspective on data.

  3. Logging in and Registering

    If you have an account on FDI Lab - SciCrunch.org then you can log in from here to get additional features in FDI Lab - SciCrunch.org such as Collections, Saved Searches, and managing Resources.

  4. Searching

    Here is the search term that is being executed, you can type in anything you want to search for. Some tips to help searching:

    1. Use quotes around phrases you want to match exactly
    2. You can manually AND and OR terms to change how we search between words
    3. You can add "-" to terms to make sure no results return with that term in them (ex. Cerebellum -CA1)
    4. You can add "+" to terms to require they be in the data
    5. Using autocomplete specifies which branch of our semantics you with to search and can help refine your search
  5. Save Your Search

    You can save any searches you perform for quick access to later from here.

  6. Query Expansion

    We recognized your search term and included synonyms and inferred terms along side your term to help get the data you are looking for.

  7. Collections

    If you are logged into FDI Lab - SciCrunch.org you can add data records to your collections to create custom spreadsheets across multiple sources of data.

  8. Facets

    Here are the facets that you can filter your papers by.

  9. Options

    From here we'll present any options for the literature, such as exporting your current results.

  10. Further Questions

    If you have any further questions please check out our FAQs Page to ask questions and see our tutorials. Click this button to view this tutorial again.

Publications Per Year

X

Year:

Count: